Paper: Fair Mixup: Fairness via Interpolation [1]

Jiaxin Liu
Group Reading
June 28, 2021

Overview

(1) Introduction
(2) Group Fairness
(3) Dynamic Formulation of Fairness
(4) Fair Mixup
(5) Experiments

Fairness

- Fairness in ML.

Figure: Fairness example.
Figure: Interpolation example.

- Optimization problem:

$$
\min _{f} \mathbb{E}_{(x, y) \sim P}[/(f(x), y)]+\lambda \cdot \text { fairness measurements }
$$

Fairness measurements

- For a binary classification setup
- Inputs $X \in \mathscr{X} \subset \mathbb{R}^{d}$.
- Labels $Y \in \mathscr{Y}=\{0,1\}$
- Sensitive attribute $A \in\{0,1\}$.
- $\hat{Y} \in[0,1]$ from model $f: \mathbb{R}^{d} \rightarrow[0,1]$

Fairness measurements

- For a binary classification setup
- Inputs $X \in \mathscr{X} \subset \mathbb{R}^{d}$.
- Labels $Y \in \mathscr{Y}=\{0,1\}$
- Sensitive attribute $A \in\{0,1\}$.
- $\hat{Y} \in[0,1]$ from model $f: \mathbb{R}^{d} \rightarrow[0,1]$
- Demographic parity (DP)
- $P(\hat{Y} \mid A=0)=P(\hat{Y} \mid A=1)$
- requires \hat{Y} to be independent of A.
- Equalized odds (EO)
- $P(\hat{Y} \mid A=1, Y=y)=P(\hat{Y} \mid A=0, Y=y)$ for $y \in\{0,1\}$
- requires \hat{Y} and A to be conditionally independent w.r.t. Y.

Metrics

- $\Delta \mathbf{D P}(\mathbf{f})=\left|\mathbb{E}_{x \sim P_{0}} f(x)-\mathbb{E}_{x \sim P_{1}} f(x)\right|$
- $\Delta \mathbf{E O}(\mathbf{f})=\sum_{y \in\{0,1\}}\left|\mathbb{E}_{x \sim P_{0}^{y}} f(x)-\mathbb{E}_{x \sim P_{1}^{y}} f(x)\right|$ where $P_{a}=P(\cdot \mid A=a)$ and $P_{a}^{y}=P(\cdot \mid A=a, Y=y), a, y \in\{0,1\}$.

Gap Regularization

$$
\min _{f} \mathbb{E}_{(x, y) \sim P}[I(f(x), y)]+\lambda \Delta D P(f)
$$

where I is the classification loss.

Data augmentation

- Mixup [3]: generate samples via convex combinations of pairs of examples.
- $z_{i}, z_{j} \in \mathbb{R}^{d}$
- virtual samples $t z_{i}+(1-t) z_{j}$ for $t \in[0,1]$.

Figure: Example for interpolation.

Dynamic Formulation of fairness

- Interpolator $T\left(x_{0}, x_{1}, t\right)$ between x_{0} and x_{1} based on step t.
- $T\left(x_{0}, x_{1}, 0\right)=x_{0}$
- $T\left(x_{0}, x_{1}, 1\right)=x_{1}$
- $\Delta \mathbf{D P}(\mathbf{f})=\left|\mathbb{E}_{x \sim P_{0}} f(x)-\mathbb{E}_{x \sim P_{1}} f(x)\right|$

Dynamic Formulation of fairness

- Interpolator $T\left(x_{0}, x_{1}, t\right)$ between x_{0} and x_{1} based on step t.
- $T\left(x_{0}, x_{1}, 0\right)=x_{0}$
- $T\left(x_{0}, x_{1}, 1\right)=x_{1}$
- $\Delta \mathbf{D P}(\mathbf{f})=\left|\mathbb{E}_{x \sim P_{0}} f(x)-\mathbb{E}_{x \sim P_{1}} f(x)\right|$

Lemma 1.

Let $T: \mathscr{X}^{2} \times[0,1] \rightarrow \mathscr{X}$ be a function continuously differentiable w.r.t. t such that $T\left(x_{0}, x_{1}, 0\right)=x_{0}$ and $T\left(x_{0}, x_{1}, 1\right)=x_{1}$. For any differentiable function f, we have

$$
\Delta \mathrm{DP}(f)=\left|\int_{0}^{1} \frac{d}{d t} \int f\left(T\left(x_{0}, x_{1}, t\right)\right) d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right) d t\right|=:\left|\int_{0}^{1} \frac{d}{d t} \mu_{f}(t) d t\right|
$$

where we define $\mu_{f}(t)=\mathbb{E}_{x_{0} \sim P_{0}, x_{1} \sim P_{1}} f\left(T\left(x_{0}, x_{1}, t\right)\right)$, the expected output of f w.r.t. $T\left(x_{0}, x_{1}, t\right)$.

Smoothness Regularization

Figure: $\mu_{f}(t)-t$ figure.

- $\mu_{f}(t)=\mathbb{E}_{x_{0} \sim P_{0}, x_{1} \sim P_{1}} f\left(T\left(x_{0}, x_{1}, t\right)\right)$

Smoothness Regularizer

$$
R_{T}(f)=\int_{0}^{1}\left|\frac{d}{d t} \mu_{f}(t)\right| d t \geq \Delta \mathrm{DP}(f)
$$

Fair Mixup

Smoothness Regularizer

$$
R_{T}(f)=\int_{0}^{1}\left|\frac{d}{d t} \mu_{f}(t)\right| d t \geq \Delta \mathrm{DP}(f)
$$

Input Mixup

Smoothness regularizer:

$$
R_{\text {mixup }}^{\mathrm{DP}}(f)=\int_{0}^{1}\left|\int<\nabla_{x} f\left(t x_{0}+(1-t) x_{1}\right), x_{0}-x_{1}>d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right)\right| d t
$$

Manifold Mixup

- Manifold Mixup [2]
- Compositional hypothesis $f \circ g$
- feature encoder $g: \mathscr{X} \rightarrow \mathscr{Z}$
- predictor $f: \mathscr{Z} \rightarrow \mathscr{Y}$

$$
\begin{aligned}
\Delta \mathrm{DP}(f \circ g) & =\left|\int_{0}^{1} \frac{d}{d t} \int f\left(T\left(x_{0}, x_{1}, t\right)\right) d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right) d t\right| \\
& =\left|\int_{0}^{1} \frac{d}{d t} \int f\left(\operatorname{tg}\left(x_{0}\right)+(1-t) g\left(x_{1}\right)\right) d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right) d t\right|
\end{aligned}
$$

Smoothness Regularizer

Input Mixup

Smoothness regularizer:

$$
R_{\text {mixup }}^{\mathrm{DP}}(f)=\int_{0}^{1}\left|\int<\nabla_{x} f\left(t x_{0}+(1-t) x_{1}\right), x_{0}-x_{1}>d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right)\right| d t
$$

Manifold Mixup

Smoothness regularizer:

$$
\begin{aligned}
& R_{\text {mixup }}^{\mathrm{DP}}(f) \\
& =\int_{0}^{1}\left|\int<\nabla_{z} f\left(\operatorname{tg}\left(x_{0}\right)+(1-t) g\left(x_{1}\right)\right), g\left(x_{0}\right)-g\left(x_{1}\right)>d P_{0}\left(x_{0}\right) d P_{1}\left(x_{1}\right)\right| d t .
\end{aligned}
$$

Equalized Odds (EO)

- $\Delta \mathbf{E O}(\mathbf{f})=\sum_{y \in\{0,1\}}\left|\mathbb{E}_{x \sim P_{0}^{y}} f(x)-\mathbb{E}_{x \sim P_{1}^{y}} f(x)\right|$
- $\Delta \mathbf{E O}(f)=\sum_{y \in\{0,1\}}\left|\int_{0}^{1} \frac{d}{d t} \int f\left(T\left(x_{0}, x_{1}, t\right)\right) d P_{0}^{y}\left(x_{0}\right) d P_{1}^{y}\left(x_{1}\right) d t\right|$

Input Mixup

Smoothness regularizer:

$$
\begin{aligned}
& R_{\text {mixup }}^{\mathrm{EO}}(f) \\
& =\sum_{y \in\{0,1\}} \int_{0}^{1}\left|\int<\nabla_{x} f\left(t x_{0}+(1-t) x_{1}\right), x_{0}-x_{1}>d P_{0}^{y}\left(x_{0}\right) d P_{1}^{y}\left(x_{1}\right)\right| d t .
\end{aligned}
$$

Optimization Problem

Fair Mixup:

$$
\min _{f} \mathbb{E}_{(x, y) \sim P}[/(f(x), y)]+\lambda R_{\text {mixup }}(f)
$$

Experiments

Task 1: predict income $\sim \$ 50 k$; attribute: gender.

(a) Demographic Parity

(b) Equalized Odds

(c) Path Visualization

Figure: Adult Dataset. Task 1

Experiments

Task 2: celebrity faces 2.1 attractive, 2.2 smile, 2.3 wavy hair. Attribute: gender.

Figure: CelebA Dataset. Task 2

Experiments

Task 2: Visualization of calibrated paths

Figure: CelebA Dataset. Task 2.1 attractive classification.

