A GRAPH TO GRAPHS FRAMEWORK FOR RETROSYNTHESIS PREDICTION CHANCE

Chence Shi 1 Minkai Xu 2 Hongyu Guo 3 Ming Zhang 1 Jian Tang 4 5 6

XUEHAN

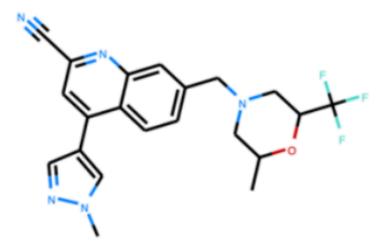
A Graph to Graphs Framework for Retrosynthesis Prediction Chence

05/31/2021

Background: Drug Discovery

Retrosynthesis Prediction

- Once a molecular structure is designed, how to synthesize it?

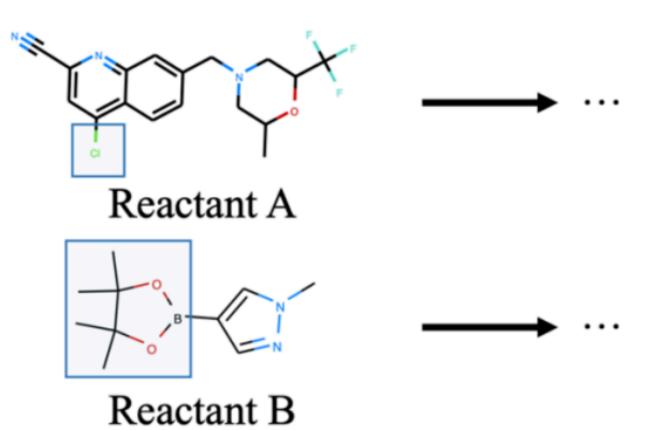


Predict Reactants

Reaction Type (optional)

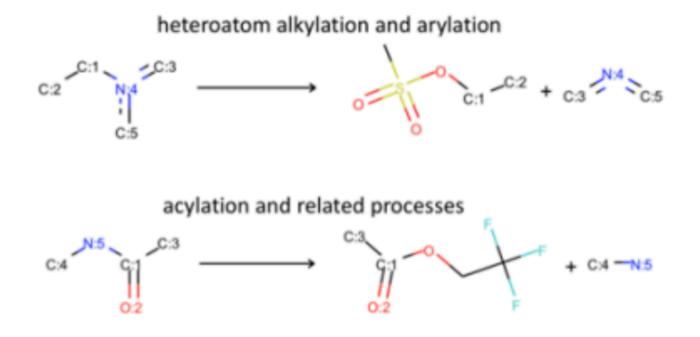
Product (Given)

Goal: Identify a set of reactants that can be used to synthesize a target molecule



Retrosynthesis Prediction - Template Based

- Retrosim(Corley et al.): template ranking with product-product similarity
- > NeuralSymbolic(Segler et al.): template selection as multi-class classification
- GLN(Dai et al.2019): sample template and reactants from conditional joint distribution



Retrosynthesis Templates. Taken from GLN (Dai et al. 2019)

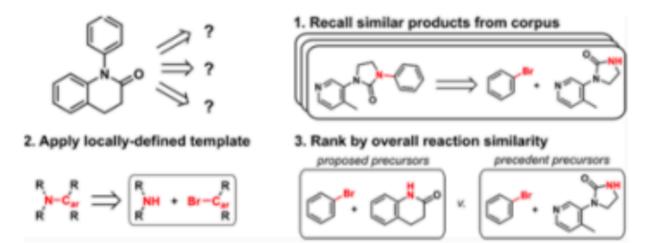


Figure from Corley et al. 2017. Computer-Assisted Retrosynthesis Based on Molecular Similarity

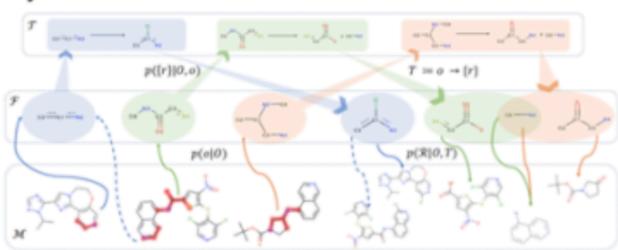


Figure from Dai et al. NeurIPS 2019. Retrosynthesis Prediction with Conditional Graph Logic Network

Retrosynthesis Prediction - Template free

- Sequence to sequence problem (Seq2Seq,Liu et al., 2017)
 - **Neural machine translation task**
 - **SMILES** representation of molecules
- Limitations:
 - Not effectively reflect the complex relationships between > atoms
 - **Unsatisfactory performance**

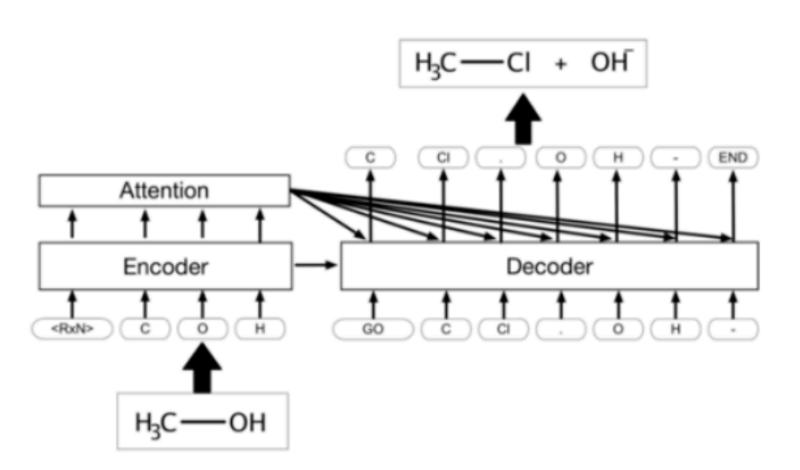
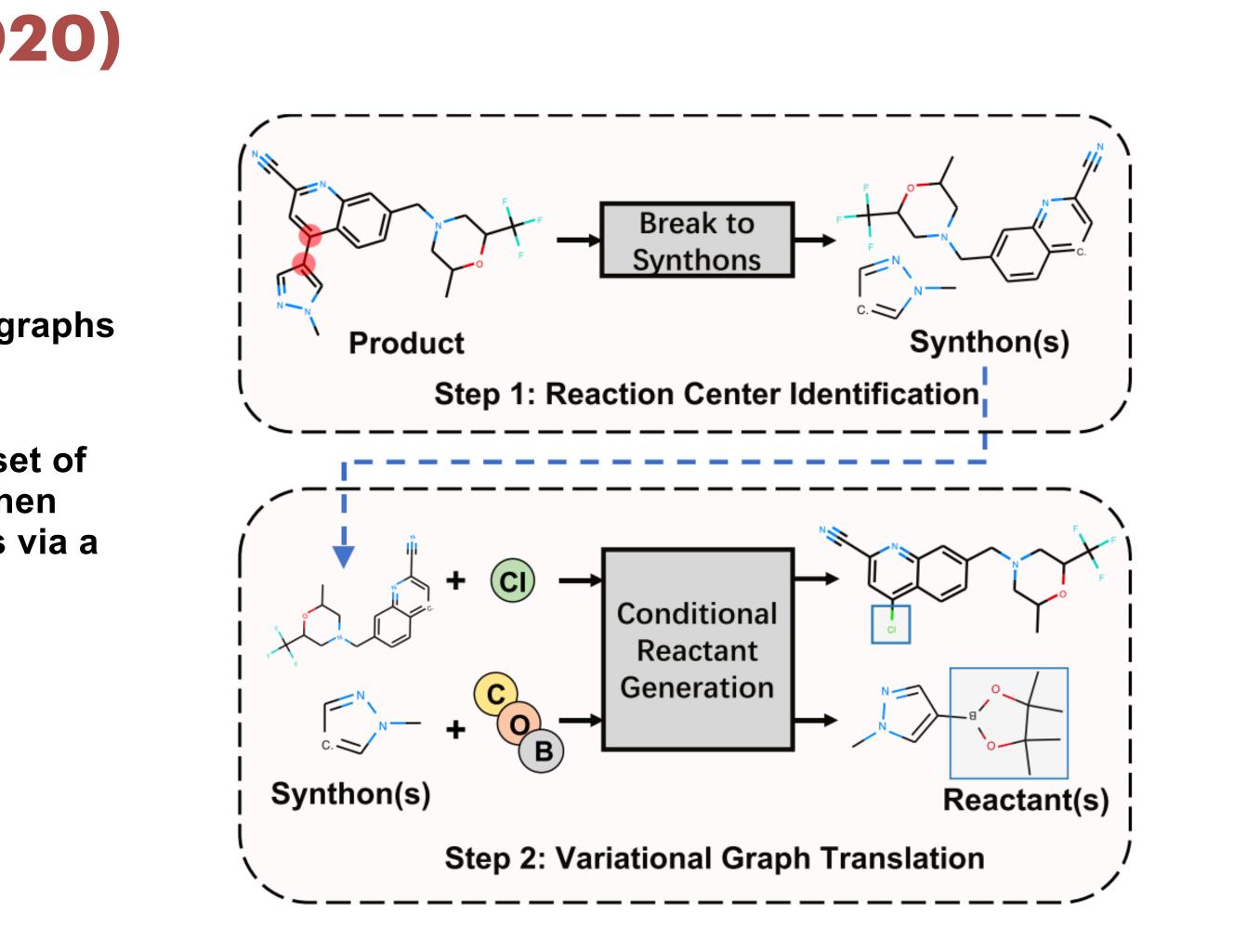


Figure from Liu et al. 2017. Retrosynthetic reaction prediction using neural sequence-to-sequence models

A Graph to Graphs Framework for Retrosynthesis Prediction(Shi et al.ICML2020)

- Represent each molecule as a graph
- Formulate retrosynthesis prediction as a graph-to-graphs translation problem.
- G2Gs first splits the target molecular graph into a set of synthons by identifying the reaction centers, and then translates the synthons to the final reactant graphs via a variational graph translation framework.



Reaction Center Identification

- highest reactivity score above a threshold will be selected as the reaction center.

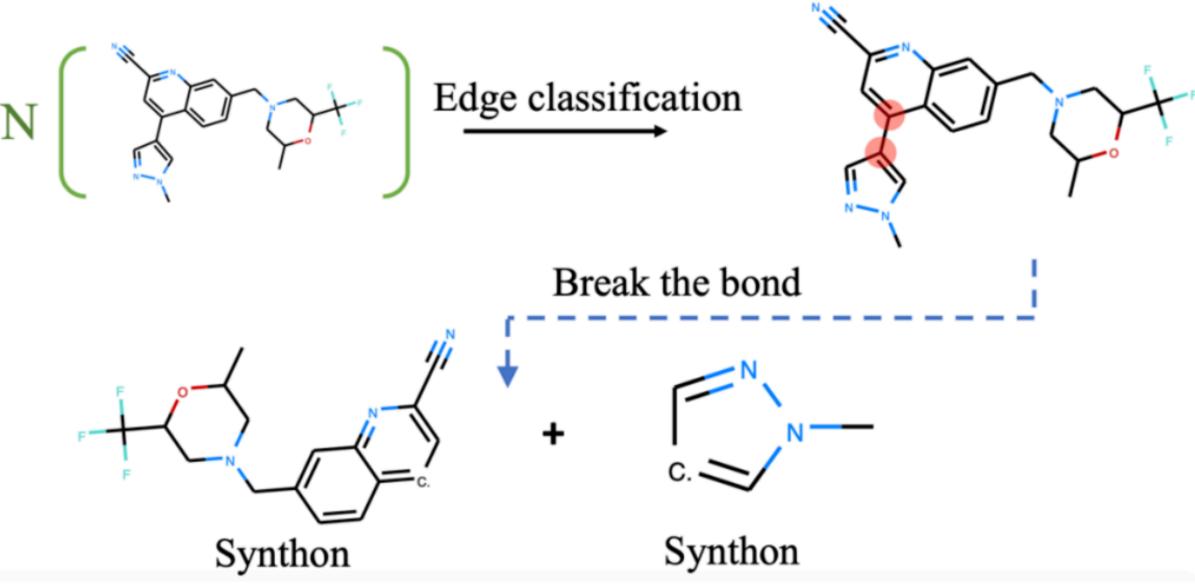
one-to-many graph translation problem

GC

- multiple one-to-one translation processes

Estimate the reactivity score of all atom pairs of the product graph(R-GCN), and the atom pair with the

Split the product graph into synthons by disconnecting the bonds of the reaction center resulted.



R-GCN(Schlichtkrull et al., 2018)

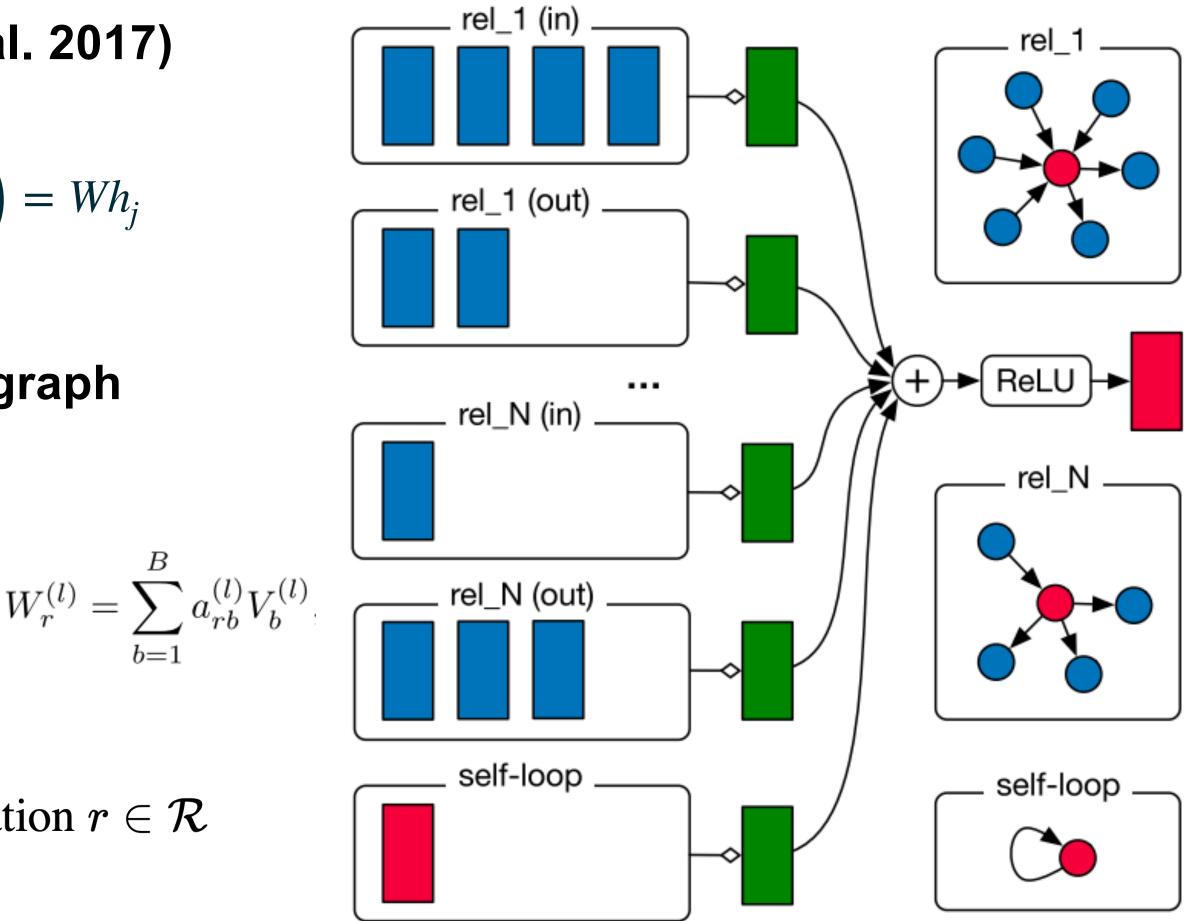
message-passing framework (Gilmer et al. 2017)

$$h_i^{(l+1)} = \sigma \left(\sum_{m \in \mathcal{M}_i} g_m \left(h_i^{(l)}, h_j^{(l)} \right) \right) \qquad g_m \left(h_i, h_j \right)$$

For relational(directed and labels) multi-graph

$$h_i^{(l+1)} = \sigma \left(\sum_{r \in \mathscr{R}} \sum_{j \in \mathscr{N}_i^r} \frac{1}{c_{i,r}} W_r^{(l)} h_j^{(l)} + W_0^{(l)} h_i^{(l)} \right) \quad \mathbf{V}_i$$

 \mathcal{N}_{i}^{r} : the set of neighbor indices of node *i* under relation $r \in \mathcal{R}$ $c_{i,r}$: normalization constant: (eg. $c_{i,r} = |\mathcal{N}_{i}^{r}|$).



Retrosynthesis Prediction Notation

Notation	
Α	
Χ	
G = (A, X)	
G_i ; G_j	
$\{G_i\}_{i=1}^{N_1}$; $\{G_j\}_{j=1}^{N_2}$	
$\left(\left\{G_i\right\}_{i=1}^{N_1}, G_p\right)$	

Explainati	on
------------	----

Adjacency matrix $A \in \{0, 1\}^{n \times n \times b}$

Matrix of node features $X \in \{0, 1\}^{n \times d}$

A molecule representation

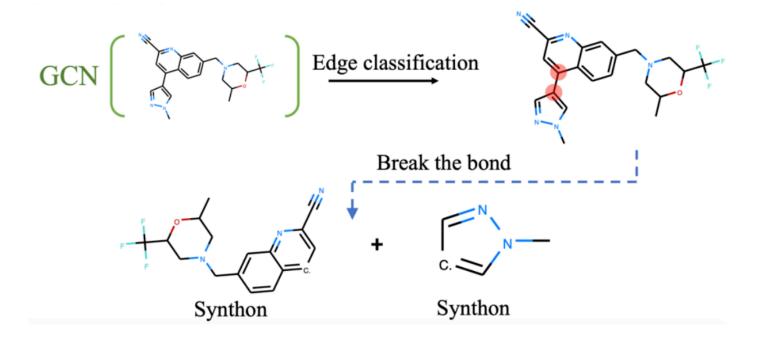
reactant graph; product graph

the set of reactants ; the set of products

A chimical reaction

Molecular Graph Representation Learning

Notation	Explanation
$k \in \mathbb{R}$	embedding dimension
$H^l \in \mathbb{R}^{n \times k}$	node embeddings at the <i>l</i> th layer
H_i^l	the embedding of the <i>l</i> th atom
$A_{[:,:,i]}$	adjacency matrix
Ι	Identity matrix



node representation:

$$egin{aligned} H^l &= \mathrm{Agg}ig(\mathrm{ReLU}ig(ig\{E_iH^{l-1}W_i^lig\} \mid i\in(1,\ldots,b)ig)\ E_i &= A_{[:,:,i]} + I \end{aligned}$$

The entire graph-level embedding h_G : Readout(\cdot) function to H^L (Hamilton et al., 2017) e.g., summation.

$$\left(\left\{G_i\right\}_{i=1}^{N_1}, G_p\right)$$

Reaction centers : Each atom pair (i.e., bond) in the product Gp employ L -layer R-GCN

 $H^L = \mathrm{R} - \mathrm{GCN}(G_p), h_{G_p} = \mathrm{Readout}ig(H^Lig).$ **Reaction center <-> remote atoms?**

 $e_{ij} = H_i^L \parallel H_j^L \parallel A_{ij} \parallel h_{G_n}$

Reactivity score $s_{ij} = \sigma \left(m_r \left(e_{ij} \right) \right)$

Learning: maximizing the cross entropy of the binary label matrix Y

$$\mathscr{L}_1 = -\sum_{r} \sum_{i \neq j} \lambda Y_{ij} \log(s_{ij}) + (1 - Y_{ij}) \log(1 - y_{i$$

Alleviate imbalanced class distributions problem: few reaction center

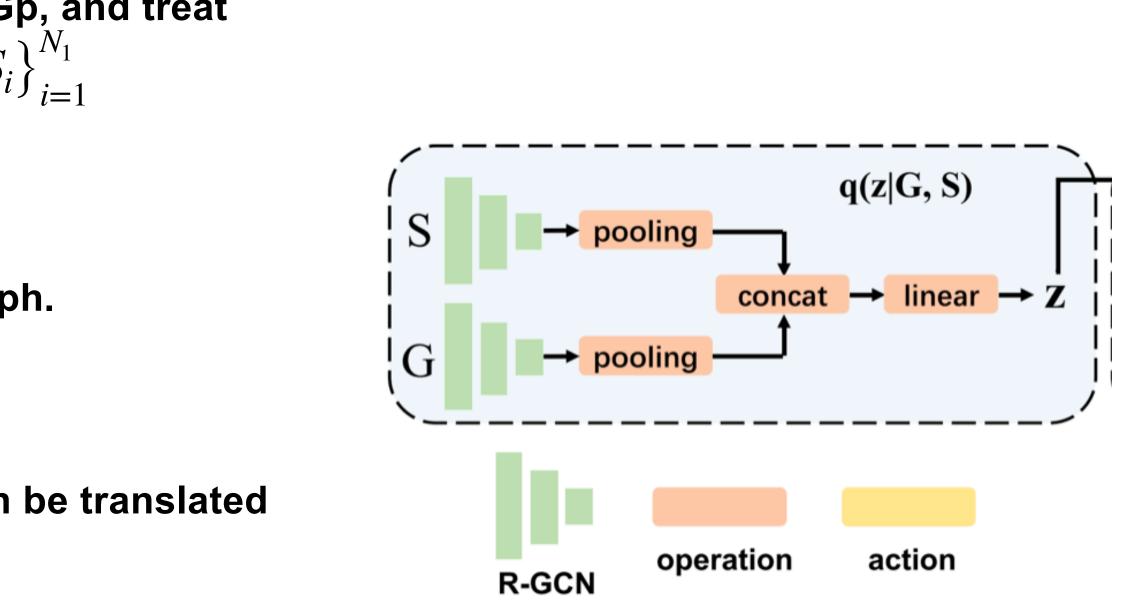
Reaction Center Identification in G2Gs

binary label matrix Y: $Y \in \{0, 1\}^{n \times n}$

 S_{ii}

Reactants Generation via Variational Graph Translation

- **Disconnect the bonds** of the reaction centers in Gp, and treat each connected subgraph in Gp as a synthon. $\{S_i\}_{i=1}^{N_1}$
- **Translation pair** (S, G)
- Goal: Translates a synthon to a final reactant graph.
 - conditional generative model p(G|S)
- Issue: multi-modality problem. Same synthon can be translated to different reactants
 - Iow-dimensional latent vector z

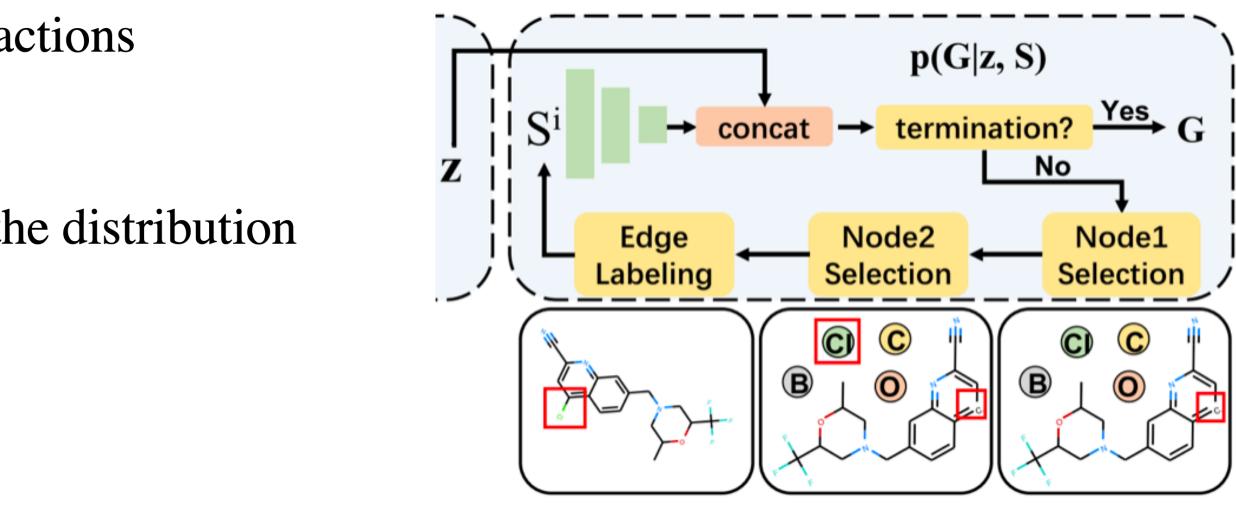


Variational Graph Translation: Generative Model

The generation of graph G is conditioned on both the S and the latent vector z.

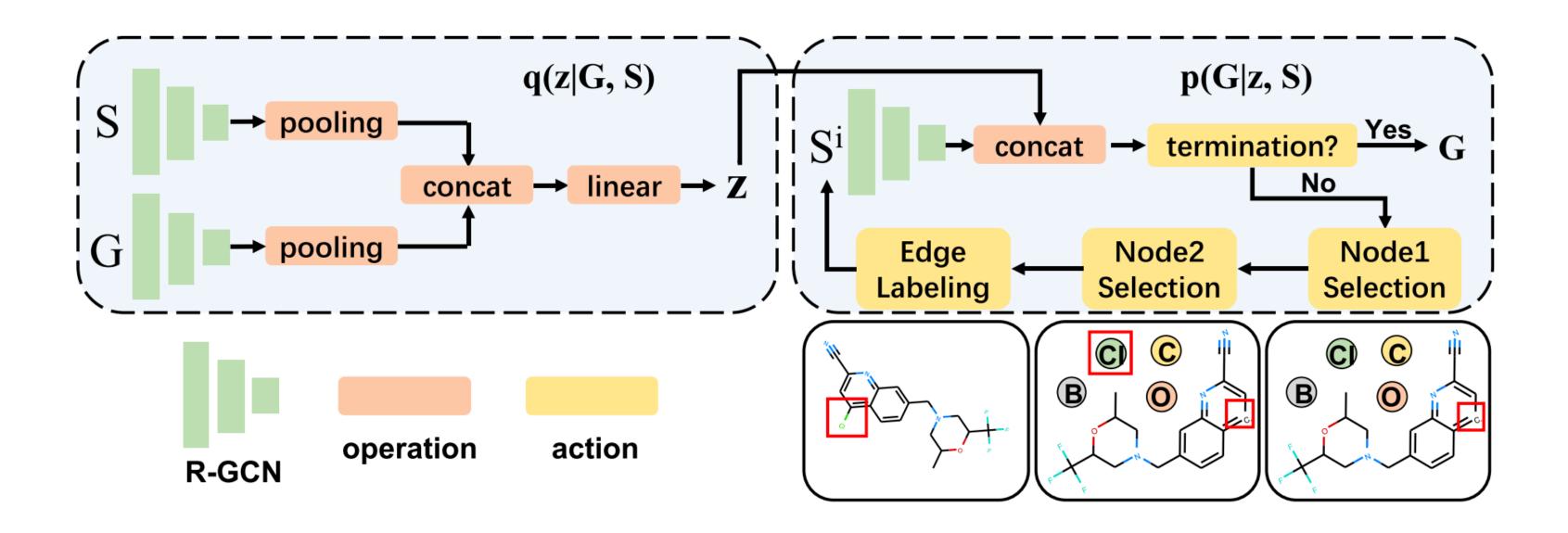
synthon-> reactant: $p(G \mid z, S)$ $\mathcal{T}: (a_1, \dots, a_T), t \in \mathcal{T}$: graph transformation actions translate synthons *S* to target reactants *G* a_t : action. a modification to the graph. $p(G \mid z, S)$ ->sampling action sequences from the distribution -> joint distribution over $p(t \mid z, S)$.

 S^i : apply $a_{1:i}$ to S. $S^0 = S$; $p(S^i | S^{i-1}, z) = p(a_i | S^{i-1}, z)$. Markov Decision Process (MDP): $p(S^i | S^{i-1}, z) =$ Graph translation model: $p(t | z, S) = p(a_{1:T} | z, S) =$



$$pig(S^i \mid S^{i-1}, \cdots, S^0, zig). \ = \prod_{i=1}^T pig(a_i \mid z, S^{i-1}ig)$$

Variational Graph Translation: Definition of an action



number of atom types: *m*

 $a_i=\left(a_i^1,a_i^2,a_i^3,a_i^4
ight)$ $a_i^1 \in \{0,1\}^2$ predicts the termination of the graph translation procedure; $a_i^2 \in \{0,1\}^n$ indicates the first node to focus; $a_i^3 \in \{0,1\}^{n+m}$ indicates the second node to focus; $a_i^4 \in \{0,1\}^b$ predicts the type of bond between two nodes.

Variational Graph Translation: Three parts of distribution $p(a_i | z, S^{i-1})$

1) Termination Prediction:
$$H = \mathcal{R}ig(S^{i-1}ig), h_S = ext{Readout}(H)$$
 $pig(a_i^1 \mid z, S^{i-1}ig) = au(m_t(h_S, z))$

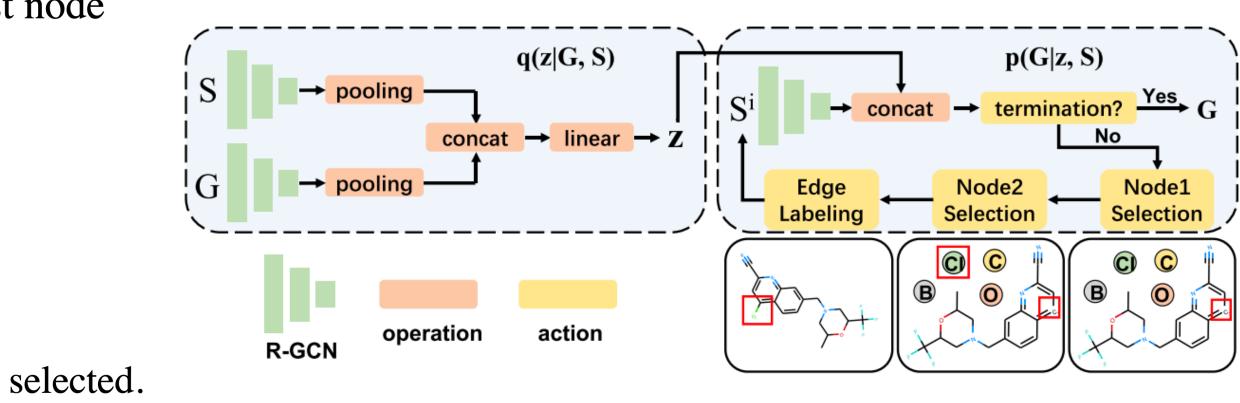
2) Nodes Selection:

add the set of possible atoms $\{v_1, \dots, v_m\}$: $V = \bigcup_{i=1}^m v_i$. ${ ilde S}^{i-1}=S^{i-1}igert$ igert V.first node <- S^{i-1} , second node <- \tilde{S}^{i-1} conditioned on the first node $pig(a_i^2 \mid z, S^{i-1}, a_i^1ig) = auig(eta_1 \odot m_fig(\mathcal{R}ig(ilde{S}^{i-1}ig), zig)ig)$ $a_i^2 \sim p(a_i^2 \mid z, S^{i-1}, a_i^1)$ $pig(a_i^3 \mid z, S^{i-1}, a_i^{1:2}ig) = auig(eta_2 \odot m_sig(\mathcal{R}ig(ilde{S}^{i-1}ig), z, a_i^2ig)ig)$ $a_i^3 \sim p(a_i^3 \mid z, S^{i-1}, a_i^{1:2})$

 β_1 and β_2 : masks to zero out the probability of certain atoms being selected. only the second node can be selected from V

3) Edge Labeling $pig(a_i^4 \mid z, S^{i-1}, a_i^{1:3}ig) = auig(m_eig(\mathcal{R}ig(ilde{S}^{i-1}ig), z, a_i^{2:3}ig)ig)$ $a_i^4 \sim P(a_i^4 \mid z, S^{i-1}, a_i^{1:3})$

Enumerating all possible graph transformation sequences that translate S to G: $P(G \mid z, S) = \sum_{t \in \mathcal{T}} P(t \mid z, S)$



Variational Graph Translation: Learning

maximize $\log P(G \mid S)$ Issue: marginalizing the latent variable z

$$egin{aligned} &\mu = m_\mu(h_G \| h_S) \ &\log \sigma^2 = m_\sigma(h_G \| h_S) \ &q(z \mid G,S) = \mathcal{N}ig(z \mid \mu, ext{diag}ig(\sigma^2ig)ig) \end{aligned}$$

$$D_{\mathrm{KL}}(P \parallel Q) = \sum_{x \in \mathcal{X}} P(x) \log\left(\frac{P(x)}{Q(x)}\right)$$

Let $x_1, \ldots, x_n \in \mathbb{R}$ and let $a_1, \ldots, a_n \ge 0$ satisfy $a_1 + \cdots + a_n = 1$. Then If *F* is a concave function, we have:

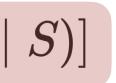
$$F(a_1x_1+\dots+a_nx_n)\geq a_1F(x_1)+\dots+a_nF(x_n)$$

The evidence lower bound (ELBO): $\mathcal{L}_{ ext{ELBO}} = \mathbb{E}_{z \sim q}[\log P(G \mid z, S)] - ext{KL}[q(z \mid G, S) \| p(z \mid S)]$

 $\operatorname{KL}[q(\cdot) || p(\cdot)]$: Kullback-Leibler divergence prior $p(z \mid S)$: standard Gaussian $\mathcal{N}(z \mid 0, I)$.

computation of log $P(G \mid z, S)$ -> expensive Jensen's inequality: $\log P(G \mid z, S) = \log \sum_{t \in \mathcal{T}} P(t \mid z, S)$ $\geq \log |t| + rac{1}{|t|} \sum_{t \in \mathcal{T}} \log P(t \mid z, S)$

|t|: the number of different action traces



Variational Graph Translation: Generation

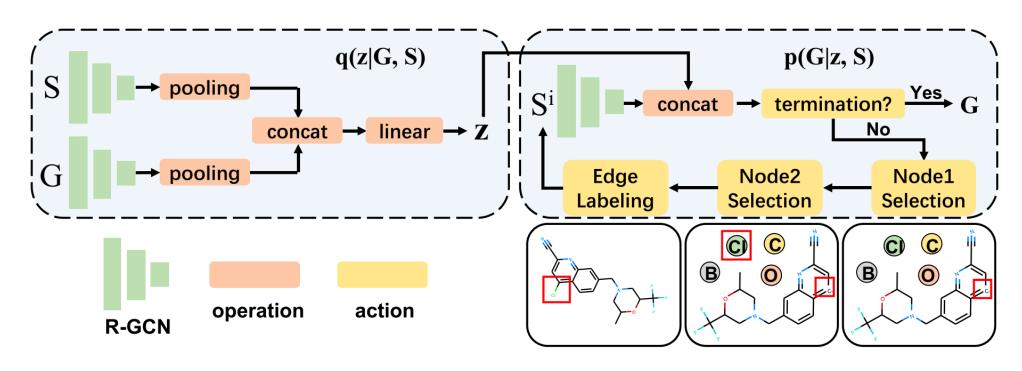
beam search: size: k

- For the graph generation in the i^{th} step, maintain a candidate set $S = \{S^{i,j}\}_{j=1}^k$ At the i^{th} transformation step:
- 1) calculate the probabilities of all possible actions and sort them.
- 2) select top k ranked valid actions for each candidate graph $S^{i-1,j}$ in S.

beam search stop when :

- 1) if *i* reaches the predefined maximum transformation step
- 2) a_i^1 indicates a termination.

3) top k graphs among all the generated 2 graphs -> candidates for the next i + 1)th transformation step.



Experiments

Experiment Setups

Benchmark dataset USPTO-50K, containing 50k atom-mapped reactions

Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Table 1. Top-k exact match accuracy when reaction class is given. Results of all baselines are directly taken from (Dai et al., 2019).

Methods	Top- k accuracy %			
	1	3	5	10
	Temp	olate-free		
Seq2seq	37.4	52.4	57.0	61.7
G2Gs	61.0	81.3	86.0	88.7
	Temp	late-based		
Retrosim	52.9	73.8	81.2	88.1
Neuralsym	55.3	76.0	81.4	85.1
GLN	64.2	79.1	85.2	90.0

Table 2. Top-k exact match accuracy when reaction class is unknown. Results of all baselines are taken from (Dai et al., 2019).

Methods		Top- k ac	curacy %	
	1	3	5	10
	Temp	late-free		
Transformer	37.9	57.3	62.7	/
G2Gs	48.9	67.6	72.5	75.5
	Templa	ate-based		
Retrosim	37.3	54.7	63.3	74.1
Neuralsym	44.4	65.3	72.4	78.9
GLN	52.5	69.0	75.6	83.7

- arXiv:1803.03324, 2018.
- In 37th International Conference on Machine Learning, ICML 2020 (Vol. PartF168147-12, pp. 8777–8786). **International Machine Learning Society (IMLS).**
- Information Processing Systems, pp. 1024–1034, 2017.
- convolutional networks. In European Semantic Web Conference, pp. 593-607. Springer, 2018.

References

Li, Y., Vinyals, O., Dyer, C., Pascanu, R., and Battaglia, P. Learning deep generative models of graphs. arXiv preprint

> Shi, C., Xu, M., Guo, H., Zhang, M., & Tang, J. (2020). A graph to graphs framework for retrosynthesis prediction.

milton, W., Ying, Z., and Leskovec, J. Inductive repre-sentation learning on large graphs. In Advances in Neural

Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and Welling, M. Modeling relational data with graph