Deep learning via Hessianfree optimization

Chao Chen

Gradient Decent

$\min _{\theta} f(\theta)$
To find a direction p to minimize $f(\theta)$
Approximate by Taylor expansion (1-dim):

$$
\begin{aligned}
f(\theta+p)=f & (\theta)+f^{\prime}(\theta) p+\frac{1}{2} f^{\prime \prime}(\theta) p^{2}+\cdots \\
& \approx f(\theta)+f^{\prime}(\theta) p
\end{aligned}
$$

(n-dim):

$$
f(\theta+p) \approx f(\theta)+\nabla f(\theta)^{\mathrm{T}} p
$$

p is a decreasing direction if $f(\theta+p)-f(\theta) \leq 0$

$$
\nabla f(\theta)^{\mathrm{T}} p=|\nabla f(\theta)||p| \cos w \leq 0
$$

When $\nabla f(\theta)$ and p have the opposite directions, $\nabla f(\theta)^{\mathrm{T}} p$ takes the minimum.
Thus, we set $p=-\alpha \nabla f(\theta)$

Gradient Decent

Input: function $f(\theta)$; starting point $\theta_{i}=\theta_{0}$; step size α; tolerance ε;
For $i=0 \rightarrow$ MaxIter:
Gradient: Compute the gradient $\nabla f(\theta)$ at θ_{i};
Update: Move in the direction of gradient: $\theta_{i+1}=\theta_{i}-\alpha \nabla f\left(\theta_{i}\right)$;
If $f^{\prime}\left(\theta_{i}\right) \leq \varepsilon$:
break
\Rightarrow The training is slow.

[Example: in a long narrow valley.]
1, The search directions have an unstable behavior in directions of high curvature.
Lowering the learning rate is helpful.
2 , The directions of low curvature will be explored much more slowly.
Lowering the learning rate is harmful.

Newton's Method

Approximate by Taylor expansion (1-dim):

$$
f(\theta+p)=f(\theta)+f^{\prime}(\theta) p+\frac{1}{2} f^{\prime \prime}(\theta) p^{2}+o\left(p^{2}\right)
$$

To find the minimum -> set the gradient to zero:

$$
f^{\prime}(\theta)+f^{\prime \prime}(\theta) p=0 \Rightarrow p=-\frac{f^{\prime}(\theta)}{f^{\prime \prime}(\theta)}
$$

Thus, we update by

$$
\theta_{i+1}=\theta_{i}-\alpha \frac{f^{\prime}\left(\theta_{i}\right)}{f^{\prime \prime}\left(\theta_{i}\right)}
$$

Similarly, for n-dim:

$$
f(\theta+p) \approx q_{\theta}(p)=f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} H_{f} p
$$

The direction p :

$$
p=\left(H_{f}(\theta)\right)^{-1} \nabla f(\theta)
$$

And we update by:

$$
\theta_{i+1}=\theta_{i}-\alpha\left(H_{f}\left(\theta_{i}\right)\right)^{-1} \nabla f\left(\theta_{i}\right)
$$

$\Rightarrow H_{f}$ can be indefinite so $f(\theta+p)$ doesn't have minimum.
["Damping" Hessian matrix by $B=H_{f}+\lambda I$ for some $\lambda \geq 0$.]
\Rightarrow Hard to compute Hessian matrix and its inverse.
[Example: for $n=10 \mathrm{k}$, there are $10 \mathrm{k}^{*} 10 \mathrm{k}$ entries in H_{f}.]

Conjugate Gradient

To avoid ruining previous efforts (GD) and computing the inverse of Hessian matrix directly (NM). \Rightarrow Conjugate gradient (CG)

Two vectors x_{i} and x_{j} to be conjugate w.r.t. semi-definite matrix A if $x_{i}^{T} A x_{j}=0$.
At most n steps to reach optimum in CG. [n is the number of dim]

Rewrite $f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} H_{f} p$, as a quadratic function $h(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$ In each step of CG, we compute a) direction; b) the step size.

In step-0:
Initial direction: $d_{0}=-\nabla h\left(x_{0}\right)=-\left(A x_{0}+b\right)$
Step size α : $g(\alpha)=h\left(x_{i}+a d_{i}\right)=\frac{1}{2} \alpha^{2} d_{i}^{T} A d_{i}+d_{i}^{T}\left(A x_{i}+b\right) \alpha+\left(\frac{1}{2} x_{i}^{T} A x_{i}+x_{i}^{T} d_{i}+c\right)$

$$
\text { set } g^{\prime}(\alpha)=\left(d_{i}^{T} A d_{i}\right) \alpha+d_{i}^{T}\left(A x_{i}+b\right)=0 \Rightarrow \alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}
$$

Update: $x_{1}=x_{0}+\alpha_{0} d_{0}$

Rewrite $f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} H_{f} p$, as a quadratic function $h(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$ In each step of CG, we compute a) direction; b) the step size.

In step-1: given $d_{0}=-\nabla h\left(x_{0}\right)=-\left(A x_{0}+b\right)$
Find direction d_{1} :
Subtracting off anything that would counter-act d_{i}

$$
d_{i+1}=-\nabla h\left(x_{i+1}\right)+\beta_{i} d_{i}
$$

d_{i+1} and d_{i} are A-conjugate and

$$
d_{i+1}^{T} A d_{i}=0 \Rightarrow \beta_{i}=\frac{\nabla h\left(x_{i+1}\right)^{T} A d_{i}}{d_{i}^{T} A d_{i}}
$$

Step size α : $\alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}$
Update: $x_{2}=x_{1}+\alpha_{1} d_{1}$

Conjugate Gradient

Rewrite $f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} H_{f} p$, as a quadratic function $h(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$
To find the minimum of a quadratic function h by CG:
Initialize $x_{i}=x_{0} ; d_{i}=d_{0}=-\nabla h\left(x_{0}\right)$
For $i=0 \rightarrow$ MaxIter:
Step size: compute $\alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}$ minimizing $h\left(x_{i}+\alpha_{i} d_{i}\right)$
Update $x_{i}: x_{i+1}=x_{i}+\alpha_{i} d_{i}$;
Update $d_{i}: d_{i+1}=-\nabla f\left(x_{i+1}\right)+\beta_{i} d_{i}$ where $\beta_{i}=\frac{\nabla h\left(x_{i+1}\right)^{T} A d_{i}}{d_{i}^{T} A d_{i}}$;

If converge:
break
Output x_{i}
[We don't compute the inverse of Hessian anymore.]

Hessian-free optimization

To find the minimum of any function f :
Initialize $\theta_{i}=\theta_{0}$;
For $i=0 \rightarrow$ MaxIter:
Compute the gradient $g_{i}=\nabla f\left(\theta_{i}\right)$
Compute/adjust λ
Consider the Taylor expansion at θ_{i} with $B_{i}=H_{f}\left(\theta_{i}\right)+\lambda I$

$$
f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p
$$

Call CG to find the optimal p_{i} minimizing $f\left(\theta_{i}+p_{i}\right)$
$\theta_{i+1}=\theta_{i}+p_{i}$
If converge:
break
Output θ_{i}
[We don't compute the inverse of Hessian anymore.]

Hessian-free optimization

What is "Hessian-free"? Look the algorithms carefully:
For $i=0 \rightarrow$ MaxIter:
Compute the gradient $g_{i}=\nabla f\left(\theta_{i}\right)$
Consider the Taylor expansion at θ_{i} with $B_{i}=H_{f}\left(\theta_{i}\right)+\lambda I$

$$
f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p
$$

Call CG to find the optimal p_{i} minimizing $f\left(\theta_{i}+p_{i}\right)$

We don't need to compute H, but $H v$
For $i=0 \rightarrow$ MaxIter: [CG]
Step size: compute $\alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}$
Update $d_{i}: d_{i+1}=-\nabla h\left(x_{i+1}\right)+\beta_{i} d_{i}$ where $\beta_{i}=\frac{\nabla h\left(x_{i+1}\right)^{T} A d_{i}}{d_{i}^{T} A d_{i}}$;

Hessian-free optimization

Two motivations for Hessian-free:

1) In CG, we only need to compute matrix-vector products $H v$ rather than Hessian matrix H.
2) It is relatively easy to compute $H v$ than H :

$$
H v=\lim _{\epsilon \rightarrow 0} \frac{\nabla f(\theta+\epsilon v)-\nabla f(\theta)}{\epsilon}
$$

In this way, $H v$ is computed the exact value of H, there is no low-rank or diagonal approximation [compared to some quasi-Newton methods.]

Hessian-free optimization

How to compute $H v$ skipping H :

$$
H(x)=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n} \partial x_{n}}
\end{array}\right], v=\left[\begin{array}{c}
v_{1} \\
\cdots \\
v_{n}
\end{array}\right], x=\left[\begin{array}{c}
x_{1} \\
\cdots \\
x_{n}
\end{array}\right]
$$

Denote $(H v)_{i}$ as i-th element of $H v$:

$$
(H v)_{i}=\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{1}}, & \frac{\partial^{2} f}{\partial x_{i} \partial x_{2}}, \quad \ldots, \quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{n}}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
\ldots \\
v_{n}
\end{array}\right]=\sum_{j=1}^{n} \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}(x) \cdot v_{j}=\nabla \frac{\partial f}{\partial x_{i}}(x) \cdot v
$$

Thus, $(H v)_{i}$ is the directional derivative of $\frac{\partial f}{\partial x_{i}}$ along the direction v.
[By the definition: the directional derivative of f along the direction v is]

$$
\nabla_{v} f=\lim _{\epsilon \rightarrow 0} \frac{f(x+\epsilon v)-f(x)}{\epsilon}
$$

We can approximate $H v$ by finite differences for small ϵ :

$$
H v \approx \frac{\nabla f(x+\epsilon v)-\nabla f(x)}{\epsilon}
$$

Conjugate Gradient

Rewrite $f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} H_{f} p$, as a quadratic function $h(x)=\frac{1}{2} x^{T} A x+b^{T} x+c$
To find the minimum of a quadratic function h by CG:
Initialize $x_{i}=x_{0} ; d_{i}=d_{0}=-\nabla h\left(x_{0}\right)$
For $i=0 \rightarrow$ MaxIter:
Step size: compute $\alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}$ minimizing $h\left(x_{i}+\alpha_{i} d_{i}\right)$
Update $x_{i}: x_{i+1}=x_{i}+\alpha_{i} d_{i}$;
Update $d_{i}: d_{i+1}=-\nabla h\left(x_{i+1}\right)+\beta_{i} d_{i}$ where $\beta_{i}=\frac{\nabla h\left(x_{i+1}\right)^{T} A d_{i}}{d_{i}^{T} A d_{i}}$;

If converge:
break
Output x_{i}

Hessian-free optimization

To find the minimum of any function f :
Initialize $\theta_{i}=\theta_{0}$;
For $i=0 \rightarrow$ MaxIter:
Compute the gradient $g_{i}=\nabla f\left(\theta_{i}\right)$
Compute/adjust λ
Consider the Taylor expansion at θ_{i} with $B_{i}=H_{f}\left(\theta_{i}\right)+\lambda I$

$$
f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p
$$

Call CG to find the optimal p_{i} minimizing $f\left(\theta_{i}+p_{i}\right)$
$\theta_{i+1}=\theta_{i}+p_{i}$
If converge:

break

Output θ_{i}

Make HF suitable for ML problems

Make HF suitable for ML problems.

- How to choose λ ?
- How to handle negative curvature?
- How to handle large datasets?
- How to set termination conditions?
- More tricks for enhancement?

Make HF suitable for ML problems

How to choose λ ?

$$
B_{i}=H_{f}\left(\theta_{i}\right)+\lambda I, \quad f(\theta+p) \approx q_{\theta}(p)=f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p
$$

As the scale of $H_{f}(\theta)$ constantly changes,
λ is updated by:

$$
\begin{aligned}
& \text { if } \rho<\frac{1}{4}: \lambda \leftarrow \frac{3}{2} \lambda \text {; } \\
& \text { if } \rho>\frac{3}{4}: \lambda \leftarrow \frac{2}{3} \lambda
\end{aligned}
$$

$\rho=\frac{f(\theta+p)-f(\theta)}{q_{\theta}(p)-q_{\theta}(0)}$ measures the accuracy of q_{θ}

As $f(\theta+p)=f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p+o\left(p^{2}\right), \rho=\frac{q_{\theta}(p)-q_{\theta}(0)+o\left(p^{2}\right)}{q_{\theta}(p)-q_{\theta}(0)}=1-\frac{o\left(p^{2}\right)}{q_{\theta}(p)-q_{\theta}(0)}$

Make HF suitable for ML problems

How to handle negative curvature?
f is convex -> H is p.s.d. [not common]

Compute $G v$ rather than $H v$, where G is the Gauss-Newton approximation to the Hessian H.

- G is guaranteed to be p.s.d. and any possible λ works for CG.
- G works better (better search directions) than H in practice.
- $G v$ is computed similarly to $H v$.

Make HF suitable for ML problems

How to handle large datasets?
For $i=0 \rightarrow$ MaxIter: [HF]
Generate mini-batch and corresponding approximation.
Compute the gradient $g_{i}=\nabla f\left(\theta_{i}\right)$
Consider the Taylor expansion at θ_{i} with $B_{i}=H_{f}\left(\theta_{i}\right)+\lambda I$

$$
f(\theta+p) \approx f(\theta)+\nabla f(\theta) p+\frac{1}{2} p^{T} B_{i} p
$$

Call CG to find the optimal p_{i} minimizing $f\left(\theta_{i}+p_{i}\right)$
\Rightarrow Maintain invariants, such as conjugacy of search directions.
\Rightarrow Mini-batch should be unchanged inside CG.
\Rightarrow Cannot cycle mini-batches inside CG.

$$
\text { For } i=0 \rightarrow \text { MaxIter: [CG] }
$$

Step size: compute $\alpha_{i}=-\frac{d_{i}^{T}\left(A x_{i}+b\right)}{d_{i}^{T} A d_{i}}$
Update $d_{i}: d_{i+1}=-\nabla f\left(x_{i+1}\right)+\beta_{i} d_{i}$ where $\beta_{i}=\frac{\nabla f\left(x_{i+1}\right)^{T} A d_{i}}{d_{i}^{T} A d_{i}}$;
If the size of mini-batch is too small:
\Rightarrow Lose enough useful curvature information for good search directions.

Make HF suitable for ML problems

How to set termination conditions?
CG is guaranteed to converge after N iterations, while we cannot run till converge in practice.
Given $q_{\theta}(p)=\nabla f(\theta) p+\frac{1}{2} p^{T} B p$, we want to find p such that $r=\nabla f(\theta)+B p=0$.
Generally, termination condition is $|\nabla f(\theta)+B p|_{2}<\epsilon$, where $\epsilon=\min \left(\frac{1}{2}|\nabla f(\theta)|_{2}, \quad|\nabla f(\theta)|_{2}^{3 / 2}\right)$
$q_{\theta}(p)$ and r has the same global minimizer, while a good but sub-optimal solution for one may not good for another one.
CG is used to optimize $q_{\theta}(p)$ but not r.

Make HF suitable for ML problems

How to set termination conditions?
Evaluate q_{θ} directly. We terminate at iteration i CG if:

$$
i>k ; \text { and } q_{\theta}\left(p_{i}\right)<0 ; \text { and } \frac{q_{\theta}\left(p_{i}\right)-q_{\theta}\left(p_{i-k}\right)}{q_{\theta}\left(p_{i}\right)}<k \epsilon
$$

$k>1$ indicates how many past iterations we use and controls the variance.
[$k=\max (10,0.1 i)$, and $\epsilon=0.0005$ in experiments.]

Make HF suitable for ML problems

More tricks for enhancement?
Use p_{n-1} found by previous HF to initialize p_{n} for each CG iteration.

Accelerate CG by preconditioning.

Sparse initialization: limit the number of non-zero incoming connection weights to each unit and set the biases to 0 .

Thank you

