Paper: Mixup for Node and Graph Classification [2]

Jiaxin Liu

Group Reading

July 12, 2021

Jiaxin Liu (Group Reading) Paper: Mixup for Node and Graph Classificati

July 12, 2021 1 / 15

3

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

• Mix-up example

Figure: Example for interpolation.

Expected Risk:

- Function $f: X \mapsto Y$ where $(x, y) \sim P(X, Y)$.
- Loss function $I: X \times Y \to \mathbb{R}$
- $R(f) = \int l(f(x), y) dP(x, y)$

э

• • = • •

< 行

• Expected Risk:

- Function $f: X \mapsto Y$ where $(x, y) \sim P(X, Y)$.
- Loss function $I: X \times Y \to \mathbb{R}$
- $R(f) = \int l(f(x), y) dP(x, y)$
- Empirical Risk:
 - Training data $D = \{(x_i, y_i)\}_{i=1}^n$, where $(x_i, y_i) \sim P$ for all $i = 1, \dots, n$.
 - $R_{\delta}(f) = \int I(f(x), y) dP_{\delta}(x, y) = \frac{1}{n} \sum_{i=1}^{n} I(f(x_i), y_i)$
- Pros and Cons? Other methods to approximate *P*? Vicinal Risk Minimization (VRM) [1].

From VRM to Mixup

- Vicinity distribution $P_v(\tilde{x}, \tilde{y}) = \frac{1}{n} \sum_{i=1}^n v(\tilde{x}, \tilde{y} | x_i, y_i)$
 - $v(\tilde{x}, \tilde{y}|x_i, y_i) = \mathcal{N}(\tilde{x} x_i, \sigma^2)\delta(\tilde{y} = y_i)$
 - Dataset $D_v := \{(\tilde{x}_i, \tilde{y}_i)\}_{i=1}^m$
 - Empirical vicinal risk: $R_v(f) = \frac{1}{m} \sum_{i=1}^m l(f(\tilde{x}_i), \tilde{y}_i)$

< ∃ ►

From VRM to Mixup

- Vicinity distribution $P_{\nu}(\tilde{x}, \tilde{y}) = \frac{1}{n} \sum_{i=1}^{n} \nu(\tilde{x}, \tilde{y} | x_i, y_i)$
 - $v(\tilde{x}, \tilde{y}|x_i, y_i) = \mathcal{N}(\tilde{x} x_i, \sigma^2)\delta(\tilde{y} = y_i)$
 - Dataset D_v := {(x_i, y_i)}^m_{i=1}
 - Empirical vicinal risk: $R_v(f) = \frac{1}{m} \sum_{i=1}^m I(f(\tilde{x}_i), \tilde{y}_i)$
- Mixup
 - $\mu(\tilde{x}, \tilde{y}|x_i, y_i) = \frac{1}{n} \sum_j^n \mathbb{E}_{\lambda} [\delta(\tilde{x} = \lambda \cdot x_i + (1 \lambda) \cdot x_j, \tilde{y} = \lambda \cdot y_i + (1 \lambda) \cdot y_j)]$ where $\lambda \sim \text{Beta}(\alpha, \alpha)$, for $\alpha \in (0, \infty)$.
 - $\tilde{x} = \lambda x_i + (1 \lambda) x_j$, $\tilde{y} = \lambda y_i + (1 \lambda) y_j$ where $\lambda \in [0, 1]$

Figure: Beta distributions.

Mixup Illustration

Figure: Toy example. Green: Class 0. Orange: Class 1. Blue shading indicates p(y = 1|x). [3]

Figure: Prediction error in-between training data. Evaluated at $x = \lambda x_i + (1 - \lambda) x_j$, a prediction is counted as a "miss" if it does not belong to $\{y_i, y_j\}$. The model trained with mixup has fewer misses. [3]

Jiaxin Liu (Group Reading)

Paper: Mixup for Node and Graph Classificat

July 12, 2021 6 / 15

Mixup for Graph

- Graph G = (V, E)
- x_i, neighborhood of node i is N(i) = {j ∈ V | (i,j) ∈ E}
 GNN:

$$h_i^{(l)} = \mathsf{AGGREGATE}(h_i^{(l-1)}, \{h_j^{(l-1)} | j \in N(i)\}, W^{(l)}).$$

$$h_i^{(0)} = x_i.$$

• Graph classification: $h_G = \text{READOUT}(\{h_i^{(L)} | i \in V\}).$

Mixup for Node Classification

• Mixup:
$$\tilde{x}_{i,j} = \lambda x_i + (1 - \lambda) x_j$$
,

• Two-branch Mixup for nodes (mix the receptive field subgraphs):

$$\begin{split} \tilde{h}_{ij,i}^{(l)} &= \mathsf{AGGREGATE}(\tilde{h}_{ij}^{(l-1)}, \{h_k^{(l-1)} | k \in \mathsf{N}(i)\}, W^{(l)}) \\ \tilde{h}_{ij,j}^{(l)} &= \mathsf{AGGREGATE}(\tilde{h}_{ij}^{(l-1)}, \{h_k^{(l-1)} | k \in \mathsf{N}(j)\}, W^{(l)}) \end{split}$$

Node mixup

$$ilde{h}_{ij}^{(I)} = \lambda\, ilde{h}_{ij,i}^{(I)} + (1\!-\!\lambda)\, ilde{h}_{ij,j}^{(I)}$$

where $\tilde{h}_{ij}^{(0)} = \tilde{x}_{i,j}$. Mixup between Nodes A and B Node D Node D Receptive field of Node A Node C Node D between Nodes C and D Receptive field of Node B

Figure: Two-branch mixup for nodes A and B

Mixup for Node Classification

How to get $h_k^{(l)}$ and $\tilde{h}_{ij}^{(l)}$? Two-stage Mixup.

Figure: Two-stage mixup for getting $h_k^{(l)}$ and $\tilde{h}_{ij}^{(l)}$.

Mixup for Graph Classification

• Only mixup two graphs in the embedding space.

$$\tilde{h}_{G_1,G_2} = \lambda h_{G_1} + (1-\lambda)h_{G_2}$$
$$\tilde{\gamma}_{G_1,G_2} = \lambda \gamma_{G_1} + (1-\lambda)\gamma_{G_2}$$

Figure: Mixup for graph classification.

Jiaxin Liu (Group Reading)

Paper: Mixup for Node and Graph Classificat

July 12, 2021 10 / 15

Algorithm

Algorithm 1 Two-Stage Mixup for Node Classification **Input:** Graph $G = (\mathcal{V}, \mathcal{E})$ of a mini-batch, with node attributes $\{\mathbf{x}_i | i \in \mathcal{V}\}$, a GNN model with the aggregation function AGGREGATE(·), hyper-parameter α for the distribution of λ , the ground truth labels $\{\mathbf{y}_i | i \in \mathcal{V}\}$. **Output:** The trained parameters of GNN: $\left\{ \mathbf{W}^{\left(l\right)} \right\}$, 1: for $i \leftarrow 1$ to #V do $\mathbf{h}_{i}^{(0)} \leftarrow \mathbf{x}_{i}$ 3: end for $\begin{array}{l} \text{s: end for}\\ \text{4: for } l \leftarrow 1 \text{ to } L - 1 \text{ do} \\ \text{5: for } i \leftarrow 1 \text{ to } \# \mathcal{V} \text{ do} \\ \text{6: } \quad \mathbf{h}_i^{(l)} \leftarrow \text{AGGREGATE} \left(\mathbf{h}_i^{(l-1)}, \left\{ \mathbf{h}_j^{(l-1)} | j \in \mathcal{N}(i) \right\}, \mathbf{W}^{(l)} \right) \end{array}$ Stage 1end for 8: end for 9: for $i \leftarrow 1$ to #V do Sample *j* from V10: 11: $\lambda \leftarrow \text{Beta}(\alpha, \alpha)$ 12: $\tilde{\mathbf{x}}_{ij} \leftarrow \lambda \mathbf{x}_i + (1 - \lambda) \mathbf{x}_j$ $\tilde{\mathbf{h}}_{ii}^{(l)} \leftarrow \lambda \tilde{\mathbf{h}}_{iii}^{(l)} + (1 - \lambda) \tilde{\mathbf{h}}_{iii}^{(l)}$ 18: end for 19: 20: end for 21: Calculate classification loss \mathcal{L} on $\{\tilde{\mathbf{h}}_{ij}^{(L)}, \tilde{\mathbf{y}}_{ij} | i \in \mathcal{V}\}$. 22: Back-propagation on $\left\{ \mathbf{W}^{(l)} \right\}$, for minimizing \mathcal{L} . < ∃⇒

Jiaxin Liu (Group Reading)

Paper: Mixup for Node and Graph Classificati

Node classification

Method	Citeseer	Cora	Pubmed
GCN [27]	77.1±1.4	88.3±0.8	86.4±1.1
GAT [50]	76.3±0.8	87.6±0.5	85.7±0.7
JKNet [61]	78.1 ± 0.9	89.1±1.2	86.9±1.3
LGCN [18]	77.5 ± 1.1	89.0±1.2	86.5±0.6
GMNN [39]	77.4±1.5	88.7±0.8	86.7±1.0
ResGCN [31]	77.9 ± 0.8	88.1 ± 0.6	87.1±1.2
DropEdge [40] + GCN	78.1±1.1	89.2±0.7	87.3±0.6
DropEdge [40] + JKNet	79.3 ± 0.7	89.9±0.8	87.6±0.9
Mixup + GCN	78.7±0.9	90.0±0.7	87.9±0.8
Mixup + JKNet	$80.1{\pm}0.8$	90.4±0.9	88.3±0.6

Figure: Test Accuracy of transductive node classification.

Jiaxin Liu (Group Reading) Paper: Mixup for Node and Graph Classificat

э

A B A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

\ / · ·			
Varied	training	ratios	r.
			•••

Method	r = 30%	Citeseer $r = 40\%$	r = 50%	r = 30%	Cora r = 40%	r = 50%	r = 30%	Pubmed $r = 40\%$	r = 50%
GCN [27]	74.7 ± 2.5	75.2 ± 1.8	76.3 ± 1.6	86.3 ± 1.9	86.8 ± 1.4	87.5 ± 1.0	85.1 ± 2.3	85.4 ± 1.4	85.8 ± 1.2
Mixup + GCN	76.9 ± 2.1	77.1 ± 1.5	78.1 ± 1.3	88.5 ± 1.4	88.9 ± 1.0	89.4 ± 0.9	87.0 ± 1.6	87.2 ± 1.1	87.5 ± 1.0
JKNet [61]	75.6 ± 1.9	76.0 ± 1.4	77.1 ± 1.1	86.7 ± 2.1	87.4 ± 1.5	88.2 ± 1.3	85.3 ± 2.2	85.9 ± 1.6	86.4 ± 1.4
Mixup + JKNet	78.0 ± 1.7	78.3 ± 1.2	79.2 ± 1.0	88.6 ± 2.0	89.1 ± 1.5	89.7 ± 1.2	87.2 ± 1.9	87.5 ± 1.3	87.9 ± 0.9

Figure: Test Accuracy of node classification over different training set ratios.

A B A B
 A B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Experiments

- t-SNE plot for the final-layer representations.
- Loss on the test data during training.

Jiaxin Liu (Group Reading) Paper: Mixup for Node and Graph Classificat July 12, 2021

14 / 15

Experiments

• Two-stage framework.

Method	two stages	Pubmed	Δ	Yelp	Δ
GCN [27]	-	86.4±1.1	0	65.3±0.3	0
Mixup + GCN	w/o w/	85.8±1.3 87.9±0.8	-0.6 +1.5	64.2 ± 0.6 66.3 ± 0.4	-1.1 +1.0

Figure: The node classification results with and without two-stage framework.

• Selection for α in Beta (α, α) .

Method	α	Citeseer	Cora	Flickr
GCN [27]	-	77.1±1.4	88.3±0.8	51.1±0.2
	0.2	78.1±0.9	89.2±0.8	52.0±0.3
Mixup + GCN	0.5	78.4±0.8	89.5±0.7	52.1±0.3
	1	78.7±0.9	90.0±0.7	52.4 ± 0.4
	2	78.6±1.0	89.8±0.8	52.8±0.5
	5	78.4±1.2	89.4±1.1	52.7 ± 0.4

Figure: Node classification results with different

- Olivier Chapelle et al. "Vicinal risk minimization". In: Advances in neural information processing systems (2001), pp. 416–422.
- Yiwei Wang et al. "Mixup for Node and Graph Classification". In: *Proceedings of the Web Conference 2021*. 2021, pp. 3663–3674.
- Hongyi Zhang et al. "mixup: Beyond empirical risk minimization". In: arXiv preprint arXiv:1710.09412 (2017).