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Retrosynthesis Prediction 

Once a molecular structure is designed, how to synthesize it? 

Goal: Identify a set of reactants that can be used to synthesize a target molecule

Background: Drug Discovery



Retrosim(Corley et al.): template ranking with product-product similarity 

NeuralSymbolic(Segler et al.): template selection as multi-class classification 

GLN(Dai et al.2019): sample template and reactants from conditional joint distribution 

Retrosynthesis Prediction - Template Based



Retrosynthesis Prediction - Template free

Sequence to sequence problem (Seq2Seq,Liu et al., 2017) 

Neural machine translation task 

SMILES representation of molecules 

Limitations:  

Not effectively reflect the complex relationships between 
atoms 

Unsatisfactory performance



A Graph to Graphs Framework for Retrosynthesis 
Prediction(Shi et al.ICML2020)

Represent each molecule as a graph  

Formulate retrosynthesis prediction as a graph-to-graphs 
translation problem. 

G2Gs first splits the target molecular graph into a set of 
synthons by identifying the reaction centers, and then 
translates the synthons to the final reactant graphs via a 
variational graph translation framework.



Estimate the reactivity score of all atom pairs of the product graph(R-GCN), and the atom pair with the 
highest reactivity score above a threshold will be selected as the reaction center.  

Split the product graph into synthons by disconnecting the bonds of the reaction center resulted.

Reaction Center Identification

one-to-many graph translation problem  

multiple one-to-one translation processes



R-GCN(Schlichtkrull et al., 2018) 
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For relational(directed and labels) multi-graph
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Retrosynthesis Prediction Notation 

Notation Explaination

A Adjacency matrix

X Matrix of node features

A molecule representation

     ; reactant graph; product graph

; the set of reactants ; 
the set of products

            A chimical reaction 

A ∈ {0, 1}n×n×b

X ∈ {0, 1}n×d

G = (A, X)
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Molecular Graph Representation Learning 

Notation Explanation

embedding dimension 

node embeddings at the      layer

the embedding of the      atom

adjacency matrix

Identity matrix
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Chemical reaction:                                                         binary label matrix Y:  

Reaction centers :Each atom pair (i.e., bond) in the product Gp 

Reaction center <-> remote atoms? 

Reactivity score  

Learning: maximizing the cross entropy of the binary label matrix Y

Y ∈ {0, 1}n×n

Reaction Center Identification in G2Gs

({Gi}N1

i=1
, Gp)

eij = HL
i ∥ HL

j ∥ Aij ∥ hGp

sij = σ(mr(eij))

ℒ1 = − ∑
r

� ∑
i≠j

�λYijlog(sij) + (1 − Yij)log(1 − sij)
Alleviate imbalanced class distributions problem: few reaction center



Disconnect the bonds of the reaction centers in Gp, and treat 
each connected subgraph in Gp as a synthon.  

Translation pair  

Goal: Translates a synthon to a final reactant graph.    

conditional generative model p(G|S) 

Issue: multi-modality problem. Same synthon can be translated 
to different reactants 

low-dimensional latent vector z 
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Reactants Generation via Variational Graph Translation



The generation of graph G is conditioned on both the S and the latent vector z. 

Variational Graph Translation: Generative Model



Variational Graph Translation: Definition of an action



Variational Graph Translation: Three parts of distribution p(ai ∣ z, Si−1)



Variational Graph Translation: Learning

DKL(P ∥ Q) = ∑
x∈𝒳

�P(x)log( P(x)
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Variational Graph Translation: Generation



Experiment Setups 

Benchmark dataset USPTO-50K, containing 50k atom-mapped reactions 

Evaluation metrics: top-k exact match (based on canonical SMILES) accuracy

Experiments
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