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Notations

A sample 𝒙 ∈ 𝒳 ⊆ 𝑅! and label 𝑦 ∈ +1,−1 ,
𝒙 is the norm, e.g., 𝒙 ", 𝒙 #.
𝔹 𝒙, 𝜖 = 𝒙$ ∈ 𝒳: 𝒙$ − 𝒙 ≤ 𝜖 is the neighborhood of 𝒙.

𝑓:𝒳 → ℝ, a score function, maps an instance to a confidence value (being positive).

𝑠𝑖𝑔𝑛 𝑓 ⋅ is the associated binary classifier, where 𝑠𝑖𝑔𝑛 ⋅ is the sign of input, and 𝑠𝑖𝑔𝑛 0 = 1.

DB 𝑓 = 𝒙 ∈ 𝒳: 𝑓 𝒙 = 0 is the decision boundary of 𝑓.
𝔹 DB 𝑓 , 𝜖 = 𝒙 ∈ 𝒳: ∃𝒙$ ∈ 𝔹 𝒙, 𝜖 s. t. 𝑓 𝒙 𝑓 𝒙$ ≤ 0 is the neighborhood of decision boundary. 

For a given function 𝜓 𝒖 , 𝜓∗ 𝒗 ≔ sup
𝒖
{𝒖'𝒗 − 𝜓(𝒖)} is the conjugate function of 𝜓. 

𝜓∗∗ is the bi-conjugate, and 𝜓() is the inverse function.

1 𝑒𝑣𝑒𝑛𝑡 is the indicator function indicating if 𝑒𝑣𝑒𝑛𝑡 happens.
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Notations

𝔹 𝒙, 𝜖 = 𝒙$ ∈ 𝒳: 𝒙$ − 𝒙 ≤ 𝜖 is the neighborhood of 𝒙.
𝔹 DB 𝑓 , 𝜖 = 𝒙 ∈ 𝒳: ∃𝒙$ ∈ 𝔹 𝒙, 𝜖 s. t. 𝑓 𝒙 𝑓 𝒙$ ≤ 0 is the neighborhood of decision boundary.

Assume that the data are drawn from an unknown distribution 𝑿, 𝑌 ∼ 𝒟
The robust (classification) error under 𝜖 perturbation:

ℛ*+, 𝑓 ≔ 𝔼 𝑿,/ ∼𝒟1 ∃𝑿$ ∈ 𝔹 𝑿, 𝜖 s. t. 𝑓 𝑿$ 𝑌 ≤ 0

The natural (classification) error:
ℛ234 𝑓 ≔ 𝔼 𝑿,/ ∼𝒟1 𝑓 𝑿 𝑌 ≤ 0

Clearly, ℛ*+, 𝑓 ≥ ℛ234 𝑓 for all 𝑓, and the equality holds when 𝜖 = 0.

The boundary error:
ℛ,56 𝑓 ≔ 𝔼 𝑿,/ ∼𝒟1 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0

And ℛ*+, 𝑓 = ℛ234 𝑓 + ℛ,56 𝑓
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Toy example

The trade-off between natural and robust errors: training robust models may lead to a reduction of 
standard accuracy. 

Assume that 𝜂 𝑥 ≔ Pr 𝑌 = 1 𝑋 = 𝑥 = Y
0, 𝑥 ∈ 2𝑘𝜖, 2𝑘 + 1 𝜖 ,
1, 𝑥 ∈ 2𝑘 + 1 𝜖, 2𝑘 + 1 𝜖 . where 𝑥 ∼ 𝑈 0,1

Bayes optimal classifier: 𝑠𝑖𝑔𝑛 2𝜂 𝑥 − 1
All-one classifier: 1 (always outputs “positive”)
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Toy example

Assume that 𝜂 𝑥 ≔ Pr 𝑌 = 1 𝑋 = 𝑥 = @
0, 𝑥 ∈ 2𝑘𝜖, 2𝑘 + 1 𝜖 ,
1, 𝑥 ∈ 2𝑘 + 1 𝜖, 2𝑘 + 1 𝜖 .

The Bayes optimal classifier: 𝑠𝑖𝑔𝑛 2𝜂 𝑥 − 1

The all-one classifier: 1 (always outputs “positive”)

● For the natural error: ℛ!"# 𝑓 ≔ 𝔼 𝑿,& ∼𝒟1 𝑓 𝑿 𝑌 ≤ 0 :

It is obvious that ℛ!"# 𝑓 = 0 for Bayes classifier, and ℛ!"# 𝑓 = 1/2 for all-one classifier.

● For the boundary error ℛ)*+ 𝑓 ≔ 𝔼 𝑿,& ∼𝒟1 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0 :

For Bayes classifier, we can always find a perturbation resulting in the right prediction, since the interval is 𝜖.

For all-one classifier, DB(𝑓) (if any) is not within [0,1], and thus the event never happens.

● For the robust error ℛ,-) 𝑓 ≔ 𝔼 𝑿,& ∼𝒟1 ∃𝑿. ∈ 𝔹 𝑿, 𝜖 s. t. 𝑓 𝑿. 𝑌 ≤ 0 :

For Bayes classifier, we can always find a perturbation to flip the prediction, since the interval is 𝜖.

For all-one classifier, since 𝑓 𝑋 = 1, ∀𝑋, we have 1/2 change to obtain negative sample (𝑌 = −1).

Or we can compute it by ℛ,-) 𝑓 = ℛ!"# 𝑓 + ℛ)*+ 𝑓 .

In most of existing works, we can assign different weights on both errors (ℛ!"# + ℛ)*+) to balance them.

In this paper, the authors try to devise tight differentiable upper bounds on both terms, as both involve 0-1 loss functions.
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Classification-calibrated surrogate loss

0-1 loss function is intractable -> tractable surrogate loss ℛ/ 𝑓 ≔ 𝔼 𝑿,& ∼𝒟𝜙 𝑓 𝑿 𝑌 .

Define conditional 𝜙-risk: 

For 𝜂 ∈ 0,1 , 𝐻 𝜂 ≔ inf
0∈ℝ

𝐶3 𝛼 ≔ inf
0∈ℝ

𝜂𝜙 𝛼 + 1 − 𝜂 𝜙 −𝛼 ,

and define 𝐻4 𝜂 ≔ inf
0:0 6347 89

𝐶3 𝛼 ≔ inf
0:0 6347 89

𝜂𝜙 𝛼 + 1 − 𝜂 𝜙 −𝛼 .

Assumption on 𝜙: it is classification-calibrated: if 𝐻4 𝜂 > 𝐻 𝜂 for any 𝜂 ≠ 1/2.

Intuition: 

𝜂 𝑥 ≔ Pr 𝑌 = 1 𝑋 = 𝑥 and 𝛼 is the probability of positive class predicted by 𝑓.

𝐻 𝜂 = min
:
ℛ!"#(𝑓),

𝐻4 𝜂 = min
:
ℛ!"#(𝑓), s.t. 𝑓 is inconsistent with Bayes optimal classifier
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Classification-calibrated surrogate loss

The functional transform of classification-calibrated loss 𝜙:

Define "𝜓 𝜃 = 𝐻! "#$
% − 𝐻 "#$

% and 𝜓: 0,1 → [0,∞) by 𝜓 = "𝜓∗∗. (𝜓∗ is the conjugate function of 𝜓).

𝜓 𝜃 is the largest convex lower bound on "𝜓 𝜃 = 𝐻! "#$
% − 𝐻 "#$

%

"𝜓 𝜃 characterizes how close the surrogate loss 𝜙 is to the class of non-classification-calibrated losses.

Property of classification-calibrated loss:
For classification-calibrated surrogate loss 𝜙, 𝜓 is non-decreasing, continuous, convex on [0,1] and 𝜓 0 = 0.
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Surrogate loss and 0-1 loss

Upper bound:  
Let ℛ' 𝑓 ≔ 𝔼𝜙 𝑓 𝑿 𝑌 and ℛ'∗ 𝑓 , for non-negative classification-calibrated loss 𝜙 with 𝜙 0 ≥ 1, any measurable 
𝑓:𝒳 → ℝ, any probability distribution on 𝒳× ±1 , and any 𝜆 > 0, we have:

ℛ()* 𝑓 − ℛ+,-∗ ≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + Pr 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0

≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙(𝑓 𝑿3 𝑓(𝑿)/𝜆)

The models are vulnerable to small adversarial attacks because the probability that data lie around the decision 
boundary of the model is large.
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Surrogate loss and 0-1 loss

Let ℛ' 𝑓 ≔ 𝔼𝜙 𝑓 𝑿 𝑌 and ℛ'∗ 𝑓 , for non-negative classification-calibrated loss 𝜙 with 𝜙 0 ≥ 1, any measurable 
𝑓:𝒳 → ℝ, any probability distribution on 𝒳× ±1 , and any 𝜆 > 0, we have:

ℛ()* 𝑓 − ℛ+,-∗ ≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + Pr 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0

≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙(𝑓 𝑿3 𝑓(𝑿)/𝜆)

Proof:

The first inequality holds since 𝜙 is a classification-calibrated loss[1] and ℛ*45 = Pr 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0 :

ℛ()* 𝑓 = ℛ+,- 𝑓 + ℛ*45 𝑓

ℛ()* 𝑓 − ℛ+,-∗ = ℛ+,- 𝑓 − ℛ+,-∗ + ℛ*45 𝑓 ≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + ℛ*45 𝑓

Now we consider the second inequality:

Pr 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖 , 𝑓 𝑿 𝑌 > 0 ≤ Pr 𝑿 ∈ 𝔹 DB 𝑓 , 𝜖
= 𝔼 max

𝑿!∈𝔹 𝑿,2
1{𝑓 𝑿3 ≠ 𝑓(𝑿)}

= 𝔼 max
𝑿!∈𝔹 𝑿,2

1{𝑓 𝑿3 𝑓 𝑿 /𝜆 < 0}

≤ 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙 𝑓 𝑿3 𝑓 𝑿 /𝜆

[1] Bartlett, Peter L., Michael I. Jordan, and Jon D. McAuliffe. "Convexity, classification, and risk bounds." Journal of the American Statistical Association 2006.
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Surrogate loss and 0-1 loss

Lower bound:
Suppose that 𝒳 ≥ 2. For non-negative classification-calibrated loss 𝜙 with 𝜙 𝑥 → 0 as 𝑥 → +∞, and any 𝜉 > 0, any 
𝜃 ∈ 0,1 . There exists a probability distribution on 𝒳× ±1 , a function 𝑓:ℝ6 → ℝ and a regularization 𝜆 > 0 such that 
ℛ()* 𝑓 − ℛ+,-∗ = 𝜃 and:

𝜓 𝜃 − 𝔼 max
7!∈𝔹 𝑿,2

𝜙 𝑓 𝑋3 𝑓 𝑋 /𝜆 ≤ ℛ' 𝑓 − ℛ'∗ ≤ 𝜓 𝜃 − 𝔼 max
7!∈𝔹 𝑿,2

𝜙 𝑓 𝑋3 𝑓 𝑋 /𝜆 + 𝜉

Under the extra conditions on loss functions lim
8→#:

𝜙 𝑥 = 0, the upper bound is tight.

The first inequality holds since 𝜓 is non-decreasing, continuous, convex on [0,1] and

ℛ()* 𝑓 − ℛ+,-∗ ≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙(𝑓 𝑿3 𝑓(𝑿)/𝜆)
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Adversarial training by TRADES

Based on previous theorems, we consider a new surrogate loss:
min
;
𝔼 𝜙 𝑓 𝑿 𝑌 + max

𝑿!∈𝔹 𝑿,2
𝜙 𝑓 𝑿 𝑓 𝑿3 /𝜆

The first term, 𝜙 𝑓 𝑿 𝑌 , minimizes the natural error. 
The second regularization term, max

𝑿!∈𝔹 𝑿,2
𝜙 𝑓 𝑿 𝑓 𝑿3 /𝜆 , minimizes the difference between the predictions of natural 

example and the adversarial example. Thus, it stands for the “robustness”.
𝜆 can balance the importance of natural and robust errors. 

(It tends to be Bayes optimal classifier when 𝜆 → +∞ and all-one classifier when 𝜆 → 0.)

We can easily extend it to multi-class tasks by replacing 𝜙 with a multi-class calibrated loss ℒ ⋅,⋅ :

min
;
𝔼 ℒ 𝑓 𝑿 , 𝑌 + max

𝑿!∈𝔹 𝑿,2
ℒ 𝑓 𝑿 , 𝑓 𝑿3 /𝜆

In most of existing works:
min
;
𝔼 max

𝑿!∈𝔹 𝑿,2
𝜙 𝑓 𝑿3 𝑌

is served as the upper bound of ℛ()* 𝑓 . However, it may not be the tight upper bound and may not capture the 
trade-off between natural and robust errors.
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Adversarial training by TRADES

Line 5: 𝑥< is global minimizer to 𝑔 𝑥3 ≔ ℒ 𝑓 𝑥< , 𝑓 𝑥3 , 

thus, initialize 𝑥<3 by adding small perturbation.

Line 7: solve max
𝑿!∈𝔹 𝑿,2

ℒ 𝑓 𝑿 , 𝑓 𝑿3 /𝜆

by projected gradient descent.

Line 10: gradient descent for the objective function

min
;
𝔼 ℒ 𝑓 𝑿 , 𝑌 + max

𝑿!∈𝔹 𝑿,2
ℒ 𝑓 𝑿 , 𝑓 𝑿3 /𝜆
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Experiments

Verify the tightness of upper bound.

Δ=>? = ℛ()* 𝑓 − ℛ+,-∗ ≤ 𝜓!" ℛ' 𝑓 − ℛ'∗ + 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙(𝑓 𝑿3 𝑓(𝑿)/𝜆) = Δ@>?

Train a classifier with natural training method to estimate ℛ+,-∗ = 0% and ℛ'∗ = 0.0

Find the classifier 𝑓 by min
;
𝔼 𝜙 𝑓 𝑿 𝑌 + max

𝑿!∈𝔹 𝑿,2
𝜙 𝑓 𝑿 𝑓 𝑿3 /𝜆 and approximate ℛ()* and ℛ'.

Estimate 𝔼 max
𝑿!∈𝔹 𝑿,2

𝜙(𝑓 𝑿3 𝑓(𝑿)/𝜆) by FGSM.

(The expectation is estimated in the test set.)
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Experiments

Robust accuracy 𝒜()* 𝑓 = 1 − ℛ()* 𝑓 , and 𝒜+,- 𝑓 = 1 − ℛ+,- 𝑓
Sensitivity of 𝜆
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Experiments

min
;
𝔼 max

𝑿!∈𝔹 𝑿,2
𝜙 𝑓 𝑿3 𝑌
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