Augmented Lagrangian Adversarial Attacks

Notations

Sample $x \in \mathcal{X} \subset \mathbb{R}^d$, $y \in \mathcal{Y}$. In this paper, $\mathcal{X} = [0,1]^d$

A model $f: \mathbb{R}^d \to \mathbb{R}^K$ maps x to logits (before softmax) $z \in \mathbb{R}^K$.

The classification probability $p_y(y|x) = \operatorname{softmax}_y(z)$

 $f_k(x)$ is the *k*-th element of the vector f(x).

To find adversarial examples, two alternatives:

1. Satisfying a distance constraint:

find
$$\delta$$
 s.t. $\operatorname{argmax}_k f_k(x + \delta) \neq y$
 $D(x + \delta, x) \leq \epsilon; \quad x + \delta \in \mathcal{X}$

2. Minimize distortions w.r.t. a distance function:

$$\min_{\delta} D(x + \delta, x) \quad \text{s.t. } \operatorname{argmax}_{k} f_{k}(x + \delta) \neq y$$
$$x + \delta \in \mathcal{X}$$

D is a distance function.

Solving Eq. (2) is equivalent to solving Eq. (1) for every ϵ .

The constraint $x + \delta \in \mathcal{X}$ is handled by a simple projection operation $\mathcal{P}_{[0,1]}$ (omit in the rest).

 $\min_{\delta} D(x + \delta, x) \quad \text{s.t. } \operatorname{argmax}_k f_k(x + \delta) \neq y$

Since argmax is not differentiable, we replace it with an inequality constraint on logits:

$$\min_{\delta} D(x+\delta, x) \qquad \text{s.t.} \ f_y(x+\delta) - \max_{k \neq y} f_k(x+\delta) < 0$$

However, the constraint is not scale invariant, which results in "gradient masking":

For some x with $\nabla_x \ell(x, y) \approx 0$, it becomes in practice $\nabla_x \ell(x, y) = 0$, since typically single precision is used. Thus the sign of the gradient becomes zero and one does not get meaningful ascent directions.

Replace the constraint with Difference of Logits Ratio (DLR)

$$\min_{\delta} D(x+\delta,x) \quad \text{s.t. } \text{DLR}^+(f(x+\delta),y) < 0$$
$$\text{DLR}^+(z,y) = \frac{z_y - \max_{i \neq y} z_i}{z_{\pi_1} - z_{\pi_3}}$$

z = f(x) and π is the decreasing ordering of elements of z.

 $\min g(x) \qquad \text{s.t.} \ h(x) < 0$

Construct a Lagrangian function and set $P(h(x), \rho) = -\rho h(x)$:

 $G(x,\rho) = g(x) + P(h(x),\rho) = g(x) - \rho h(x), \rho \in \mathbb{R}_+$

To find the partial derivative of G w.r.t. x and ρ , and set them to zero:

$$\frac{\partial G}{\partial x} = 0, \qquad \frac{\partial G}{\partial \rho} = 0$$

Usually, it is hard to find zero-gradient points directly, we use gradient descent:

$$x^{(i+1)} = x^{(i)} - \eta_x \frac{\partial G}{\partial x}, \qquad \rho^{(i+1)} = \rho^{(i)} + \eta_\rho \frac{\partial G}{\partial \rho}$$

 $\min g(x) \qquad \text{s.t.} \ h(x) < 0$

Construct a Lagrangian function with $P(h(x), \rho, \mu)$:

 $G(x,\rho,\mu)=g(x)+P(h(x),\rho,\mu),\rho\in\mathbb{R}_+,\mu\in\mathbb{R}_+$

 $P(h(x), \rho, \mu)$ is a penalty-Lagrangian function such that $P'(y, \rho, \mu) = \frac{\partial}{\partial y} P(y, \rho, \mu)$ exists and is continuous for all $y \in \mathbb{R}$ and $(\rho, \mu) \in \mathbb{R}^2_+$, and satisfies four axioms:

```
Example for P(y, \rho, \mu):

PHR(y, \rho, \mu) = \frac{1}{2\rho} (\max\{0, \mu + \rho y\}^2 - \mu^2) \quad (19)
P_1(y, \rho, \mu) = \begin{cases} \mu y + \frac{1}{2}\rho y^2 + \rho^2 y^3 & \text{if } y \ge 0\\ \mu y + \frac{1}{2}\rho y^2 & \text{if } -\frac{\mu}{\rho} \le y \le 0\\ -\frac{1}{2\rho}\mu^2 & \text{if } y \le -\frac{\mu}{\rho} \end{cases}
P_2(y, \rho, \mu) = \begin{cases} \mu y + \mu \rho y^2 + \frac{1}{6}\rho^2 y^3 & \text{if } y \ge 0\\ \frac{\mu y}{1-\rho y} & \text{if } y \le 0 \end{cases} \quad (21)
P_3(y, \rho, \mu) = \begin{cases} \mu y + \mu \rho y^2 & \text{if } y \ge 0\\ \frac{\mu y}{1-\rho y} & \text{if } y \le 0 \end{cases} \quad (22)
```

Axiom 1. $\forall y \in \mathbb{R}, \forall (\rho, \mu) \in (\mathbb{R}^*_+)^2, \ \frac{\partial}{\partial y} P(y, \rho, \mu) \ge 0$ Axiom 2. $\forall (\rho, \mu) \in (\mathbb{R}^*_+)^2, \ \frac{\partial}{\partial y} P(0, \rho, \mu) = \mu$ Axiom 3. If, for all $j \in \mathbb{N}, 0 < \mu_{\min} \le \mu^{(j)} \le \mu_{\max} < \infty$, then: $\lim_{j \to \infty} \rho^{(j)} = \infty$ and $\lim_{j \to \infty} y^{(j)} = y > 0$ imply that $\lim_{j \to \infty} \frac{\partial}{\partial y} P(y^{(j)}, \rho^{(j)}, \mu^{(j)}) = \infty$ Axiom 4. If, for all $j \in \mathbb{N}, 0 < \mu_{\min} \le \mu^{(j)} \le \mu_{\max} < \infty$, then: $\lim_{j \to \infty} \rho^{(j)} = \infty$ and $\lim_{j \to \infty} y^{(j)} = y < 0$ imply that $\lim_{j \to \infty} \frac{\partial}{\partial y} P(y^{(j)}, \rho^{(j)}, \mu^{(j)}) = 0$ for model = 0

Line 2 - 3: inner iteration to find minimal *x* on current situation.

Line 4: update μ

When h(x) is not satisfied:

- $\rightarrow P'(h(x), \rho, \mu)$ should be large (to infinity)
- \rightarrow increase μ (weights of penalty)

Line 5-9: update ρ

- \rightarrow if constraints h(x) do not reduce significantly
- \rightarrow multiply ρ with a fixed factor (2~100)

Algorithm 1 Generic Augmented Lagrangian method **Require:** Function to minimize f, constraint function g **Require:** Initial value $\boldsymbol{x}^{(0)}$ **Require:** Penalty function P, initial multiplier $\mu^{(0)}$, $\rho^{(0)}$ 1: for $i \leftarrow 0$ to N - 1 do Using $\boldsymbol{x}^{(i)}$ as initialization, minimize (approximately): 2: $G(\boldsymbol{x}) = g(\boldsymbol{x}) + P(h(\boldsymbol{x}), \rho^{(i)}, \mu^{(i)})$ $\boldsymbol{x}^{(i+1)} \leftarrow \text{approximate minimizer of } G$ 3: $\mu^{(i+1)} \leftarrow P'(h(\boldsymbol{x}^{(i+1)}), \rho^{(i)}, \mu^{(i)})$ 4: 5: if the constraint does not improve then Set $\rho^{(i+1)} > \rho^{(i)}$ 6: 7: else $\rho^{(i+1)} \leftarrow \rho^{(i)}$ 8: 9: end if 10: end for

Compare Generic Augmented Lagrangian and ALMA algorithms.

Recall that $\min_{\delta} D(x + \delta, x)$ s.t. $DLR^+(f(x + \delta), y) < 0$

Use EMA and projection gradient to update μ ;

Update x and μ update jointly and discard inner iterations;

New rules to update ρ .

Algorithm 1 Generic Augmented Lagrangian method **Require:** Function to minimize f, constraint function q**Require:** Initial value $x^{(0)}$ **Require:** Penalty function P, initial multiplier $\mu^{(0)}$, $\rho^{(0)}$ 1: for $i \leftarrow 0$ to N - 1 do Using $\boldsymbol{x}^{(i)}$ as initialization, minimize (approximately): 2: $G(\boldsymbol{x}) = g(\boldsymbol{x}) + P(h(\boldsymbol{x}), \rho^{(i)}, \mu^{(i)})$ $\boldsymbol{x}^{(i+1)} \leftarrow \text{approximate minimizer of } G$ $\mu^{(i+1)} \leftarrow P'(h(\boldsymbol{x}^{(i+1)}), \rho^{(i)}, \mu^{(i)})$ 3: 4: if the constraint does not improve then 5: Set $\rho^{(i+1)} > \rho^{(i)}$ 6: 7: else $\rho^{(i+1)} \leftarrow \rho^{(i)}$ 8: end if 9: 10: end for

Algorithm 2 ALMA attack **Require:** Classifier f, original image x, true or target label y**Require:** Number of iterations N, initial step size $\eta^{(0)}$, penalty parameter increase rate $\gamma > 1$, constraint improvement rate $\tau \in [0, 1], M$ number of steps between ρ increase. **Require:** D distance function **Require:** Penalty function P, initial multiplier $\mu^{(0)}$, initial penalty parameter $\rho^{(0)}$ 1: Initialize $\tilde{\boldsymbol{x}}^{(0)} \leftarrow \boldsymbol{x}$, 2: for $i \leftarrow 0$ to N - 1 do $\boldsymbol{z} \leftarrow f(\tilde{\boldsymbol{x}}^{(i)})$ 3: $d^{(i)} \leftarrow \text{DLR}^+(z, y) \triangleright \text{tDLR}^+$ for targeted attack $\begin{array}{l} \hat{\mu} \leftarrow \nabla_d P(d^{(i)}, \rho^{(i)}, \mu^{(i)}) & \triangleright \operatorname{New} \operatorname{pe} \\ \mu^{(i+1)} \leftarrow \mathcal{P}_{[\mu_{\min}, \mu_{\max}]}[\alpha \mu^{(i)} + (1 - \alpha)\hat{\mu}] \\ L \leftarrow D(\tilde{\boldsymbol{x}}^{(i)}, \boldsymbol{x}) + P(d^{(i)}, \rho^{(i)}, \mu^{(i+1)}) \end{array}$ ▷ New penalty multiplier ⊳ EMA ⊳ Loss $\boldsymbol{g} \leftarrow \nabla_{\tilde{\boldsymbol{x}}} L$ \triangleright Gradient of loss w.r.t. \tilde{x} $\tilde{\tilde{x}}^{(i+1)} \leftarrow \mathcal{P}_{[0,1]}[\tilde{x}^{(i)} - \eta^{(i)}g] \triangleright \text{Step and box-constraint}$ if $(i+1) \mod M = 0$ and $d^{(j)} > 0, \forall j \in \{0, \dots, i\}$ 10: and $d^{(i)} > \tau d^{(i-M)}$ then 11: $\rho^{(i+1)} \leftarrow \gamma \rho^{(i)}$ 12: ▷ If no adversarial has been found and d does not de-13: else $\rho^{(i+1)} \leftarrow \rho^{(i)}$ crease significantly, in-14: 15: end if crease ρ by a factor of γ

16: end for

17: Return $\tilde{x}^{(i)}$ that is adversarial and has smallest $D(\tilde{x}^{(i)}, x)$

Use EMA and projection gradient to update μ to alleviate the spiking values.

Increase ρ when no adversarial example is found, and the constraint doesn't improve.

Other tricks:

Penalty function $P(h(x), \rho, \mu)$ is of great importance.

Initialize learning rate adaptively.

Apply learning rate decay to balance exploration and exploitation.

Replace classic gradient descent with RMSProp and momentum method.

$$P_2(y,
ho,\mu) = egin{cases} \mu y + \mu
ho y^2 + rac{1}{6}
ho^2 y^3 & ext{if} \quad y \geq 0 \ rac{\mu y}{1-
ho y} & ext{if} \quad y < 0 \end{cases}$$

Datasets: MNIST, CIFAR10, ImageNet Budgets: 100 and 1000 iterations Metrics:

Attack Success Rate (ASR): the proportion of examples for which an adversarial perturbation is found; and the median perturbation size.

Complexity: the average number of forward and backward propagations per sample needed. Target models:

For MNIST: 1. SmallCNN with regularly training; 2. SmallCNN-DDN with l₂-adversarially training;

3. SmallCNN-TRADES with l_{∞} -adversarially training; 4. CROWN-IBP with l_{∞} -adversarially training.

For CIFAR10: 1. Wide ResNet 28-10 with regularly training; 2. Wide ResNet 28-10 with l_{∞} -adversarially training;

3. ResNet-50 with l_2 -adversarially training.

For ImageNet: 1. ResNet with regularly training; 2. ResNet with l_{∞} -adversarially training;

3. ResNet with l_2 -adversarially training.

Baselines:

 l_1 attacks: EAD, FAB and FMN; l_2 attacks: C&W, DDN, FAB and FMN;

CIEDE2000 attacks: PerC-AL; LPIPS attacks: LPA; Other attacks: APGD, C&W type attack for CIEDE2000 and LPIPS.

ALMA performs best w.r.t. ASR, perturbation geometric median size, complexity, robust accuracy. (MNIST dataset)

Distance	Attack	ASR (%)	Median Distance	Forwards / Backwards
ℓ_1 -norm	EAD 9×100 [9]	97.18	21.94	807 / 407
	EAD 9×1000 [9]	97.76	19.19	5025/2516
	FAB l ₁ 100 [12]	99.80	27.41	201 / 1 000
	FAB l ₁ 1000 [12]	99.83	24.21	2 001 / 10 000
	FMN l ₁ 100 [25]	69.87	-	100 / 100
	FMN l1 1000 [25]	95.35	7.34	1 000 / 1 000
	ALMA ℓ_1 100	99.90	11.45	100 / 100
	ALMA ℓ_1 1000	100	7.16	1 000 / 1 000
ℓ_2 -norm	C&W l2 9×1000 [7]	40.19	-	8 643 / 8 643
	C&W l ₂ 9×10000 [7]	40.20	-	85 907 / 85 907
	DDN 100 [26]	98.48	1.86	100 / 100
	DDN 1000 [26]	99.83	1.61	1 000 / 1 000
	FAB l ₂ 100 [12]	83.25	2.10	201 / 1 000
	FAB l ₂ 1000 [12]	96.28	1.77	2001/10000
	FMN l ₂ 100 [25]	70.99	3.18	100 / 100
	FMN l2 1000 [25]	96.02	1.77	1 000 / 1 000
	$APGD_{DLR}^T \ell_2^{\ddagger} [13]$	99.98	2.52	12 271 / 12 253
	ALMA ℓ_2 100	99.72	2.38	100 / 100
	ALMA ℓ_2 1000	100	1.61	1 000 / 1 000

ALMA performs best, similar conclusion on CIFAR10 and ImageNet.

		CIFAR10				ImageNet		
Distance	Attack	ASR (%)	Median Distance	Forwards / Backwards	ASR (%)	Median Distance	Forwards / Backwards	
ℓ_1 -norm	EAD 9×100 [9] (AAAI'17)	100	6.11	572 / 290	100	13.87	488 / 248	
	EAD 9×1000 [9] (AAAI'17)	100	5.44	4 284 / 2 146	100	12.83	3758/1883	
	FAB [†] ℓ_1 100 [12] (ICML'20)	96.58	4.26	201 / 1 000	88.82	10.72	1810/900	
	FAB [†] ℓ_1 1000 [12] (ICML'20)	99.00	3.78	2 001 / 10 000	89.07	8.88	18010/9000	
	FMN ℓ_1 100 [25]	99.90	3.64	100 / 100	94.33	8.43	100 / 100	
	FMN l ₁ 1000 [25]	99.83	3.54	1 000 / 1 000	93.93	7.58	1 000 / 1 000	
	ALMA ℓ_1 100	100	4.31	100 / 100	100	19.79	100 / 100	
	ALMA ℓ_1 1000	100	3.69	1 000 / 1 000	100	12.10	1 000 / 1 000	
ℓ2-norm	C&W ℓ ₂ 9×1000 [7] (SP'17)	100	0.40	7 976 / 7 974	99.83	0.57	7 248 / 7 246	
	C&W l2 9×10 000 [7] (SP'17)	100	0.40	78 081 / 78 079	99.83	0.57	67 479 / 67 476	
	DDN 100 [26] (CVPR'19)	100	0.43	100 / 100	99.70	0.51	100 / 100	
	DDN 1000 [26] (CVPR'19)	100	0.42	1 000 / 1 000	99.87	0.50	1 000 / 1 000	
	FAB [†] l ₂ 100 [12] (ICML'20)	100	0.41	201 / 1 000	99.70	0.35	1810/900	
	FAB [†] ℓ_2 1000 [12] (ICML'20)	100	0.41	2 001 / 10 000	98.90	0.35	18010/9000	
	FMN l ₂ 100 [25]	99.90	0.43	100 / 100	99.43	0.38	100 / 100	
	FMN l ₂ 1000 [25]	99.83	0.40	1 000 / 1 000	99.63	0.36	1 000 / 1 000	
	APGD ^T _{DUD} ℓ_2^{\ddagger} [13] (ICML'20)	100	0.38	5345/5321	100	0.34	6 096 / 6 068	
	ALMA ℓ_2 100	100	0.40	100 / 100	100	0.38	100 / 100	
	ALMA ℓ_2 1000	100	0.38	1 000 / 1 000	100	0.35	1 000 / 1 000	
CIEDE 2000	C&W CIEDE2000 9×1000	100	0.93	6729/6726	100	1.39	5 635 / 5 632	
	PerC-AL 100 [37] (CVPR'20)	100	2.87	201/100	99.90	3.55	201 / 100	
	PerC-AL 1000 [37] (CVPR'20)	100	2.72	2001/1000	99.93	3.42	2 001 / 1 000	
	ALMA CIEDE2000 100	100	1.09	100 / 100	100	0.75	100 / 100	
	ALMA CIEDE2000 1000	100	0.78	1 000 / 1 000	100	0.63	1 000 / 1 000	
$\underset{\times 10^{-}2}{\text{LPIPS}}$	C&W LPIPS 9×1000	100	0.47	6 658 / 6 655	100	2.07	4 950 / 4 944	
	LPA [‡] [21] (ICLR'21)	100	5.39	1118/1108	100	5.79	1211/1201	
	ALMA LPIPS 100	99.97	2.47	100 / 100	100	1.59	100 / 100	
	ALMA LPIPS 1000	100	0.60	1000/1000	100	1.13	1000 / 1000	

Thank you

