Deep Graph Infomax

Given a graph G with N nodes:

```
Each node has a node feature vector x_i \in \mathbb{R}^F, and we denote X = \{x_1, x_2, ..., x_N\}
Adjacency matrix A \in \{0,1\}^{N \times N}
```

In the *l*-th layer of Graph Neural Network (GNN)^[1], to update **node** representation: [Encoder]

$$a_{i}^{(l)} = AGGRE^{(l)}\left(\left\{h_{j}^{(l-1)}: j \in \mathcal{N}(i)\right\}\right), \qquad h_{i}^{(l)} = COMBINE^{(l)}\left(h_{i}^{(l-1)}, a_{i}^{(l)}\right)$$

For example:

In GCN^[2], two operations are integrated:

$$h_{i}^{(l)} = ReLU\left(W \cdot MEAN\left\{h_{j}^{(l-1)}, \forall j \in \mathcal{N}(i) \cup \{i\}\right\}\right)$$

In GraphSAGE^[3]:

$$a_i^{(l)} = MAX\left(\left\{ReLU\left(W_1 \cdot h_j^{(l-1)}\right), \forall j \in \mathcal{N}(i)\right\}\right), \qquad h_i^{(l)} = W_2 \cdot \left[h_i^{(l-1)}, a_i^{(l)}\right]$$

 $MAX(\cdot)$ here is element-wise max pooling.

Given a graph *G* with *N* nodes:

```
Each node has a node feature vector x_i \in \mathbb{R}^F, and we denote X = \{x_1, x_2, ..., x_N\}
Adjacency matrix A \in \{0,1\}^{N \times N}
```

After the *L*-th layer, we can use a **readout** function for **graph** representation (summary):

$$s = \mathcal{R}\left(\left\{h_i^{(L)} \middle| i \in G\right\}\right)$$

For example:

$$s = \frac{1}{N} \sum_{i \in G} h_i^{(L)}$$

4

Basic assumption: some types of transformation retain the important information^[4].

For *n*-th graph, two transformed samples *i* and *j*:

$$l_n = -\log \frac{\exp(sim(z_{n,i}, z_{n,j})/\tau)}{\sum_{n'=1,n'\neq n}^{N} \exp(sim(z_{n,i}, z_{n',j})/\tau)}$$

Given a graph with *N* nodes:

Node feature $x_i \in \mathbb{R}^F$, and feature matrix $X = \{x_1, x_2, ..., x_N\} \in \mathbb{R}^{N \times F}$, adjacency matrix $A \in \{0, 1\}^{N \times N}$

[Goal] An encoder $\mathcal{E}: \mathbb{R}^{N \times F} \times \mathbb{R}^{N \times N} \to \mathbb{R}^{N \times F'}$ that encodes **node** with **high-level** representation: $H = \mathcal{E}(X, A) = \{h_1, h_2, ..., h_N\}$, where $h_i \in \mathbb{R}^{F'}$.

(Example: GCN or GraphSAGE can be considered as an encoder.)

A readout function $\mathcal{R}: \mathbb{R}^{N \times F} \to \mathbb{R}^{F}$ summarizes the nodes representations to a **graph-level** representation: $s = \mathcal{R}(\mathcal{E}(X, A))$

(Example: MEAN or SUM can be considered as a readout function.)

Deep Graph Infomax

Original node feature matrix $X = \{x_1, x_2, ..., x_N\}$, adjacency matrix AAn encoder \mathcal{E} and new node representations: $H = \mathcal{E}(X, A)$ A readout function \mathcal{R} results in a summary: $s = \mathcal{R}(\mathcal{E}(X, A))$

A discriminator $\mathcal{D}: \mathbb{R}^F \times \mathbb{R}^F \to \mathbb{R}$ assigns probability to node: $\mathcal{D}(h_i, s)$ [To decide if the node should be contained within the summary] [Example: cosine similarity. $\mathcal{D}(h_i, s) = \sigma(h_i^T W s)$ in this paper]

Negative samples for \mathcal{D} : \tilde{h}_i from an alternative graph $\tilde{G} = (\tilde{X}, \tilde{A})$

 $\tilde{G} = (\tilde{X}, \tilde{A})$ can come from another graph in the multiple-graphs dataset. Or can be obtained by a corruption function $\mathcal{C}: \mathbb{R}^{N \times F} \times \mathbb{R}^{N \times N} \to \mathbb{R}^{M \times F} \times \mathbb{R}^{M \times M}: (\tilde{X}, \tilde{A}) = \mathcal{C}(X, A)$ [Example: $\tilde{A} = A$ and random row-wise shuffling X to get \tilde{X}]

[C generates negative samples, while T in Contrastive Learning generates positive samples.]

Original node feature matrix $X = \{x_1, x_2, ..., x_N\}$, adjacency matrix AAn encoder \mathcal{E} and new node representations: $H = \mathcal{E}(X, A)$ A readout function \mathcal{R} results in a summary: $s = \mathcal{R}(\mathcal{E}(X, A))$ A discriminator \mathcal{D} assigns importance to node: $\mathcal{D}(h_i, s)$ Negative samples (\tilde{h}_j, s) from an alternative graph $(\tilde{X}, \tilde{A}) = \mathcal{C}(X, A)$

Metric: Mutual Information (MI), evaluated by the JSD MI estimator^[5]:

$$\max MI(X, A; h_i) \approx \max \left[\log (\mathcal{D}(h_i; X, A)) + \log \left(1 - \mathcal{D}(\tilde{h}_j; X, A) \right) \right]$$

Approximate (X, A) by $s = \mathcal{R}(\mathcal{E}(X, A))$

Objective: Noise Contrastive objective with BCE loss

$$\mathcal{L} = \frac{1}{N+M} \left(\sum_{i=1}^{N} \mathbb{E}_{(X,A)} \left[\log \mathcal{D}(h_i, s) \right] + \sum_{j=1}^{M} \mathbb{E}_{(\tilde{X}, \tilde{A})} \left[\log \left(1 - \mathcal{D}(\tilde{h}_j, s) \right) \right] \right)$$

Deep Graph Infomax

8

- 1. Sample a negative example by $(\tilde{X}, \tilde{A}) \sim C(X, A)$
- 2. Obtain h_i , \tilde{h}_j by the encoder, $H = \mathcal{E}(X, A)$ and $\tilde{H} = \mathcal{E}(\tilde{X}, \tilde{A})$
- 3. Readout the input graph: $s = \mathcal{R}(H)$
- 4. Update parameters of \mathcal{E} , \mathcal{R} and \mathcal{D} by gradient descent to maximize \mathcal{L} .

Q1: We approximate (X, A) by $s = \mathcal{R}(\mathcal{E}(X, A))$, in which case they are the closest to each other? A1: \mathcal{R} is injective.

Given a probability distribution of graphs, p(X), we can draw $\{X^{(k)}\}_{k=1}^{|X|}$ from p(X) uniformly, e.g., $p(X^{(k)}) = p(X^{(k)'})$. $s^{(k)} = \mathcal{R}(X^{(k)})$ is the summary of *k*-th graph with marginal distribution p(s).

The optimal classifier between the p(X, s) and p(X)p(s) has an error rate upper bounded by $Err^* = \frac{1}{2}\sum_{k=1}^{|X|} p(s^{(k)})^2$, and the upper bound is achieved when \mathcal{R} is injective.

Given a probability distribution of graphs, p(X), we can draw $\{X^{(k)}\}_{k=1}^{|X|}$ from p(X) uniformly, e.g., $p(X^{(k)}) = p(X^{(k)'})$. $s^{(k)} = \mathcal{R}(X^{(k)})$ is the summary of *k*-th graph with marginal distribution p(s).

Define $Q^{(k)} = \{ \mathbf{X}^{(j)} | \mathcal{R}(\mathbf{X}^{(j)}) = s^{(k)} \}$ contains all graphs being mapped to $s^{(k)}$. Sample $(\mathbf{X}^{(k)}, s^{(k)})$ drawn from the product of marginals with probability $p(\mathbf{X})p(s)$:

$$p(s^{(k)})\sum_{s} p(\mathbf{X}^{(k)}, s) = p(s^{(k)})p(\mathbf{X}^{(k)}, s^{(k)}) = p(s^{(k)})p(\mathbf{X}^{(k)}|s^{(k)})p(s^{(k)}) = p(s^{(k)})^{2} \frac{p(\mathbf{X}^{(k)})}{\sum_{\mathbf{X}' \in \mathcal{Q}^{(k)}} p(\mathbf{X}')}$$

$$\begin{split} p\big(\boldsymbol{X}^{(k)}, \boldsymbol{s}^{(j)}\big) &= 0 \text{ when } j \neq k \text{ since } \mathcal{R} \text{ is deterministic.} \\ p\big(\boldsymbol{X}^{(k)}, \boldsymbol{s}^{(k)}\big) &= p\big(\boldsymbol{s}^{(k)}\big)p\big(\boldsymbol{X}^{(k)}|\boldsymbol{s}^{(k)}\big) \text{ from the definition of conditional probability.} \\ p\big(\boldsymbol{X}^{(k)}|\boldsymbol{s}^{(k)}\big) &= \frac{p(\boldsymbol{X}^{(k)})}{\sum_{\boldsymbol{X}' \in \mathcal{Q}^{(k)}} p(\boldsymbol{X}')} \text{ from the definition of } \mathcal{Q}^{(k)}. \end{split}$$

Given a probability distribution of graphs, p(X), we can draw $\{X^{(k)}\}_{k=1}^{|X|}$ from p(X) uniformly, e.g., $p(X^{(k)}) = p(X^{(k)'})$. $s^{(k)} = \mathcal{R}(X^{(k)})$ is the summary of *k*-th graph with marginal distribution p(s).

Define $Q^{(k)} = \{ \mathbf{X}^{(j)} | \mathcal{R}(\mathbf{X}^{(j)}) = s^{(k)} \}$ contains all graphs being mapped to $s^{(k)}$. Sample $(\mathbf{X}^{(k)}, s^{(k)})$ drawn from the product of marginals with probability $p(\mathbf{X})p(s)$:

$$\frac{p(\mathbf{X}^{(k)})}{\sum_{\mathbf{X}' \in \mathcal{Q}^{(k)}} p(\mathbf{X}')} p(s^{(k)})^2 = \rho^{(k)} p(s^{(k)})^2 \le p(s^{(k)})^2$$

We have $\rho^{(k)} \leq 1$, since $X^{(k)} \in Q^{(k)}$. When $Q^{(k)} = \{X^{(k)}\}$, (\mathcal{R} is injective), $\rho^{(k)} = 1$.

Given a probability distribution of graphs, p(X), we can draw $\{X^{(k)}\}_{k=1}^{|X|}$ from p(X) uniformly, e.g., $p(X^{(k)}) = p(X^{(k)'})$. $s^{(k)} = \mathcal{R}(X^{(k)})$ is the summary of *k*-th graph with marginal distribution p(s).

Define $Q^{(k)} = \{ \mathbf{X}^{(j)} | \mathcal{R}(\mathbf{X}^{(j)}) = s^{(k)} \}$ contains all graphs being mapped to $s^{(k)}$. Sample $(\mathbf{X}^{(k)}, s^{(k)})$ drawn from the joint $p(\mathbf{X}, s)$:

$$p(\mathbf{X}^{(k)}, s^{(k)}) = p(\mathbf{X}^{(k)}|s^{(k)})p(s^{(k)}) = \rho^{(k)}p(s^{(k)})$$

Compare it with previous results:

 $\rho^{(k)}p(s^{(k)}) \ge \rho^{(k)}p(s^{(k)})^2$

The optimal classifier always classifies samples to the joint for a lower error

$$Err \leq \frac{1}{2} \sum_{k=1}^{|X|} \rho^{(k)} p(s^{(k)})^2 \leq \frac{1}{2} \sum_{k=1}^{|X|} p(s^{(k)})^2$$

When \mathcal{R} is injective for all $\mathbf{X}^{(k)}$, $Err^* = \frac{1}{2} \sum_{k=1}^{|\mathbf{X}|} p(s^{(k)})^2$

Q2: If we assume that \mathcal{R} is injective and $|s^*| = |\mathbf{X}|$, what else can we know?

[|s| is the number of allowable states in s, and s^* is the optimal summary w.r.t the classification error.] A2: $s^* = argmax_s MI(X; s)$. In other words, minimizing the classification error is equivalent to maximizing the mutual information.

Proof

MI is invariant under invertible transforms.

Since \mathcal{R} is injective and $|s^*| = |X|$, we always can find an inverse function \mathcal{R}^{-1} .

For any *s*:

$$MI(\mathbf{X}; s) \leq H(\mathbf{X}) = MI(\mathbf{X}; \mathbf{X}) = MI(\mathbf{X}; \mathcal{R}(\mathbf{X})) = MI(\mathbf{X}; s^*)$$

The definition of MI: $MI(\mathbf{X}; s) = H(\mathbf{X}) - H(\mathbf{X}|s)$

Datasets:

- Transductive: Cora, Citeseer, Pubmed;
- Inductive: Reddit (large graph), PPI (multiple graphs).

In Cora, Citeseer, Pubmed (transductive): Encoder \mathcal{E} is one-layer GCN:

$$\mathcal{E}(X,A) = \sigma(\widehat{D}^{-\frac{1}{2}}\widehat{A}\widehat{D}^{-\frac{1}{2}}X\Theta)$$

where $\hat{A} = A + I_N$ and σ is parametric ReLU.

Corruption C set $\tilde{A} = A$ and \tilde{X} as randomly row-wise shuffling of X.

Datasets:

- Transductive: Cora, Citeseer, Pubmed;
- Inductive: Reddit (large graph), PPI (multiple graphs).

In Reddit (large graph):

Encoder \mathcal{E} is three-layer mean-pooling model:

 $MP(X,A) = \widehat{D}^{-1}\widehat{A}X\Theta,$ $\widetilde{MP}(X,A) = \sigma(X\Theta'||MP(X,A)),$ $\mathcal{E}(X,A) = \widetilde{MP}_3(\widetilde{MP}_2(\widetilde{MP}_1(X,A),A),A)$

where $\hat{A} = A + I_N$ and σ is parametric ReLU.

Corruption C set $\tilde{A} = A$ and \tilde{X} as randomly row-wise shuffling of X.

Datasets:

- Transductive: Cora, Citeseer, Pubmed;
- Inductive: Reddit (large graph), PPI (multiple graphs).

In Reddit (multiple graphs):

Encoder \mathcal{E} is three-layer mean-pooling model with skip connections:

$$MP(X, A) = \widehat{D}^{-1}\widehat{A}X\Theta,$$

$$H_1 = \sigma(MP_1(X, A)),$$

$$H_2 = \sigma(MP_2(H_1 + XW_{skip}, A)),$$

$$\mathcal{E}(X, A) = \sigma(MP_3(H_2 + H_1 + XW_{skip}, A))$$

where W_{skip} is a learnable matrix, and σ is parametric ReLU.

Corruption \mathcal{C} is to select other graphs.

For all experiments:

Readout function \mathcal{R} :

$$\mathcal{R}(H) = \sigma\left(\frac{1}{N}\sum_{i=1}^{N}h_i\right)$$

 σ is the sigmoid function.

Discriminator \mathcal{D} :

$$\mathcal{D}(h_i, s) = \sigma(h_i^T W s)$$

 σ is the sigmoid function.

All models are initialized using Glorot initialization.

Experiments – Results

18

Transductive						
Available data	Method	Cora	Citeseer	Pubmed		
X	Raw features	$47.9\pm0.4\%$	$49.3\pm0.2\%$	$69.1\pm0.3\%$		
\mathbf{A}, \mathbf{Y}	LP (Zhu et al., 2003)	68.0%	45.3%	63.0%		
Α	DeepWalk (Perozzi et al., 2014)	67.2%	43.2%	65.3%		
\mathbf{X}, \mathbf{A}	DeepWalk + features	$70.7\pm0.6\%$	$51.4\pm0.5\%$	$74.3\pm0.9\%$		
\mathbf{X}, \mathbf{A}	Random-Init (ours)	$69.3 \pm 1.4\%$	$61.9 \pm 1.6\%$	$69.6 \pm 1.9\%$		
\mathbf{X}, \mathbf{A}	DGI (ours)	$\textbf{82.3}\pm0.6\%$	$\textbf{71.8} \pm 0.7\%$	$\textbf{76.8} \pm 0.6\%$		
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	GCN (Kipf & Welling, 2016a)	81.5%	70.3%	79.0%		
$\mathbf{X}, \mathbf{A}, \mathbf{Y}$	Planetoid (Yang et al., 2016)	75.7%	64.7%	77.2%		

		Inductive				
	Available data	Method	Reddit	PPI		
MICro-F1 In Inductive	X	Raw features	0.585	0.422		
$\sum_{i} TP_i$	\mathbf{A}	DeepWalk (Perozzi et al., 2014)	0.324	_		
$Precision_{mi} = \frac{\Sigma_i + \tau_i}{\Sigma_i [TP_i + FP_i]}$	\mathbf{X}, \mathbf{A}	DeepWalk + features	0.691	—		
	\mathbf{X}, \mathbf{A}	GraphSAGE-GCN (Hamilton et al., 2017a)	0.908	0.465		
$Pocall - \sum_{i} TP_i$	\mathbf{X}, \mathbf{A}	GraphSAGE-mean (Hamilton et al., 2017a)	0.897	0.486		
$\frac{1}{\sum_{i} [TP_i + FN_i]}$	\mathbf{X}, \mathbf{A}	GraphSAGE-LSTM (Hamilton et al., 2017a)	0.907	0.482		
	\mathbf{X}, \mathbf{A}	GraphSAGE-pool (Hamilton et al., 2017a)	0.892	0.502		
$F1_{mi} = 2 \frac{Precision_{mi} \times Recall_{mi}}{Precision_{mi} + Recall_{mi}}$	X , A X , A	Random-Init (ours) DGI (ours)	$\begin{array}{c} 0.933 \pm 0.001 \\ \textbf{0.940} \pm 0.001 \end{array}$	$\begin{array}{c} 0.626 \pm 0.002 \\ \textbf{0.638} \pm 0.002 \end{array}$		
	$\overline{ \begin{array}{c} \mathbf{X}, \mathbf{A}, \mathbf{Y} \\ \mathbf{X}, \mathbf{A}, \mathbf{Y} \end{array} }$	FastGCN (Chen et al., 2018) Avg. pooling (Zhang et al., 2018)	$\begin{array}{c} 0.937 \\ 0.958 \pm 0.001 \end{array}$			

Accuracy in transductive

t-SNE embeddings of the nodes in the Cora dataset from:

the raw features (left),

features from a randomly initialized DGI model (middle),

and a learned DGI model (right).

[1] Xu, Keyulu, et al. "How powerful are graph neural networks?." ICLR, 2019.

[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." ICLR, 2017.

[3] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs." NeurIPS, 2017.

[4] You, Yuning, et al. "Graph contrastive learning with augmentations." NeurIPS, 2020.

[5] Hjelm, R. Devon, et al. "Learning deep representations by mutual information estimation and maximization." ICLR, 2019.

Thank you

