
Deep learning via Hessian-
free optimization

Chao Chen

2

Gradient Decent

min
!
𝑓 𝜃

To find a direction 𝑝 to minimize 𝑓 𝜃
Approximate by Taylor expansion (1-dim):

𝑓 𝜃 + 𝑝 = 𝑓 𝜃 + 𝑓" 𝜃 𝑝 +
1
2
𝑓"" 𝜃 𝑝# +⋯

≈ 𝑓 𝜃 + 𝑓" 𝜃 𝑝
(𝑛-dim):

𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 $𝑝
𝑝 is a decreasing direction if 𝑓 𝜃 + 𝑝 − 𝑓 𝜃 ≤ 0

∇𝑓 𝜃 $𝑝 = ∇𝑓 𝜃 𝑝 cos𝑤 ≤ 0
When ∇𝑓 𝜃 and 𝑝 have the opposite directions, ∇𝑓 𝜃 $𝑝 takes the minimum.
Thus, we set 𝑝 = −𝛼∇𝑓 𝜃

3

Gradient Decent

Input: function 𝑓 𝜃 ; starting point 𝜃% = 𝜃&; step size 𝛼; tolerance 𝜀;
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Gradient: Compute the gradient ∇𝑓 𝜃 at 𝜃%;
Update: Move in the direction of gradient: 𝜃%'(= 𝜃% − 𝛼∇𝑓 𝜃% ;
If 𝑓" 𝜃% ≤ 𝜀:

break

Þ The training is slow.
[Example: in a long narrow valley.]
1, The search directions have an unstable behavior in directions of high curvature.
Lowering the learning rate is helpful.
2, The directions of low curvature will be explored much more slowly.
Lowering the learning rate is harmful.

4

Newton’s Method

Approximate by Taylor expansion (1-dim):

𝑓 𝜃 + 𝑝 = 𝑓 𝜃 + 𝑓" 𝜃 𝑝 +
1
2
𝑓"" 𝜃 𝑝# + 𝑜 𝑝#

To find the minimum -> set the gradient to zero:

𝑓" 𝜃 + 𝑓"" 𝜃 𝑝 = 0 ⇒ 𝑝 = −
𝑓" 𝜃
𝑓"" 𝜃

Thus, we update by

𝜃%'(= 𝜃% − 𝛼
𝑓" 𝜃%
𝑓"" 𝜃%

5

Newton’s Method

Similarly, for 𝑛-dim:

𝑓 𝜃 + 𝑝 ≈ 𝑞! 𝑝 = 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2
𝑝)𝐻*𝑝

The direction 𝑝:

𝑝 = 𝐻* 𝜃
+(
∇𝑓 𝜃

And we update by:

𝜃%'(= 𝜃% − 𝛼 𝐻* 𝜃%
+(
∇𝑓 𝜃%

Þ 𝐻* can be indefinite so 𝑓 𝜃 + 𝑝 doesn’t have minimum.

[“Damping” Hessian matrix by 𝐵 = 𝐻* + 𝜆𝐼 for some 𝜆 ≥ 0.]

Þ Hard to compute Hessian matrix and its inverse.
[Example: for 𝑛=10k, there are 10k*10k entries in 𝐻*.]

6

Conjugate Gradient

To avoid ruining previous efforts (GD) and computing the inverse of Hessian matrix directly (NM).
Þ Conjugate gradient (CG)

Two vectors 𝑥% and 𝑥, to be conjugate w.r.t. semi-definite matrix 𝐴 if 𝑥%)𝐴𝑥, = 0.

At most 𝑛 steps to reach optimum in CG. [𝑛 is the number of dim]

Orthogonality Conjugate

Linear transformation

7

Conjugate Gradient

Rewrite 𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐻*𝑝, as a quadratic function ℎ 𝑥 = (

#
𝑥)𝐴𝑥 + 𝑏)𝑥 + 𝑐

In each step of CG, we compute a) direction; b) the step size.

In step-0:
Initial direction: 𝑑& = −∇ℎ 𝑥& = − 𝐴𝑥& + 𝑏

Step size 𝛼: 𝑔 𝛼 = ℎ 𝑥% + 𝑎𝑑% = (
#
𝛼#𝑑%)𝐴𝑑% + 𝑑%) 𝐴𝑥% + 𝑏 𝛼 +

(
#
𝑥%)𝐴𝑥% + 𝑥%)𝑑% + 𝑐

set 𝑔" 𝛼 = 𝑑%)𝐴𝑑% 𝛼 + 𝑑%) 𝐴𝑥% + 𝑏 = 0 ⟹ 𝛼% = − -!
" ./!'0
-!
".-!

Update: 𝑥(= 𝑥& + 𝛼&𝑑&

8

Conjugate Gradient

Rewrite 𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐻*𝑝, as a quadratic function ℎ 𝑥 = (

#
𝑥)𝐴𝑥 + 𝑏)𝑥 + 𝑐

In each step of CG, we compute a) direction; b) the step size.

In step-1: given 𝑑& = −∇ℎ 𝑥& = − 𝐴𝑥& + 𝑏
Find direction 𝑑(:
Subtracting off anything that would counter-act 𝑑%

𝑑%'(= −∇ℎ 𝑥%'(+ 𝛽%𝑑%
𝑑%'(and 𝑑% are 𝐴-conjugate and

𝑑%'() 𝐴𝑑% = 0 ⟹ 𝛽% =
∇ℎ 𝑥%'()𝐴𝑑%

𝑑%)𝐴𝑑%

Step size 𝛼: 𝛼% = − -!
" ./!'0
-!
".-!

Update: 𝑥# = 𝑥(+ 𝛼(𝑑(

9

Conjugate Gradient

Rewrite 𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐻*𝑝, as a quadratic function ℎ 𝑥 = (

#
𝑥)𝐴𝑥 + 𝑏)𝑥 + 𝑐

To find the minimum of a quadratic function ℎ by CG:
Initialize 𝑥% = 𝑥&; 𝑑% = 𝑑& = −∇ℎ 𝑥&
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Step size: compute 𝛼% = − -!
" ./!'0
-!
".-!

minimizing ℎ 𝑥% + 𝛼%𝑑%

Update 𝑥%: 𝑥%'(= 𝑥% + 𝛼%𝑑%;

Update 𝑑%: 𝑑%'(= −∇𝑓 𝑥%'(+ 𝛽%𝑑% where 𝛽% =
∇2 /!#$ ".-!

-!
".-!

;

If converge:
break

Output 𝑥%
[We don’t compute the inverse of Hessian anymore.]

10

Hessian-free optimization

To find the minimum of any function 𝑓:
Initialize 𝜃% = 𝜃&;
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Compute the gradient 𝑔% = ∇𝑓 𝜃%
Compute/adjust 𝜆
Consider the Taylor expansion at 𝜃% with 𝐵% = 𝐻* 𝜃% + 𝜆𝐼

𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2
𝑝)𝐵%𝑝

Call CG to find the optimal 𝑝% minimizing 𝑓 𝜃% + 𝑝%
𝜃%'(= 𝜃% + 𝑝%
If converge:

break
Output 𝜃%
[We don’t compute the inverse of Hessian anymore.]

11

Hessian-free optimization

What is “Hessian-free”? Look the algorithms carefully:
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Compute the gradient 𝑔% = ∇𝑓 𝜃%
Consider the Taylor expansion at 𝜃% with 𝐵% = 𝐻* 𝜃% + 𝜆𝐼

𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2
𝑝)𝐵%𝑝

Call CG to find the optimal 𝑝% minimizing 𝑓 𝜃% + 𝑝%
…

For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟: [CG]

Step size: compute 𝛼% = − -!
" ./!'0
-!
".-!

Update 𝑑%: 𝑑%'(= −∇ℎ 𝑥%'(+ 𝛽%𝑑% where 𝛽% =
∇2 /!#$ ".-!

-!
".-!

;

…

We don’t need to compute 𝐻, but 𝐻𝑣

12

Hessian-free optimization

Two motivations for Hessian-free:
1) In CG, we only need to compute matrix-vector products 𝐻𝑣 rather than Hessian matrix 𝐻.
2) It is relatively easy to compute 𝐻𝑣 than 𝐻:

𝐻𝑣 = lim
3→&

∇𝑓 𝜃 + 𝜖𝑣 − ∇𝑓(𝜃)
𝜖

In this way, 𝐻𝑣 is computed the exact value of 𝐻, there is no low-rank or diagonal approximation
[compared to some quasi-Newton methods.]

13

Hessian-free optimization
How to compute 𝐻𝑣 skipping 𝐻:

𝐻 𝑥 =

𝜕#𝑓
𝜕𝑥(𝜕𝑥(

⋯
𝜕#𝑓

𝜕𝑥(𝜕𝑥5
⋮ ⋱ ⋮

𝜕#𝑓
𝜕𝑥5𝜕𝑥(

⋯
𝜕#𝑓

𝜕𝑥5𝜕𝑥5

, 𝑣 =
𝑣(
…
𝑣5

, 𝑥 =
𝑥(
…
𝑥5

Denote 𝐻𝑣 % as 𝑖-th element of 𝐻𝑣:

𝐻𝑣 % =
𝜕#𝑓

𝜕𝑥%𝜕𝑥(
,

𝜕#𝑓
𝜕𝑥%𝜕𝑥#

, … ,
𝜕#𝑓

𝜕𝑥%𝜕𝑥5

𝑣(
…
𝑣5

=^
,6(

5
𝜕#𝑓
𝜕𝑥%𝜕𝑥,

𝑥 ⋅ 𝑣, = ∇
𝜕𝑓
𝜕𝑥%

𝑥 ⋅ 𝑣

Thus, 𝐻𝑣 % is the directional derivative of 7*
7/!

along the direction 𝑣.

[By the definition: the directional derivative of 𝑓 along the direction 𝑣 is]

∇8𝑓 = lim
3→&

𝑓 𝑥 + 𝜖𝑣 − 𝑓 𝑥
𝜖

We can approximate 𝐻𝑣 by finite differences for small 𝜖:

𝐻𝑣 ≈
∇ 𝑓 𝑥 + 𝜖𝑣 − ∇𝑓 𝑥

𝜖

14

Conjugate Gradient

Rewrite 𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐻*𝑝, as a quadratic function ℎ 𝑥 = (

#
𝑥)𝐴𝑥 + 𝑏)𝑥 + 𝑐

To find the minimum of a quadratic function ℎ by CG:
Initialize 𝑥% = 𝑥&; 𝑑% = 𝑑& = −∇ℎ 𝑥&
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Step size: compute 𝛼% = − -!
" ./!'0
-!
".-!

minimizing ℎ 𝑥% + 𝛼%𝑑%

Update 𝑥%: 𝑥%'(= 𝑥% + 𝛼%𝑑%;

Update 𝑑%: 𝑑%'(= −∇ℎ 𝑥%'(+ 𝛽%𝑑% where 𝛽% =
∇2 /!#$ ".-!

-!
".-!

;

If converge:
break

Output 𝑥%

15

Hessian-free optimization

To find the minimum of any function 𝑓:
Initialize 𝜃% = 𝜃&;
For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟:

Compute the gradient 𝑔% = ∇𝑓 𝜃%
Compute/adjust 𝜆
Consider the Taylor expansion at 𝜃% with 𝐵% = 𝐻* 𝜃% + 𝜆𝐼

𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2
𝑝)𝐵%𝑝

Call CG to find the optimal 𝑝% minimizing 𝑓 𝜃% + 𝑝%
𝜃%'(= 𝜃% + 𝑝%
If converge:

break
Output 𝜃%

16

Make HF suitable for ML problems

Make HF suitable for ML problems.
• How to choose 𝜆?
• How to handle negative curvature?
• How to handle large datasets?
• How to set termination conditions?
• More tricks for enhancement?

17

Make HF suitable for ML problems

How to choose 𝜆?

𝐵% = 𝐻* 𝜃% + 𝜆𝐼, 𝑓 𝜃 + 𝑝 ≈ 𝑞! 𝑝 = 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2
𝑝)𝐵%𝑝

As the scale of 𝐻* 𝜃 constantly changes,

𝜆 is updated by:

𝑖𝑓 𝜌 <
1
4
: 𝜆 ←

3
2
𝜆;

𝑖𝑓 𝜌 >
3
4
: 𝜆 ←

2
3
𝜆

𝜌 = * !'9 +* !
:% 9 +:% &

measures the accuracy of 𝑞!

As 𝑓 𝜃 + 𝑝 = 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐵%𝑝 + 𝑜 𝑝# ,	𝜌 =

:% 9 +:% & '; 9&

:% 9 +:% &
= 1 − ; 9&

:% 9 +:% &

18

Make HF suitable for ML problems

How to handle negative curvature?
𝑓 is convex -> 𝐻 is p.s.d. [not common]

Compute 𝐺𝑣 rather than 𝐻𝑣, where 𝐺 is the Gauss-Newton approximation to the Hessian 𝐻.
● 𝐺 is guaranteed to be p.s.d. and any possible 𝜆 works for CG.
● 𝐺 works better (better search directions) than 𝐻 in practice.
● 𝐺𝑣 is computed similarly to 𝐻𝑣.

19

Make HF suitable for ML problems

How to handle large datasets?

Inside CG, we need to keep 𝐵 unchanged:
Þ Maintain invariants, such as conjugacy of search directions.
Þ Mini-batch should be unchanged inside CG.
Þ Cannot cycle mini-batches inside CG.

If the size of mini-batch is too small:
Þ Lose enough useful curvature information for good search directions.

For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟: [HF]
Generate mini-batch and corresponding approximation.
Compute the gradient 𝑔! = ∇𝑓 𝜃!
Consider the Taylor expansion at 𝜃! with 𝐵! = 𝐻" 𝜃! + 𝜆𝐼

𝑓 𝜃 + 𝑝 ≈ 𝑓 𝜃 + ∇𝑓 𝜃 𝑝 +
1
2𝑝

#𝐵!𝑝

Call CG to find the optimal 𝑝! minimizing 𝑓 𝜃! + 𝑝!
…

For 𝑖 = 0 → 𝑀𝑎𝑥𝐼𝑡𝑒𝑟: [CG]

Step size: compute 𝛼! = − $!
" %&!'(
$!
"%$!

Update 𝑑!: 𝑑!') = −∇𝑓 𝑥!') + 𝛽!𝑑! where 𝛽! =
∇" &!#$ "%$!

$!
"%$!

;
…

20

Make HF suitable for ML problems

How to set termination conditions?
CG is guaranteed to converge after N iterations, while we cannot run till converge in practice.

Given 𝑞! 𝑝 = ∇𝑓 𝜃 𝑝 + (
#
𝑝)𝐵𝑝, we want to find 𝑝 such that 𝑟 = ∇𝑓 𝜃 + 𝐵𝑝 = 0.

Generally, termination condition is ∇𝑓 𝜃 + 𝐵𝑝 # < 𝜖, where 𝜖 = min (
#
∇𝑓 𝜃 #, ∇𝑓 𝜃 #

</#

𝑞! 𝑝 and 𝑟 has the same global minimizer, while a good but sub-optimal solution for one may not
good for another one.
CG is used to optimize 𝑞! 𝑝 but not 𝑟.

21

Make HF suitable for ML problems

How to set termination conditions?
Evaluate 𝑞! directly. We terminate at iteration 𝑖 CG if:

𝑖 > 𝑘; and 𝑞! 𝑝% < 0; and
𝑞! 𝑝% − 𝑞! 𝑝%+>

𝑞! 𝑝%
< 𝑘𝜖

𝑘 > 1 indicates how many past iterations we use and controls the variance.
[𝑘 = max 10,0.1𝑖 , and 𝜖 = 0.0005 in experiments.]

22

Make HF suitable for ML problems

More tricks for enhancement?
Use 𝑝5+(found by previous HF to initialize 𝑝5 for each CG iteration.

Accelerate CG by preconditioning.

Sparse initialization: limit the number of non-zero incoming connection weights to each unit and set
the biases to 0.

Thank you

