Paper: Self-Tuning Networks: Bilevel Optimization of Hyperparameters Using Structured Best-Response Functions [1]

Jiaxin Liu

Group Reading

August 10, 2021

Jiaxin Liu (Group Reading) Paper: Self-Tuning Networks: Bilevel Optimiz

Overview

- Bilevel optimization problem
- Best-response function

Bilevel Optimization

- How to do the gradient descent via the best-response function?
- How to approximate the best-response function?

3 Self-tuning Networks

- An example: best-response for two-layer Neural Networks.
- Training Algorithm

Experiments

Introduction

- w: parameters (e.g. weights and biases).
- λ : hyperparameters (e.g. weight decay).
- L_V : validation loss. L_T : training loss.
- $\bullet\,$ Hyperparameter optimization $\rightarrow\,$ bilevel optimization as:

$$\lambda^* = rgmin_{\lambda} = L_V(\lambda, w^*)$$
 subject to $w^* = rgmin_w L_T(\lambda, w)$

Introduction

- w: parameters (e.g. weights and biases).
- λ : hyperparameters (e.g. weight decay).
- L_V : validation loss. L_T : training loss.
- Hyperparameter optimization → bilevel optimization as:

$$\lambda^* = rg\min_{\lambda} = L_V(\lambda, w^*)$$
 subject to $w^* = rg\min_{w} L_T(\lambda, w)$

• Best-response function: $w^*(\lambda) = \arg \min_w L_T(\lambda, w)$

$$\lambda^* = \arg\min_{\lambda} = L_V(\lambda, w^*(\lambda)) \rightarrow \text{Single-level}$$

Introduction

- w: parameters (e.g. weights and biases).
- λ : hyperparameters (e.g. weight decay).
- L_V : validation loss. L_T : training loss.
- Hyperparameter optimization \rightarrow bilevel optimization as:

$$\lambda^* = rg\min_{\lambda} = L_V(\lambda, w^*)$$
 subject to $w^* = rg\min_{w} L_T(\lambda, w)$

• Best-response function: $w^*(\lambda) = \arg \min_w L_T(\lambda, w)$

$$\lambda^* = \arg\min_{\lambda} = L_V(\lambda, w^*(\lambda)) \rightarrow \text{Single-level}$$

• Approximate the best-response w^* : function $\hat{w}_{\phi}(\lambda;\phi) \approx w^*$

$$\lambda^* = \arg\min_{\lambda} = L_V(\lambda, \hat{w}_{\phi}(\lambda)) \rightarrow \operatorname{updating} \phi \operatorname{and} \lambda$$

$$\min_{\lambda \in \mathbb{R}^n} F(\lambda, w)$$
 Upper-level
subject to $w \in rg \min_{w \in \mathbb{R}^m} f(\lambda, w)$ Lower-level

- Lower-level
 - Evaluate on $f(\lambda, w) \Longleftrightarrow L_T(\lambda, w)$
 - Optimize parameters w with fixed hyperparameters λ .
 - W*
- Upper-level
 - Based on w*
 - Evaluate on $F(\lambda, w) \Longleftrightarrow L_V(\lambda, w^*)$
 - Optimize $\lambda \iff$ hyperparameters.

Gradient descent (GD) via the best-response function

 $\min_{\lambda \in \mathbb{R}^n} F(\lambda, w) \qquad \begin{array}{l} \text{Upper-level} \\ \text{subject to } w \in \arg\min_{w \in \mathbb{R}^m} f(\lambda, w) \qquad \begin{array}{l} \text{Lower-level} \end{array}$

 Assume the lower-level problem has a unique optimum w^{*}(λ) for each λ.

$$\min_{\lambda \in \mathbb{R}^n} F^*(\lambda) := F(\lambda, w^*(\lambda)) \qquad \text{Single-level}$$

- Can we minimize this problem using GD on $F^*(\lambda)$ w.r.t. λ ?
 - **1** Differentiability on λ .
 - Output: There is a unique optimum w^{*}(λ) for the lower-level problem for each λ.

Gradient descent (GD) via the best-response function

$$\min_{\lambda \in \mathbb{R}^n} F^*(\lambda) := F(\lambda, w^*(\lambda)) \qquad \text{Single-level}$$

We give sufficient conditions for the above two points to hold in a neighbourhood of a point (λ_0, w_0) .

Lemma 1.

Let w_0 solve the lower-level problem for λ_0 . Suppose f is C^2 in a neighborhood of (λ_0, w_0) , and the Hessian $\partial^2 f / \partial w^2(\lambda_0, w_0)$ is positive definite. Then for some neighborhood U of λ_0 , there exists a continuously differentiable function $w^* : U \to \mathbb{R}^m$ such that $w^*(\lambda)$ is the unique solution to lower-level problem for each each $\lambda \in U$ and $w^*(\lambda_0) = w_0$.

Gradient of F^*

$$rac{\partial F^*}{\partial \lambda}(\lambda_0) = rac{\partial F}{\partial \lambda}(\lambda_0, w^*(\lambda_0)) + rac{\partial F}{\partial w}(\lambda_0, w^*(\lambda_0)) rac{\partial w^*}{\partial \lambda}(\lambda_0) \; ,$$

Jiaxin Liu (Group Reading)

Gradient descent of F^*

Gradient of F^*

$$\frac{\partial F^*}{\partial \lambda}(\lambda_0) = \frac{\partial F}{\partial \lambda}(\lambda_0, w^*(\lambda_0)) + \frac{\partial F}{\partial w}(\lambda_0, w^*(\lambda_0))\frac{\partial w^*}{\partial \lambda}(\lambda_0)$$

•
$$\frac{\partial F}{\partial \lambda}(\lambda_0, w^*(\lambda_0)) \rightarrow \text{direct gradient.}$$

•
$$\frac{\partial F}{\partial w}(\lambda_0, w^*(\lambda_0)) \frac{\partial w^*}{\partial \lambda}(\lambda_0) \rightarrow \text{response gradient.}$$

Summary

- Use best-response function $w^*(\lambda)$ to substitute w.
- Solution Assume two conditions hold in a neighborhood of a point (λ_0, w_0) where w_0 is the solution to the lower-level problem given λ_0 .
- Ohain rule.

```
Question: how to get this w^*(\lambda)?
```

$$rac{\partial F}{\partial w}(\lambda_0,w^*(\lambda_0))rac{\partial w^*}{\partial \lambda}(\lambda_0)$$

response gradient

- Approximate w*
 - Global approximation
 - Local approximation
- Approximate $\frac{\partial w^*}{\partial \lambda}$

Global and local approximation

- Approximate the global best-response w^* : function $\hat{w}_{\phi}(\lambda) \approx w^*$
 - \hat{w}_{ϕ} is a hypernetwork.
 - Lower-level: $\min_{\phi} \mathbb{E}_{\lambda \sim p(\lambda)}[f(\lambda, \hat{w}_{\phi}(\lambda))]$
 - Upper-level: $\min_{\lambda \in \mathbb{R}^n} F(\lambda, \hat{w}_{\phi}(\lambda))$

Global and local approximation

- Approximate the global best-response w^* : function $\hat{w}_{\phi}(\lambda) \approx w^*$
 - \hat{w}_{ϕ} is a hypernetwork.
 - Lower-level: $\min_{\phi} \mathbb{E}_{\lambda \sim p(\lambda)}[f(\lambda, \hat{w}_{\phi}(\lambda))]$
 - Upper-level: $\min_{\lambda \in \mathbb{R}^n} F(\lambda, \hat{w}_{\phi}(\lambda))$
- Approximate the local best-response w^* : function $\hat{w}_{\phi}(\lambda) \approx w^*$
 - Approximate w^* in a neighborhood around the current λ .
 - Lower-level: $\min_{\phi} \mathbb{E}_{\varepsilon \sim p(\varepsilon \mid \sigma)}[f(\lambda + \varepsilon, \hat{w}_{\phi}(\lambda + \varepsilon))]$
 - $p(\varepsilon|\sigma)$ is a Gaussian noise distribution.
 - Perturb the upper-level λ and get the approximate \hat{w}_{ϕ} .

Figure: The effect of the sampled neighborhood. Left: fixed λ . Middle: proper sampled range. Right: large sampled range.

- **1** How to construct the best-response approximation \hat{w}_{ϕ} ?
- Automatically adjust the scale of the neighborhood when training the \$\phi\$.
- Weight matrix: $W \in \mathbb{R}^{D_{out} \times D_{in}}$; bias vector: $b \in \mathbb{R}^{D_{out}}$.
- Hyperparameter $\lambda \in \mathbb{R}^n$
- Best-response for *W* and *b*:

$$\hat{W}_{\phi}(\lambda) = W_{elem} + (V\lambda) \odot_{row} W_{hyper}$$
 $D_{out}(2D_{in} + n)$
 $\hat{b}_{\phi}(\lambda) = b_{elem} + (C\lambda) \odot b_{hyper}$ $D_{out}(2 + n)$

cont.

Best-response for W and b:

$$\hat{W}_{\phi}(\lambda) = W_{elem} + (V\lambda) \odot_{row} W_{hyper}$$
 $D_{out}(2D_{in} + n)$
 $\hat{b}_{\phi}(\lambda) = b_{elem} + (C\lambda) \odot b_{hyper}$ $D_{out}(2 + n)$

Collect the equations:

 $\hat{W}_{\phi}(\lambda)x + \hat{b}_{\phi}(\lambda) = [W_{elem}x + b_{elem}] + [(V\lambda) \odot (W_{hyper}x) + (C\lambda) \odot b_{hyper}]$

Figure: Best-response structure.

Paper: Self-Tuning Networks: Bilevel Optimiz

August 10, 2021

Example: construct the best-response for two-layer linear Networks.

- 2-layer NN: $w = (Q, s) \in \mathbb{R}^{D \times D} \times \mathbb{R}^{D}$
- input $x \in \mathbb{R}^D$, target $t \in \mathbb{R}$.
- Best-response function: $\hat{w}(\lambda) : \mathbb{R}^n \to \mathbb{R}^m$.
- First-layer:
- Second-layer:
- Loss:

$$L_{\mathcal{T}}(\lambda, w) = \sum_{(x,t)\in D} (y(x; w) - t)^2 + \frac{1}{|D|} \exp(\lambda) \|\frac{\partial y}{\partial x}(x; w)\|^2$$

Optimal solution for $w^*(\lambda)$

▶ ∢ 🖃

• • • • • • • • • •

æ

<u>Chose</u> the $\sigma(\cdot)$ to get Q^* .

< □ > < 同 > < 回 > < 回 > < 回 >

3

Exact best-response for the example.

Theorem 2.

Let $w_0 = (Q_0, s_0)$, where Q_0 is the change-of-basis matrix to the principal components of the data matrix and s_0 solves the regularized version of I_T in this example given Q_j . Then there exist $v, c \in \mathbb{R}^D$ such that the best-response function $w^*(\lambda) = (Q^*(\lambda), s^*(\lambda))$ is

$$Q^*(\lambda) = \sigma(\lambda v + c) \odot_{row} Q_0$$

$$s^*(\lambda) = s_0$$

Jiaxin Liu (Group Reading)

Paper: Self-Tuning Networks: Bilevel Optimiz

Sampled neighborhood.

Figure: The effect of the sampled neighborhood. Left: fixed λ . Middle: proper sampled range. Right: large sampled range.

Include an entropy term for the upper-level optimization:

$$\mathbb{E}_{\varepsilon \sim p(\varepsilon|\sigma)}[F(\lambda + \varepsilon, \hat{w}_{\phi}(\lambda + \varepsilon))] - \tau \mathbb{H}[p(\varepsilon|\sigma)]$$

Algorithm 1 STN Training Algorithm

Initialize: Best-response approximation parameters ϕ , hyperparameters λ , learning rates $\{\alpha_i\}_{i=1}^3$ while not converged do for $t = 1, \dots, T_{train}$ do $\epsilon \sim p(\epsilon | \sigma)$ $\phi \leftarrow \phi - \alpha_1 \frac{\partial}{\partial \phi} f(\lambda + \epsilon, \hat{\mathbf{w}}_{\phi}(\lambda + \epsilon))$ for $t = 1, \dots, T_{valid}$ do $\epsilon \sim p(\epsilon | \sigma)$ $\lambda \leftarrow \lambda - \alpha_2 \frac{\partial}{\partial \lambda} (F(\lambda + \epsilon, \hat{\mathbf{w}}_{\phi}(\lambda + \epsilon)) - \tau \mathbb{H}[p(\epsilon | \sigma)])$ $\sigma \leftarrow \sigma - \alpha_3 \frac{\partial}{\partial \sigma} (F(\lambda + \epsilon, \hat{\mathbf{w}}_{\phi}(\lambda + \epsilon)) - \tau \mathbb{H}[p(\epsilon | \sigma)])$

Figure: STN training algorithm.

Method	Val	Test
p = 0.68, Fixed	85.83	83.19
p=0.68 w/ Gaussian Noise	85.87	82.29
p = 0.68 w/ Sinusoid Noise	85.29	82.15
p = 0.78 (Final STN Value)	89.65	86.90
STN	82.58	79.02

Figure: Validation and test perplexity with different dropout settings.

イロト イポト イヨト イヨト

æ

Drop out

	РТВ		CIFAR-10	
Method	Val Perplexity	Test Perplexity	Val Loss	Test Loss
Grid Search	97.32	94.58	0.794	0.809
Random Search	84.81	81.46	0.921	0.752
Bayesian Optimization	72.13	69.29	0.636	0.651
STN	70.30	67.68	0.575	0.576

Figure: Validation and test perplexity for different methods.

Jiaxin Liu (Group Reading)

< 47 ▶

э