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Background: Graph and GNN

Given a graph G with N nodes:
Each node has a node feature vector x; € RF, and we denote X = {x;, x,, ..., xy}
Adjacency matrix A € {0,1}V>N

In the [-th layer of Graph Neural Network (GNN)"l, to update node representation: [Encoder]
o’ = AGGRE® ({n"P:je N ®}),  h{" = cOMBINE® (h{'™,a)

For example:
In GCNI2l, two operations are integrated:

h® = ReLU (W - MEAN {h}l‘”, Vi € N() U {i}})
In GraphSAGERI
o = Max ({ReLU (W -h(™V),vj e N¥D}),  hP =w,-|ni,a?]

MAX(-) here is element-wise max pooling.
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Background: Graph and GNN

Given a graph G with N nodes:
Each node has a node feature vector x; € RF, and we denote X = {x;, x5, ..., xy}

Adjacency matrix A € {0,1}V*N

After the L-th layer, we can use a readout function for graph representation (summary):

s=R({n"|iec})
=

IEG

For example:
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Background: Contrastive Learning

Basic assumption: some types of transformation retain the important informationt“l.
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Drop Node & Edge GCl0) ~T """ _, ...... _ﬁ, ,:"°J§C;‘(°S‘ a%
i< ' : ea :
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"~ O Ji—> | : :h
...... L ] Projection
Shared GNN-based Encoder —_>' : Head g(*) —)%]
() Embeddings |7 L I 7T S ot .
\& s )

For n-th graph, two transformed samples i and j:

exp(sim(zn'i, Zn, j) /T)

[, =—1lo
n . Zgrzl,n’:tn exp(Sim(Zn'i’ Z”,'j)/r) '
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Background: Notations

Given a graph with N nodes:
Node feature x; € R¥, and feature matrix X = {x;, x,, ..., x5} € RV*F adjacency matrix 4 € {0,1}V*N

[Goal] An encoder &: RV*F xRN*N — RN*F' that encodes node with high-level representation:
H = £(X,A) = {hy, h,, ..., hy}, Where h; € RF'
(Example: GCN or GraphSAGE can be considered as an encoder.)

A readout function R: RV*F —» RF summarizes the nodes representations to a graph-level
representation: s = R(E(X, 4))

(Example: MEAN or SUM can be considered as a readout function.)
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Deep Graph Infomax

Original node feature matrix X = {x;, x,, ..., x5}, adjacency matrix A
An encoder £ and new node representations: H = £(X, A)

A readout function R results in a summary: s = R(E(X, 4))

A discriminator D: RF xRF —» R assigns probability to node: D(h;, s)
[To decide if the node should be contained within the summary]
[Example: cosine similarity. D(h;, s) = o(h! Ws) in this paper]

Negative samples for D: h; from an alternative graph G = (X, 4)
G = ()? A) can come from another graph in the multiple-graphs dataset.
Or can be obtained by a corruption function €: RV*FXRV*N — RM*XFxRM*M: (X, A) = C(X, A)

[Example: 4 = A and random row-wise shuffling X to get X]
[C generates negative samples, while 7" in Contrastive Learning generates positive samples.]
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Deep Graph Infomax

Original node feature matrix X = {x;, x,, ..., x5}, adjacency matrix A
An encoder £ and new node representations: H = £(X, A)

A readout function R results in a summary: s = R(E(X, 4))
A discriminator D assigns importance to node: D(h;, s)

Negative samples (h;, s) from an alternative graph (X, 4) = (X, A)

Metric: Mutual Information (Ml), evaluated by the JSD MI estimatorf®!:
max MI(X, 4; h;) ~ max [log(D (h;; X, 4)) + log (1 — D(y; X, 4) )|
Approximate (X, A) by s = R(E(X, 4))

Objective: Noise Contrastive objective with BCE loss
N

M
1 ~
L= N+ M Z IE(X,A [IOgD(hl, S)] + Zl IE()?,A [log(l — D(hj,S))]
]:

i=1
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Deep Graph Infomax

1. Sample a negative example by (X, 4) ~ ¢(X, A)

2. Obtain h;, h; by the encoder, H = £(X,A) and H = £(X, 4)

3. Readout the input graph: s = R(H)

4. Update parameters of £, R and D by gradient descent to maximize L.

M

N
L=~ i - (Z Egenllog Dk, )] + ) Egzp [log (1 - (R, SD])
i=1 1

]:
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Deep Graph Infomax — Theoretical Motivation

Q1: We approximate (X, A) by s = R(E(X,4)), in which case they are the closest to each other?

A1: R is injective.

Given a probability distribution of graphs, p(X), we can draw {X(")}szl1 from p(X) uniformly, e.g.,
p(X#) = p(x®"). s = R(X®) is the summary of k-th graph with marginal distribution p(s).

The optimal classifier between the p(X, s) and p(X)p(s) has an error rate upper bounded by

Err* = %Zlclelp(s("))z, and the upper bound is achieved when R is injective.
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Deep Graph Infomax — Theoretical Motivation

Given a probability distribution of graphs, p(X), we can draw {X(")}szl1 from p(X) uniformly, e.g.,
p(X#) = p(x®"). st = R(X®) is the summary of k-th graph with marginal distribution p(s).

Define QW) = {XU)|R(XxW)) = s} contains all graphs being mapped to s®.
Sample (X®, s(®)) drawn from the product of marginals with probability p(X)p(s):

(k)
p(s®) D p(X®,5) = p(s®)p(X®, 5®9) = p(s®Yp(X W[50 Yp(s®) = p(s)* . p(x™)

X' eg(® p(X")

p(X%¥,sU)) = 0 when j # k since R is deterministic.
p(X), s = p(s®)p(x®)|s®k)) from the definition of conditional probability.

(k)
p(XW]s()) = % from the definition of Q).
x'eQ

10
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Deep Graph Infomax — Theoretical Motivation

Given a probability distribution of graphs, p(X), we can draw {X(")}szl1 from p(X) uniformly, e.g.,
p(X#) = p(x®"). st = R(X®) is the summary of k-th graph with marginal distribution p(s).

Define QW) = {XU)|R(XxW)) = s} contains all graphs being mapped to s®.
Sample (X, s(®)) drawn from the product of marginals with probability p(X)p(s):
p(x™) (k)2 (K)o <(K))? (1))
~P\S =pp\S <pls
s (500 = pp(s ) 2 p(6)
We have p®) < 1, since X € g,
When Q) = {x®)} (R is injective), p®) = 1.

11
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Deep Graph Infomax — Theoretical Motivation

Given a probability distribution of graphs, p(X), we can draw {X(")}szl1 from p(X) uniformly, e.g.,
p(X#) = p(x®"). st = R(X®) is the summary of k-th graph with marginal distribution p(s).

Define QW) = {XU)|R(XxW)) = s} contains all graphs being mapped to s®.
Sample (X®, s()) drawn from the joint p(X, s):

Compare it with previous results:

p®p (s > p(k>p(s(k))2

The optimal classifier always classifies samples to the joint for a lower error

X X
1II X1

1
Err < EZ p®p(s®)* < Ez p(s®)’
k=1 k=1
When R is injective for all X, Err* = %Zgﬂlp(s("))z

12
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Deep Graph Infomax — Theoretical Motivation

Q2: If we assume that R is injective and |s*| = | X|, what else can we know?
[Is| is the number of allowable states in s, and s* is the optimal summary w.r.t the classification error.]

A2: s* = argmax,MI(X; s). In other words, minimizing the classification error is equivalent to
maximizing the mutual information.

Proof
Ml is invariant under invertible transforms.
Since R is injective and |s*| = | X|, we always can find an inverse function R~1.
For any s:

MI(X;s) < HX) = MI(X;X) = MI(X; R(X)) = MI(X;s")
The definition of MI: MI(X;s) = H(X) — H(X|s)

13



Experiments — Settings
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Datasets:
® Transductive: Cora, Citeseer, Pubmed;
® Inductive: Reddit (large graph), PPl (multiple graphs).

In Cora, Citeseer, Pubmed (transductive):
Encoder € is one-layer GCN:
1
EX,A) =02
where A = A + Iy and ¢ is parametric ReLU.

Corruption C set A = A and X as randomly row-wise shuffling of X.

14
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Datasets:
® Transductive: Cora, Citeseer, Pubmed;
® |nductive: Reddit (large graph), PPl (multiple graphs).

In Reddit (large graph):
Encoder € is three-layer mean-pooling model:
MP(X,A) = D-1AX0,
MP(X,A) = o(X0'||MP(X, 4)),
E(X,A) = MP;(MP,(MP,(X,A),A),A)

where A = A + Iy and ¢ is parametric ReLU.

Corruption C set A = A and X as randomly row-wise shuffling of X.

15
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Datasets:
® Transductive: Cora, Citeseer, Pubmed;

® |nductive: Reddit (large graph), PPl (multiple graphs).

In Reddit (multiple graphs):
Encoder € is three-layer mean-pooling model with skip connections:
MP(X,A) = D-1AX0,
Hy = a(MP(X,4)),
Hy = o (MPy(Hy + XWii, A)),
E(X, 4) = 0 (MPy(Hy + Hy + XWiy, 4) )

where Wy, is a learnable matrix, and o is parametric ReLU.

Corruption C is to select other graphs.

16
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Experiments — Settings

For all experiments:

Readout function R:

=~
M=
=
N——

-
1]
=

R(H) = a(

o is the sigmoid function.

Discriminator D:
D(hy,s) = a(h{ Ws)
o is the sigmoid function.

All models are initialized using Glorot initialization.

17
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Experiments — Results

Transductive
Accuracy in transductive Available data Method Cora Citeseer Pubmed
X Raw features 479+04% 493+02% 69.1 +0.3%
AY LP (Zhu et al., 2003) 68.0% 45.3% 63.0%
A DeepWalk (Perozzi et al., 2014) 67.2% 43.2% 65.3%
X,A DeepWalk + features 70.7+£0.6% 514+05% 743+0.9%
X, A Random-Init (ours) 693+14% 61.9+1.6% 69.6=+1.9%
X, A DGI (ours) 823+06% 71.8+0.7% 76.8 + 0.6%
X,AY GCN (Kipf & Welling, 2016a) 81.5% 70.3% 79.0%
X,AY Planetoid (Yang et al., 2016) 75.7% 64.7% 77.2%
Inductive
. o . Available data Method Reddit PPI
Micro-F1 in inductive X Raw features 0.585 0422
p L Y TP; A DeepWalk (Perozzi et al., 2014) 0.324 —
recision,,,; = —————— -
mi S (TP +FP;] X, A DeepWalk + features 0.691
X, A GraphSAGE-GCN (Hamilton et al., 2017a) 0.908 0.465
Recall.... = X TP X, A GraphSAGE-mean (Hamilton et al., 2017a)  0.897 0.486
mt y.[TP;+FN;] X,A GraphSAGE-LSTM (Hamilton et al., 2017a)  0.907 0.482
X, A GraphSAGE-pool (Hamilton et al., 2017a) 0.892 0.502
PrecisiongjXRecall,y; -
Fl,,;,=2 - X, A Random-Init (ours) 0.933 +0.001  0.626 + 0.002
Precisionm;+Recallm; x A DGI (ours) 0.940 = 0.001  0.638 =+ 0.002
X,AY FastGCN (Chen et al., 2018) 0.937 —
X,A)Y Avg. pooling (Zhang et al., 2018) 0.958 £0.001 0.969 +£0.002 18
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imen

Exper

t-SNE embeddings of the nodes in the Cora dataset from:

left),

(

features from a randomly initialized DGI model

the raw features

(middle)

and a learned DGI model (right).
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