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Meta-Learning

Meta-Learning: ‘learning-to-learn’.
Mechanistic view: model that can read in an entire dataset and make
predictions for new datapoints.
Probabilistic view: extract prior information from a set of
(meta-training) tasks that allows efficient learning of new tasks.

Incorporate additional data?
D = {(x1,y1), . . . ,(xk ,yk)}
Dmeta−train = {D1, . . . ,Dn},Dmeta−test = {D1, . . . ,Dm}

Figure: Example for meta learning. [3]
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Meta-Learning

Meta-learning problem: given data from T1, . . . ,Tn, quickly solve new
task Ttest .
Key assumption: meta-training tasks and meta-test task drawn i.i.d
from same task distribution
Multi-task learning, transfer learning and the meta-learning problem.

Figure: Overview of the meta-learning landscape. [2]
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Model-Agnostic Meta-Learning (MAML)[1]

1 Fine-tuning: φ ←− θ −α∇θL(θ ,Dtr )

θ : pre-trained parameters;
Dtr : training data for new task.

2 MAML: fine-tune with small amount of data during the test time.

minθ ∑i L(θ −α∇θL(θ ,Dtr
i ),Dts

i )
θ : parameter vector being meta-learned
θ ∗i : optimal parameter vector for task i.

Figure: Diagram of MAML [1].
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MAML

Key idea: acquire θ ∗i through optimization.
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Formal Definition

For a subtask Ti :

Learning tasks {Ti}i∈[n]
i .i .d∼ ι

Hypothesis class H, a distribution D over Z .
Loss function l : H×Z 7→ R.
Risk for a subtask: R(h) = Ez∼D [l(h,z)]

For meta-learner:
L̄(θ) = ET∼ι [RT (h)]
L(θ) = 1

n ∑
n
i=1RTi

(h)
MAML: L(θ) = 1

n ∑
n
i=1Ri (hθ−η∇θRi (hθ ))

Notation:

Lp(v)−norm : ‖f (·)‖p,v := {
∫
X f p(x)dv(x)}1/p

L2(ρ)− inner product :< f ,g >H :=
∫
X f (x) ·g(x)dρ
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Meta-SL

The goal of the supervised learning subtask (Di , l ,H).

h∗i = arg min
h∈H

Ri (h) = arg min
h∈H

Ez∼Di
[l(h,z)]

where parameterize H by Hθ with a feature mapping φ : X 7→ Rd

Hθ = {hθ (·) = φ(·)>θ : θ ∈ Rd}

Meta-objective

L(θ) =
1

n

n

∑
i=1

Ri (hθi
), where hθi

= hθ−η∇θRi (hθ ).

Minimizing L(θ) uses gradient descent

θl+1← θl −αl ·∇θL(θl), for l = 0, . . . ,T −1.

Jiaxin Liu (Group Reading) Paper: On the Global Optimality of Model-Agnostic Meta-Learning [4]May 24, 2021 8 / 15



Meta-SL

The goal of the supervised learning subtask (Di , l ,H).

h∗i = arg min
h∈H

Ri (h) = arg min
h∈H

Ez∼Di
[l(h,z)]

where parameterize H by Hθ with a feature mapping φ : X 7→ Rd

Hθ = {hθ (·) = φ(·)>θ : θ ∈ Rd}

Meta-objective

L(θ) =
1

n

n

∑
i=1

Ri (hθi
), where hθi

= hθ−η∇θRi (hθ ).

Minimizing L(θ) uses gradient descent

θl+1← θl −αl ·∇θL(θl), for l = 0, . . . ,T −1.

Jiaxin Liu (Group Reading) Paper: On the Global Optimality of Model-Agnostic Meta-Learning [4]May 24, 2021 8 / 15



Frechet Differentiability

Definition 1: Frechet Differentiability

Let H be a Banach space with the norm ‖ · ‖H . A functional R : H 7→ R is
Frechet differentiable at h ∈ H if it holds for a bounded linear operator
A : H 7→ R that

lim
h1∈H,‖h1‖H→0

|R(h+h1)−R(h)−A(h1)|
‖h1‖H

→ 0.

We define A as the F-derivative of R at h ∈ H and

DhR(·) = A(·) =< ·,ah >H , where ah(x) =
δR

δh
(x),∀x ∈ X ,h ∈ H

Example 1

f : R→ R.f (x) = x2
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Convex and Differentiable Risk

Assumption 1: (Convex and Differentiable Risk)

We assume for all i ∈ [n] that the risk Ri is convex and Frechet
differentiable on H.

Proposition 1: (Convex and Differentiable Risk)

Under Assumption 1, it holds for all i ∈ [n] that

Ri (h1)≥ Ri (h2)+ <
δRi

δh2
,h1−h2 >H ,∀h1,h2 ∈ H.

Linear approximation for a convex function.
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ε-stationary point

Definition 2 (descent direction)

We say that the direction s is a descent direction for the continuously
differentiable function f at the point x if

g(x)>s < 0

f ′(x ;s)
def
= lim

t→0

f (x + ts)− f (x)

t
= g(x)>s

Definition 3 (ε-stationary point ω)

w be the ε-stationary point attained by meta-SL such that

∇ωL(ω)>v ≤ ε, ∀v ∈B = {θ ∈ Rd : ‖θ‖2 ≤ 1}.
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Goal

Theorem 1 (Optimality Gap of ε-Stationary Point).

Let θ ∗ be a global minimizer of L(θ). Also, let w be the ε-stationary point
defined in Definition 3. Let l(hθ (x),(x ,y)) be twice differentiable with
respect to all θ ∈ Rd and (x ,y) ∈ (X ×Y ). Under Assumption 1, it holds
for all R > 0 that

L(ω)−L(θ
∗)≤ R · ε +‖w‖M·ρ · inf

v∈BR

‖u(·)−φl ,ω (·)>v‖M·ρ

where we define BR = {θ ∈ Rd : ‖θ‖2 ≤ R} and ‖w‖M·ρ is the
L2(M ·ρ)-norm of w .

Jiaxin Liu (Group Reading) Paper: On the Global Optimality of Model-Agnostic Meta-Learning [4]May 24, 2021 12 / 15



Cont.

w(x ,y ,x ′) =
1

n
·

n

∑
i=1

(δRi/δhωi )(x ′) · (dDi/dM)(x ,y)

u(x ,y ,x ′) = (
1

n
·

n

∑
i=1

(δRi/δhωi )(x ′) · (hωi (x
′)−hθ ∗i

(x ′)))/w(x ,y ,x ′)

φl ,ω (x ,y ,x ′) = (Id −η
2
ω l(φ(x)>ω,(x ,y)))φ(x ′)

where we define the mix distribution M over all the distributions {Di}i∈[n]

M(x ,y) =
1

n

n

∑
i=1

Di (x ,y), ∀(x ,y) ∈ X ×Y

Proof.

Theorem 1 (see notes)
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* Meta-SL with Squared Loss

Squared Loss

l(h,(x ,y)) = (h(x)−y)2, ∀h ∈ H,(x ,y) ∈ X ×Y .

Proposition 2

We denote by D̄i the marginal distribution of Di over X . Let Di = ρ for all
i ∈ [n]. For the squared loss l and Ri = E(x ,y)∼Di

[l(h,(x ,y))], it holds that

(δRi/δh) = 2E(x ,y)∼Di
[h(x)−y |x = x ′], ∀h ∈ H,x ′ ∈ X .

Corollary 1

For the squared loss l and R > 0, we have

L(ω)−L(θ
∗)≤ R · ε + 2R̄ · inf

v∈B
‖u− (Kη ·φ)>(R ·v)‖ρ .
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Cont.

Kη = Ex∼ρ [Id −2η ·φ(x)φ(x)>],

u(x ′) = (
n

∑
i=1

(δ ri/δωi )(x ′) · (hωi (x
′)−hθ ∗i

(x ′)))/(
n

∑
i=1

δRi/δhωi (x
′)),

R̄ =
1

n
·

n

∑
i=1

R
1/2
i (hωi ) =

1

n

n

∑
i=1

{E(x ,y)∼Di
[(y −hωi (x))2]}1/2

Proof.

Corollary 1 (see notes)
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