Deep learning via Hessianfree optimization

 $\min_{\theta} f(\theta)$

To find a direction p to minimize $f(\theta)$

Approximate by Taylor expansion (1-dim):

$$f(\theta + p) = f(\theta) + f'(\theta)p + \frac{1}{2}f''(\theta)p^2 + \cdots$$
$$\approx f(\theta) + f'(\theta)p$$

(*n*-dim):

$$f(\theta + p) \approx f(\theta) + \nabla f(\theta)^{\mathrm{T}} p$$

p is a decreasing direction if $f(\theta + p) - f(\theta) \le 0$

 $\nabla f(\theta)^{\mathrm{T}} p = |\nabla f(\theta)| |p| \cos w \le 0$

When $\nabla f(\theta)$ and p have the opposite directions, $\nabla f(\theta)^T p$ takes the minimum. Thus, we set $p = -\alpha \nabla f(\theta)$

Gradient Decent

Input: function $f(\theta)$; starting point $\theta_i = \theta_0$; step size α ; tolerance ε ; **For** $i = 0 \rightarrow MaxIter$:

Gradient: Compute the gradient $\nabla f(\theta)$ at θ_i ;

Update: Move in the direction of gradient: $\theta_{i+1} = \theta_i - \alpha \nabla f(\theta_i)$;

If $f'(\theta_i) \leq \varepsilon$:

break

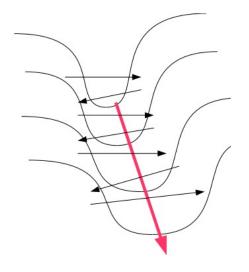
- \Rightarrow The training is slow.
- [Example: in a long narrow valley.]

1, The search directions have an unstable behavior in directions of high curvature.

Lowering the learning rate is **helpful**.

2, The directions of low curvature will be explored much more slowly.

Lowering the learning rate is **harmful**.



Newton's Method

Approximate by Taylor expansion (1-dim):

$$f(\theta + p) = f(\theta) + f'(\theta)p + \frac{1}{2}f''(\theta)p^2 + o(p^2)$$

To find the minimum -> set the gradient to zero:

$$f'(\theta) + f''(\theta)p = 0 \Rightarrow p = -\frac{f'(\theta)}{f''(\theta)}$$

Thus, we update by

$$\theta_{i+1} = \theta_i - \alpha \frac{f'(\theta_i)}{f''(\theta_i)}$$

Similarly, for *n*-dim:

$$f(\theta + p) \approx q_{\theta}(p) = f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^{T}H_{f}p$$

The direction *p*:

$$p = \left(H_f(\theta)\right)^{-1} \nabla f(\theta)$$

And we update by:

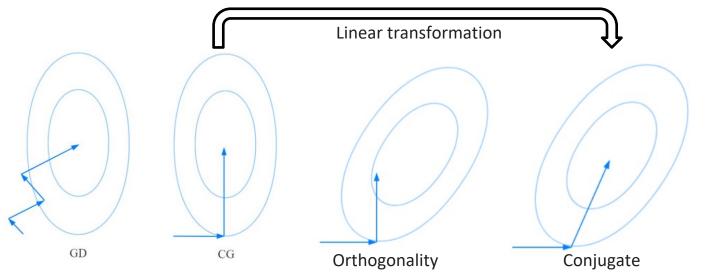
$$\theta_{i+1} = \theta_i - \alpha \left(H_f(\theta_i) \right)^{-1} \nabla f(\theta_i)$$

 $\Rightarrow H_f \text{ can be indefinite so } f(\theta + p) \text{ doesn't have minimum.}$ ["Damping" Hessian matrix by $B = H_f + \lambda I$ for some $\lambda \ge 0.$] $\Rightarrow \text{ Hard to compute Hessian matrix and its inverse.}$ [Example: for n=10k, there are 10k*10k entries in H_f .]

To avoid ruining previous efforts (GD) and computing the inverse of Hessian matrix directly (NM). \Rightarrow Conjugate gradient (CG)

Two vectors x_i and x_j to be conjugate w.r.t. semi-definite matrix A if $x_i^T A x_j = 0$.

At most n steps to reach optimum in CG. [n is the number of dim]



Rewrite $f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T H_f p$, as a quadratic function $h(x) = \frac{1}{2}x^T A x + b^T x + c$ In each step of CG, we compute a) direction; b) the step size.

In step-0:

Initial direction:
$$d_0 = -\nabla h(x_0) = -(Ax_0 + b)$$

Step size α : $g(\alpha) = h(x_i + ad_i) = \frac{1}{2}\alpha^2 d_i^T A d_i + d_i^T (Ax_i + b)\alpha + (\frac{1}{2}x_i^T A x_i + x_i^T d_i + c)$
set $g'(\alpha) = (d_i^T A d_i)\alpha + d_i^T (Ax_i + b) = 0 \implies \alpha_i = -\frac{d_i^T (Ax_i + b)}{d_i^T A d_i}$

Update: $x_1 = x_0 + \alpha_0 d_0$

Rewrite $f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T H_f p$, as a quadratic function $h(x) = \frac{1}{2}x^T A x + b^T x + c$ In each step of CG, we compute a) direction; b) the step size.

```
In step-1: given d_0 = -\nabla h(x_0) = -(Ax_0 + b)
```

Find direction d_1 :

Subtracting off anything that would counter-act d_i

$$d_{i+1} = -\nabla h(x_{i+1}) + \beta_i d_i$$

 d_{i+1} and d_i are A-conjugate and

$$d_{i+1}^T A d_i = 0 \implies \beta_i = \frac{\nabla h(x_{i+1})^T A d_i}{d_i^T A d_i}$$

Step size α : $\alpha_i = -\frac{d_i^T(Ax_i+b)}{d_i^TAd_i}$ Update: $x_2 = x_1 + \alpha_1 d_1$

Rewrite $f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T H_f p$, as a quadratic function $h(x) = \frac{1}{2}x^T A x + b^T x + c$ To find the minimum of a **quadratic** function *h* by CG:

Initialize
$$x_i = x_0$$
; $d_i = d_0 = -\nabla h(x_0)$

For $i = 0 \rightarrow MaxIter$:

Step size: compute $\alpha_i = -\frac{d_i^T(Ax_i+b)}{d_i^T A d_i}$ minimizing $h(x_i + \alpha_i d_i)$ Update x_i : $x_{i+1} = x_i + \alpha_i d_i$; Update d_i : $d_{i+1} = -\nabla f(x_{i+1}) + \beta_i d_i$ where $\beta_i = \frac{\nabla h(x_{i+1})^T A d_i}{d_i^T A d_i}$;

If converge:

break

Output *x*_{*i*}

[We don't compute the inverse of Hessian anymore.]

To find the minimum of **any** function *f*:

Initialize $\theta_i = \theta_0$;

For $i = 0 \rightarrow MaxIter$:

Compute the gradient $g_i = \nabla f(\theta_i)$

Compute/adjust λ

Consider the Taylor expansion at θ_i with $B_i = H_f(\theta_i) + \lambda I$

$$f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p$$

Call CG to find the optimal p_i minimizing $f(\theta_i + p_i)$

 $\theta_{i+1} = \theta_i + p_i$

If converge:

break

Output θ_i

[We don't compute the inverse of Hessian anymore.]

What is "Hessian-free"? Look the algorithms carefully:

For $i = 0 \rightarrow MaxIter$:

Compute the gradient $g_i = \nabla f(\theta_i)$

Consider the Taylor expansion at θ_i with $B_i = H_f(\theta_i) + \lambda I$

$$f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p$$

Call CG to find the optimal p_i minimizing $f(\theta_i + p_i)$

We don't need to compute H, but Hv

For $i = 0 \rightarrow MaxIter$: [CG]

Step size: compute $\alpha_i = -\frac{d_i^T(Ax_i+b)}{d_i^T A d_i}$

Update $d_i: d_{i+1} = -\nabla h(x_{i+1}) + \beta_i d_i$ where $\beta_i = \frac{\nabla h(x_{i+1})^T A d_i}{d_i^T A d_i}$;

 ~ 100

Two motivations for Hessian-free:

1) In CG, we only need to compute matrix-vector products Hv rather than Hessian matrix H.

2) It is relatively easy to compute Hv than H:

$$Hv = \lim_{\epsilon \to 0} \frac{\nabla f(\theta + \epsilon v) - \nabla f(\theta)}{\epsilon}$$

In this way, Hv is computed the exact value of H, there is no low-rank or diagonal approximation [compared to some quasi-Newton methods.]

Hessian-free optimization

How to compute Hv skipping H:

$$H(x) = \begin{bmatrix} \frac{\partial^2 f}{\partial x_1 \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n \partial x_n} \end{bmatrix}, v = \begin{bmatrix} v_1 \\ \cdots \\ v_n \end{bmatrix}, x = \begin{bmatrix} x_1 \\ \cdots \\ x_n \end{bmatrix}$$

Denote $(Hv)_i$ as *i*-th element of Hv:

$$(Hv)_i = \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_1}, & \frac{\partial^2 f}{\partial x_i \partial x_2}, & \dots, & \frac{\partial^2 f}{\partial x_i \partial x_n} \end{bmatrix} \begin{bmatrix} v_1 \\ \dots \\ v_n \end{bmatrix} = \sum_{j=1}^n \frac{\partial^2 f}{\partial x_i \partial x_j} (x) \cdot v_j = \nabla \frac{\partial f}{\partial x_i} (x) \cdot v$$

Thus, $(Hv)_i$ is the directional derivative of $\frac{\partial f}{\partial x_i}$ along the direction v.

[By the definition: the directional derivative of f along the direction v is]

$$\nabla_{v}f = \lim_{\epsilon \to 0} \frac{f(x + \epsilon v) - f(x)}{\epsilon}$$

We can approximate Hv by finite differences for small ϵ :

$$H\nu \approx \frac{\nabla f(x + \epsilon \nu) - \nabla f(x)}{\epsilon}$$
13

Rewrite $f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T H_f p$, as a quadratic function $h(x) = \frac{1}{2}x^T A x + b^T x + c$ To find the minimum of a **quadratic** function *h* by CG:

Initialize
$$x_i = x_0$$
; $d_i = d_0 = -\nabla h(x_0)$

For $i = 0 \rightarrow MaxIter$:

Step size: compute $\alpha_i = -\frac{d_i^T(Ax_i+b)}{d_i^T A d_i}$ minimizing $h(x_i + \alpha_i d_i)$ Update x_i : $x_{i+1} = x_i + \alpha_i d_i$; Update d_i : $d_{i+1} = -\nabla h(x_{i+1}) + \beta_i d_i$ where $\beta_i = \frac{\nabla h(x_{i+1})^T A d_i}{d_i^T A d_i}$;

If converge:

break

Output *x*_{*i*}

To find the minimum of **any** function *f*:

Initialize $\theta_i = \theta_0$;

For $i = 0 \rightarrow MaxIter$:

Compute the gradient $g_i = \nabla f(\theta_i)$

Compute/adjust λ

Consider the Taylor expansion at θ_i with $B_i = H_f(\theta_i) + \lambda I$

$$f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p$$

Call CG to find the optimal p_i minimizing $f(\theta_i + p_i)$

 $\theta_{i+1} = \theta_i + p_i$

If converge:

break

Output θ_i

Make HF suitable for ML problems.

- How to choose λ ?
- How to handle negative curvature?
- How to handle large datasets?
- How to set termination conditions?
- More tricks for enhancement?

How to choose λ ?

$$B_i = H_f(\theta_i) + \lambda I, \qquad f(\theta + p) \approx q_\theta(p) = f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p$$

As the scale of $H_f(\theta)$ constantly changes,

 λ is updated by:

$$if \ \rho < \frac{1}{4}: \ \lambda \leftarrow \frac{3}{2}\lambda;$$
$$if \ \rho > \frac{3}{4}: \ \lambda \leftarrow \frac{2}{3}\lambda$$

 $\rho = \frac{f(\theta+p)-f(\theta)}{q_{\theta}(p)-q_{\theta}(0)}$ measures the accuracy of q_{θ}

As
$$f(\theta + p) = f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p + o(p^2), \rho = \frac{q_\theta(p) - q_\theta(0) + o(p^2)}{q_\theta(p) - q_\theta(0)} = 1 - \frac{o(p^2)}{q_\theta(p) - q_\theta(0)}$$

How to handle negative curvature?

f is convex -> *H* is p.s.d. [not common]

Compute Gv rather than Hv, where G is the Gauss-Newton approximation to the Hessian H.

- *G* is guaranteed to be p.s.d. and any possible λ works for CG.
- *G* works better (better search directions) than *H* in practice.
- Gv is computed similarly to Hv.

How to handle large datasets?

Inside CG, we need to keep *B* unchanged:

- \Rightarrow Maintain invariants, such as conjugacy of search directions.
- \Rightarrow Mini-batch should be unchanged inside CG.
- \Rightarrow Cannot cycle mini-batches inside CG.

If the size of mini-batch is too small:

 \Rightarrow Lose enough useful curvature information for good search directions.

For $i = 0 \rightarrow MaxIter$: [HF] Generate mini-batch and corresponding approximation. Compute the gradient $g_i = \nabla f(\theta_i)$ Consider the Taylor expansion at θ_i with $B_i = H_f(\theta_i) + \lambda I$ $f(\theta + p) \approx f(\theta) + \nabla f(\theta)p + \frac{1}{2}p^T B_i p$ Coll CC to find the entired main minimizing $f(\theta + p)$

Call CG to find the optimal p_i minimizing $f(\theta_i + p_i)$

For $i = 0 \rightarrow MaxIter$: [CG] Step size: compute $\alpha_i = -\frac{d_i^T(Ax_i+b)}{d_i^T A d_i}$ Update d_i : $d_{i+1} = -\nabla f(x_{i+1}) + \beta_i d_i$ where $\beta_i = \frac{\nabla f(x_{i+1})^T A d_i}{d_i^T A d_i}$;

How to set termination conditions?

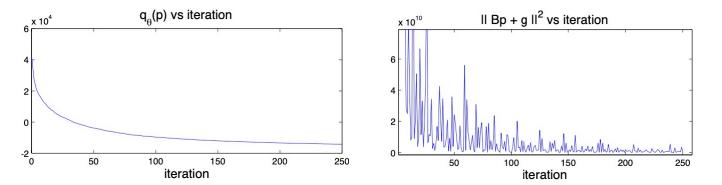
CG is guaranteed to converge after N iterations, while we cannot run till converge in practice.

Given $q_{\theta}(p) = \nabla f(\theta)p + \frac{1}{2}p^{T}Bp$, we want to find p such that $r = \nabla f(\theta) + Bp = 0$.

Generally, termination condition is $|\nabla f(\theta) + Bp|_2 < \epsilon$, where $\epsilon = \min\left(\frac{1}{2}|\nabla f(\theta)|_2, |\nabla f(\theta)|_2^{3/2}\right)$

 $q_{\theta}(p)$ and r has the same global minimizer, while a good but sub-optimal solution for one may not good for another one.

CG is used to optimize $q_{\theta}(p)$ but not r.



How to set termination conditions?

Evaluate q_{θ} directly. We terminate at iteration *i* CG if:

$$i > k$$
; and $q_{\theta}(p_i) < 0$; and $\frac{q_{\theta}(p_i) - q_{\theta}(p_{i-k})}{q_{\theta}(p_i)} < k\epsilon$

k > 1 indicates how many past iterations we use and controls the variance.

 $[k = \max(10, 0.1i), \text{ and } \epsilon = 0.0005 \text{ in experiments.}]$

More tricks for enhancement?

Use p_{n-1} found by previous HF to initialize p_n for each CG iteration.

Accelerate CG by preconditioning.

Sparse initialization: limit the number of non-zero incoming connection weights to each unit and set the biases to 0.

Thank you

