
Deep Graph Infomax

Chao Chen

2

Background: Graph and GNN

Given a graph 𝐺 with 𝑁 nodes:
Each node has a node feature vector 𝑥! ∈ ℝ", and we denote 𝑋 = 𝑥#, 𝑥$, … , 𝑥%
Adjacency matrix 𝐴 ∈ 0,1 %×%

In the 𝑙-th layer of Graph Neural Network (GNN)[1], to update node representation: [Encoder]

𝑎!
' = 𝐴𝐺𝐺𝑅𝐸 ' ℎ(

')# : 𝑗 ∈ 𝒩 𝑖 , ℎ!
' = 𝐶𝑂𝑀𝐵𝐼𝑁𝐸 ' ℎ!

')# , 𝑎!
'

For example:
In GCN[2], two operations are integrated:

ℎ!
' = 𝑅𝑒𝐿𝑈 𝑊 ⋅ 𝑀𝐸𝐴𝑁 ℎ(

')# , ∀𝑗 ∈ 𝒩 𝑖 ∪ 𝑖

In GraphSAGE[3]:

𝑎!
' = 𝑀𝐴𝑋 𝑅𝑒𝐿𝑈 𝑊# ⋅ ℎ(

')# , ∀𝑗 ∈ 𝒩 𝑖 , ℎ!
' = 𝑊$ ⋅ ℎ!

')# , 𝑎!
'

𝑀𝐴𝑋 ⋅ here is element-wise max pooling.

3

Background: Graph and GNN

Given a graph 𝐺 with 𝑁 nodes:
Each node has a node feature vector 𝑥! ∈ ℝ", and we denote 𝑋 = 𝑥#, 𝑥$, … , 𝑥%
Adjacency matrix 𝐴 ∈ 0,1 %×%

After the 𝐿-th layer, we can use a readout function for graph representation (summary):

𝑠 = ℛ ℎ!
* 𝑖 ∈ 𝐺

For example:

𝑠 =
1
𝑁
D
!∈,

ℎ!
*

4

Background: Contrastive Learning

Basic assumption: some types of transformation retain the important information[4].

For 𝑛-th graph, two transformed samples 𝑖 and 𝑗:

𝑙- = − log
exp 𝑠𝑖𝑚 𝑧-,! , 𝑧-,(/𝜏

∑-!/#,-!0-
% exp 𝑠𝑖𝑚 𝑧-,! , 𝑧-! ,(/𝜏

5

Background: Notations

Given a graph with 𝑁 nodes:
Node feature 𝑥! ∈ ℝ", and feature matrix 𝑋 = 𝑥#, 𝑥$, … , 𝑥% ∈ 𝑅%×", adjacency matrix 𝐴 ∈ 0,1 %×%

[Goal] An encoder ℰ:ℝ%×"×ℝ%×% → ℝ%×"! that encodes node with high-level representation:

𝐻 = ℰ 𝑋, 𝐴 = ℎ#, ℎ$, … , ℎ% , where ℎ! ∈ ℝ"
! .

(Example: GCN or GraphSAGE can be considered as an encoder.)

A readout function ℛ:ℝ%×" → ℝ" summarizes the nodes representations to a graph-level
representation: 𝑠 = ℛ ℰ 𝑋, 𝐴

(Example: MEAN or SUM can be considered as a readout function.)

6

Deep Graph Infomax

Original node feature matrix 𝑋 = 𝑥#, 𝑥$, … , 𝑥% , adjacency matrix 𝐴
An encoder ℰ and new node representations: 𝐻 = ℰ 𝑋, 𝐴

A readout function ℛ results in a summary: 𝑠 = ℛ ℰ 𝑋, 𝐴

A discriminator 𝒟:ℝ"×ℝ" → ℝ assigns probability to node: 𝒟 ℎ! , 𝑠
[To decide if the node should be contained within the summary]
[Example: cosine similarity. 𝒟 ℎ! , 𝑠 = 𝜎 ℎ!1𝑊𝑠 in this paper]

Negative samples for 𝒟: Xℎ(from an alternative graph X𝐺 = X𝑋, Y𝐴
X𝐺 = X𝑋, Y𝐴 can come from another graph in the multiple-graphs dataset.

Or can be obtained by a corruption function 𝒞:ℝ%×"×ℝ%×% → ℝ2×"×ℝ2×2: X𝑋, Y𝐴 = 𝒞 𝑋, 𝐴

[Example: Y𝐴 = 𝐴 and random row-wise shuffling 𝑋 to get X𝑋]
[𝒞 generates negative samples, while 𝒯 in Contrastive Learning generates positive samples.]

7

Deep Graph Infomax

Original node feature matrix 𝑋 = 𝑥#, 𝑥$, … , 𝑥% , adjacency matrix 𝐴
An encoder ℰ and new node representations: 𝐻 = ℰ 𝑋, 𝐴

A readout function ℛ results in a summary: 𝑠 = ℛ ℰ 𝑋, 𝐴

A discriminator 𝒟 assigns importance to node: 𝒟 ℎ! , 𝑠

Negative samples (Xℎ(, 𝑠) from an alternative graph X𝑋, Y𝐴 = 𝒞 𝑋, 𝐴

Metric: Mutual Information (MI), evaluated by the JSD MI estimator[5]:

max𝑀𝐼 𝑋, 𝐴; ℎ! ≈ max log 𝒟 ℎ!; 𝑋, 𝐴 + log 1 − 𝒟 Xℎ(; 𝑋, 𝐴

Approximate (𝑋, 𝐴) by 𝑠 = ℛ ℰ 𝑋, 𝐴

Objective: Noise Contrastive objective with BCE loss

ℒ =
1

𝑁 +𝑀
D
!/#

%

𝔼 3,4 log𝒟 ℎ! , 𝑠 +D
(/#

2

𝔼 53, 54 log 1 − 𝒟 Xℎ(, 𝑠

8

Deep Graph Infomax

1. Sample a negative example by X𝑋, Y𝐴 ∼ 𝒞 𝑋, 𝐴

2. Obtain ℎ! , Xℎ(by the encoder, 𝐻 = ℰ 𝑋, 𝐴 and f𝐻 = ℰ X𝑋, Y𝐴

3. Readout the input graph: 𝑠 = ℛ 𝐻
4. Update parameters of ℰ, ℛ and 𝒟 by gradient descent to maximize ℒ.

ℒ =
1

𝑁 +𝑀
D
!/#

%

𝔼 3,4 log𝒟 ℎ! , 𝑠 +D
(/#

2

𝔼 53, 54 log 1 − 𝒟 Xℎ(, 𝑠

9

Deep Graph Infomax – Theoretical Motivation

Q1: We approximate (𝑋, 𝐴) by 𝑠 = ℛ ℰ 𝑋, 𝐴 , in which case they are the closest to each other?

A1: ℛ is injective.

Given a probability distribution of graphs, 𝑝(𝑿), we can draw 𝑿 6
6/#
|𝑿|

from 𝑝 𝑿 uniformly, e.g.,
𝑝 𝑿 6 = 𝑝 𝑿 6 ! . 𝑠 6 = ℛ 𝑿 6 is the summary of 𝑘-th graph with marginal distribution 𝑝(𝑠).

The optimal classifier between the 𝑝(𝑿, 𝑠) and 𝑝(𝑿)𝑝(𝑠) has an error rate upper bounded by

𝐸𝑟𝑟∗ = #
$
∑6/#
|𝑿| 𝑝 𝑠 6 $

, and the upper bound is achieved when ℛ is injective.

10

Deep Graph Infomax – Theoretical Motivation

Given a probability distribution of graphs, 𝑝(𝑿), we can draw 𝑿 6
6/#
|𝑿|

from 𝑝 𝑿 uniformly, e.g.,
𝑝 𝑿 6 = 𝑝 𝑿 6 ! . 𝑠 6 = ℛ 𝑿 6 is the summary of 𝑘-th graph with marginal distribution 𝑝(𝑠).

Define 𝒬 6 = 𝑿 (ℛ 𝑋 (= 𝑠 6 contains all graphs being mapped to 𝑠 6 .

Sample 𝑿 6 , 𝑠 6 drawn from the product of marginals with probability 𝑝(𝑿)𝑝(𝑠):

𝑝 𝑠 6 D
:

𝑝 𝑿 6 , 𝑠 = 𝑝 𝑠 6 𝑝 𝑿 6 , 𝑠 6 = 𝑝 𝑠 6 𝑝 𝑿 6 |𝑠 6 𝑝 𝑠 6 = 𝑝 𝑠 6 $ 𝑝 𝑿 6

∑𝑿!∈𝒬 " 𝑝(𝑿<)

𝑝 𝑿 6 , 𝑠 (= 0 when 𝑗 ≠ 𝑘 since ℛ is deterministic.

𝑝 𝑿 6 , 𝑠 6 = 𝑝 𝑠 6 𝑝 𝑿 6 |𝑠 6 from the definition of conditional probability.

𝑝 𝑿 6 |𝑠 6 = = 𝑿 "

∑
𝑿!∈𝒬 " =(𝑿!)

from the definition of 𝒬 6 .

11

Deep Graph Infomax – Theoretical Motivation

Given a probability distribution of graphs, 𝑝(𝑿), we can draw 𝑿 6
6/#
|𝑿|

from 𝑝 𝑿 uniformly, e.g.,
𝑝 𝑿 6 = 𝑝 𝑿 6 ! . 𝑠 6 = ℛ 𝑿 6 is the summary of 𝑘-th graph with marginal distribution 𝑝(𝑠).

Define 𝒬 6 = 𝑿 (ℛ 𝑋 (= 𝑠 6 contains all graphs being mapped to 𝑠 6 .

Sample 𝑿 6 , 𝑠 6 drawn from the product of marginals with probability 𝑝(𝑿)𝑝(𝑠):

𝑝 𝑿 6

∑𝑿!∈𝒬 " 𝑝(𝑿<)
𝑝 𝑠 6 $

= 𝜌 6 𝑝 𝑠 6 $
≤ 𝑝 𝑠 6 $

We have 𝜌 6 ≤ 1,	since 𝑿 6 ∈ 𝒬 6 .	

When 𝒬 6 = 𝑿 6 , (ℛ is injective), 𝜌 6 = 1.

12

Deep Graph Infomax – Theoretical Motivation

Given a probability distribution of graphs, 𝑝(𝑿), we can draw 𝑿 6
6/#
|𝑿|

from 𝑝 𝑿 uniformly, e.g.,
𝑝 𝑿 6 = 𝑝 𝑿 6 ! . 𝑠 6 = ℛ 𝑿 6 is the summary of 𝑘-th graph with marginal distribution 𝑝(𝑠).

Define 𝒬 6 = 𝑿 (ℛ 𝑋 (= 𝑠 6 contains all graphs being mapped to 𝑠 6 .

Sample 𝑿 6 , 𝑠 6 drawn from the joint 𝑝 𝑿, 𝑠 :

𝑝 𝑿 6 , 𝑠 6 = 𝑝 𝑿 6 |𝑠 6 𝑝 𝑠 6 = 𝜌 6 𝑝 𝑠 6

Compare it with previous results:

𝜌 6 𝑝 𝑠 6 ≥ 𝜌 6 𝑝 𝑠 6 $

The optimal classifier always classifies samples to the joint for a lower error

𝐸𝑟𝑟 ≤
1
2
D
6/#

|𝑿|

𝜌 6 𝑝 𝑠 6 $
≤
1
2
D
6/#

|𝑿|

𝑝 𝑠 6 $

When ℛ is injective for all 𝑿 6 , 𝐸𝑟𝑟∗ = #
$
∑6/#
|𝑿| 𝑝 𝑠 6 $

13

Deep Graph Infomax – Theoretical Motivation

Q2: If we assume that ℛ is injective and 𝑠∗ = 𝑿 , what else can we know?
[𝑠 is the number of allowable states in 𝑠, and 𝑠∗ is the optimal summary w.r.t the classification error.]
A2: 𝑠∗ = 𝑎𝑟𝑔𝑚𝑎𝑥:𝑀𝐼(𝑿; 𝑠). In other words, minimizing the classification error is equivalent to
maximizing the mutual information.

Proof
MI is invariant under invertible transforms.
Since ℛ is injective and 𝑠∗ = 𝑿 , we always can find an inverse function ℛ)#.
For any 𝑠:

𝑀𝐼 𝑿; 𝑠 ≤ 𝐻 𝑿 = 𝑀𝐼 𝑿;𝑿 = 𝑀𝐼 𝑿;ℛ 𝑿 = 𝑀𝐼 𝑿; 𝑠∗

The definition of MI: 𝑀𝐼 𝑿; 𝑠 = 𝐻 𝑿 − 𝐻(𝑿|𝑠)

14

Experiments – Settings

Datasets:
● Transductive: Cora, Citeseer, Pubmed;
● Inductive: Reddit (large graph), PPI (multiple graphs).

In Cora, Citeseer, Pubmed (transductive):
Encoder ℰ is one-layer GCN:

ℰ 𝑋, 𝐴 = 𝜎(u𝐷)
#
$ w𝐴u𝐷)

#
$𝑋Θ)

where w𝐴 = 𝐴 + 𝐼% and 𝜎 is parametric ReLU.

Corruption 𝒞 set Y𝐴 = 𝐴 and X𝑋 as randomly row-wise shuffling of 𝑋.

15

Experiments – Settings

Datasets:
● Transductive: Cora, Citeseer, Pubmed;
● Inductive: Reddit (large graph), PPI (multiple graphs).

In Reddit (large graph):
Encoder ℰ is three-layer mean-pooling model:

𝑀𝑃 𝑋, 𝐴 = u𝐷)# w𝐴𝑋Θ,
z𝑀𝑃 𝑋, 𝐴 = 𝜎(𝑋Θ<| 𝑀𝑃 𝑋, 𝐴 ,

ℰ 𝑋, 𝐴 = z𝑀𝑃A z𝑀𝑃$ z𝑀𝑃# 𝑋, 𝐴 , 𝐴 , 𝐴

where w𝐴 = 𝐴 + 𝐼% and 𝜎 is parametric ReLU.

Corruption 𝒞 set Y𝐴 = 𝐴 and X𝑋 as randomly row-wise shuffling of 𝑋.

16

Experiments – Settings

Datasets:
● Transductive: Cora, Citeseer, Pubmed;
● Inductive: Reddit (large graph), PPI (multiple graphs).

In Reddit (multiple graphs):
Encoder ℰ is three-layer mean-pooling model with skip connections:

𝑀𝑃 𝑋, 𝐴 = u𝐷)# w𝐴𝑋Θ,

𝐻# = 𝜎 𝑀𝑃# 𝑋, 𝐴 ,

𝐻$ = 𝜎 𝑀𝑃$ 𝐻# + 𝑋𝑊:6!=, 𝐴 ,

ℰ 𝑋, 𝐴 = 𝜎 𝑀𝑃A 𝐻$ + 𝐻# + 𝑋𝑊:6!=, 𝐴

where 𝑊:6!= is a learnable matrix, and 𝜎 is parametric ReLU.

Corruption 𝒞 is to select other graphs.

17

Experiments – Settings

For all experiments:

Readout function ℛ:

ℛ 𝐻 = 𝜎
1
𝑁
D
!/#

%

ℎ!

𝜎 is the sigmoid function.

Discriminator 𝒟:

𝒟 ℎ! , 𝑠 = 𝜎 ℎ!1𝑊𝑠

𝜎 is the sigmoid function.

All models are initialized using Glorot initialization.

18

Experiments – Results

Accuracy in transductive

Micro-F1 in inductive

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛B! =
∑& 1C&

∑& 1C&D"C&

𝑅𝑒𝑐𝑎𝑙𝑙B! =
∑& 1C&

∑& 1C&D"%&

𝐹1B! = 2 CEFG!:!H-'&×IFGJ'''&
CEFG!:!H-'&DIFGJ'''&

19

Experiments – Results

t-SNE embeddings of the nodes in the Cora dataset from:
the raw features (left),
features from a randomly initialized DGI model (middle),
and a learned DGI model (right).

20

Reference

[1] Xu, Keyulu, et al. "How powerful are graph neural networks?." ICLR, 2019.
[2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional
networks." ICLR, 2017.
[3] Hamilton, William L., Rex Ying, and Jure Leskovec. "Inductive representation learning on large
graphs." NeurIPS, 2017.
[4] You, Yuning, et al. "Graph contrastive learning with augmentations." NeurIPS, 2020.
[5] Hjelm, R. Devon, et al. "Learning deep representations by mutual information estimation and
maximization." ICLR, 2019.

Thank you

