# Paper: GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks. [5]

#### Jiaxin Liu

Group Reading

October 7, 2021

Jiaxin Liu (Group Reading) Paper: GraphSMOTE: Imbalanced Node Clas O

### Overview

#### Introduction

- Over-sampling and under-sampling
- SMOTE

### GraphSMOTE

- Feature extractor and synthetic node generation
- Edge generator
- GNN classifier
- Optimization Objective

### 3 Experiments

### Introduction

- Class imbalance problem
  - Algorithm-level: cost sensitive learning.
  - Data-level: re-sample the original dataset such as SMOTE[1].
  - Hybrid approaches.

### Introduction

- Class imbalance problem
  - Algorithm-level: cost sensitive learning.
  - Data-level: re-sample the original dataset such as SMOTE[1].
  - Hybrid approaches.
- Re-sample [3]:
  - Over-sampling: random and focused over-sampling for minority class.
  - Under-sampling: random and focused under-sampling for majority class.



Figure: An example for re-sampling.

# Synthetic Minority Over-sampling Technique (SMOTE)

- Over-sampling:
  - Replicate the original data.
  - Generate new synthetic data.
- SMOTE:
  - Over-sample the minority class.
  - Synthetic examples are introduced along the line segments joining any/all of the k minority class nearest neighbors.



Figure: An example for SMOTE.

# SMOTE

• Decision region for over-sampling the minority class with replication (left) and synthetic generation (right).



Figure: Decision region (solid line) as Figure: Decision region (dashed line) as a result a result of replicating minority directly. of using synthetic data.

5/17

Table: Comparison between SMOTE[1] and Mixup [4].

|                              | SMOTE                       | Mixup                            |
|------------------------------|-----------------------------|----------------------------------|
| Source for the generation    | Two minority examples       | Any two examples                 |
| Class for the synthetic data | Minority class              | $\lambda y_1 + (1 - \lambda)y_2$ |
| Model training               | Original and synthetic data | Synthetic data only              |
| Weakness                     | Know the neighbors' info    | Inaccurate synthetic label       |

Image: A matrix and a matrix

# GraphSMOTE

Task: node classification task on graph  $G = \{V, A, F\}$  in the transductive setting.

- $V = \{v_1, \cdots, v_n\}$  is a set of n nodes.
- $A \in \mathbb{R}^{n \times n}$  is the adjacency matrix
- $F \in \mathbb{R}^{n \times d}$  denotes the node attribute matrix.
- $Y \in \mathbb{R}^n$  is the class information for node in *G*.
- $V_L$ ,  $Y_L$  denotes the nodes in the training set and their labels.
- *m* classes:  $\{C_1, \cdots C_m\}$
- Imbalanced ratio:  $\frac{\min_i |C_i|}{\max_i |C_i|}$  statisticized from  $V_L$ .

Goal: given the imbalanced node class set and a labeled training set  $V_L$ , find a node classifier  $f(V, A, F) \rightarrow Y$  that works well for both majority and minority classes.

< 同 > < 三 > < 三

Idea:

- 2) assign links for these synthetic nodes  $\rightarrow$  edge generator;
- ${f 0}$  train the GNN on this augmented balanced graph ightarrow GNN classifier.



Figure: An example of bot detection on a social network and the idea of over-sampling.

8/17

### Feature extractor and synthetic node generation

- Feature extractor?
  - $\bullet\,$  Raw node feature space is sparse and high-dimensional  $\to\,$  hard to get similar nodes from the same class
  - Raw features don't consider the graph structure.
- Use one block of GraphSAGE [2] as the feature extractor.

 $h_v^1 = \sigma(W^1 \cdot \text{CONCAT}(F[v,:], F \cdot A[:,v]))$ 



Figure: An example for GraphSAGE.

## Node generation

Adopt SMOTE algorithm to generate synthetic node using the embedding features.

For a labeled minority node  $h_v^1$  and ite label  $Y_v$ 

• Find closest labeled node to node  $h_v^1$  in class  $Y_v$ .

$$nn(v) = \arg\min_{u} ||h_{u}^{1} - h_{v}^{1}||, \qquad Y_{u} = Y_{v}$$

② Generate the synthetic node.

$$h_{v'}^1 = (1 - \sigma) \cdot h_v^1 + \sigma \cdot h_{nn(v)}^1$$

where  $\sigma \in [0,1]$ , and  $Y_{v'}^1 = Y_v$ .

Edge generator models the existence of edges among nodes and can predict the edges for the synthetic nodes.

- Trained on the real nodes and existing edges.
- Used to predict the neighbor information for the synthetic nodes.

$$E_{v,u} = \operatorname{softmax}(\sigma(h_v^1 \cdot S \cdot h_u^{1 op}))$$

where  $E_{v,u}$  predicts the relation between node u, v and S is the parameter matrix.

• Loss function:

$$L_{edge} = \|E - A\|_F^2$$

• 
$$ilde{A}[v',u] = \left\{ egin{array}{cc} 1, & ext{if } E_{v',u} > \eta \\ 0, & ext{otherwise} \end{array} 
ight.$$
 or  $ilde{A}[v',u] = E_{v',u}.$ 

## **GNN** classifier

After adding the augmented nodes:

- Node representation:  $H^1 
  ightarrow { ilde H}^1$
- Training set:  $V_L \rightarrow \tilde{V}_L$
- Graph:  $\tilde{G} = \{\tilde{A}, \tilde{H}\}$

Introduce another block of GraphSAGE and a linear layer:

$$h_v^2 = \sigma(W^2 \cdot \text{CONCAT}(h_v^1, \tilde{H}^1 \cdot \tilde{A}[:, v])),$$

$$P_{v} = \operatorname{softmax}(\sigma(W^{c} \cdot \operatorname{CONCAT}(h_{v}^{2}, H^{2} \cdot \tilde{A}[:, v])),$$

where  $H^2$  denotes the node representation from the second GraphSAGE block,  $W^2, W^c$  refer to the weight parameters.

Loss

$$L_{node} = -\sum_{u \in \tilde{V}_L} \sum_{c} \left( 1(Y_u == c) \cdot \log(P_v[c]) \right)$$

12/17

### **Optimization Objective**

Final objective function:

$$\min_{W^1, S, W^2, W^c} = L_{node} + \lambda \cdot L_{edge}$$



Figure: Overview of the framework.

Jiaxin Liu (Group Reading) Paper: GraphSMOTE: Imbalanced Node Clas October 7, 2021 13 / 17

### Experiments

• Dataset:

Ora: citation network containing 2708 papers from 7 areas.

- Majority classes: each class have a training set containing 20 nodes.
- Minority class: randomly samples 3 classes and down-sample 20 × imbalance ratio(0.5)).
- BlogCatalog: 25%, 25%, 50% for training, validation and test set.
  - Majority: .
  - Minority: 14 classes smaller than 100.
- S Twitter: 25%, 25%, 50% for training, validation and test set.
  - Imbalanced ratio: 1:30.
- Baselines:
  - Over-sampling, Re-weight.
  - SMOTE, Embed-SMOTE.
  - GraphSMOTE<sub>T</sub>, GraphSMOTE<sub>O</sub>
  - GraphSMOTE<sub>preT</sub>, GraphSMOTE<sub>preO</sub>

|                         | Cora              |                            |                   | BlogCatalog       |                   | Twitter           |                   |                   |                   |
|-------------------------|-------------------|----------------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|-------------------|
| Methods                 | ACC               | AUC-ROC                    | F Score           | ACC               | AUC-ROC           | F Score           | ACC               | AUC-ROC           | F Score           |
| Origin                  | $0.681 \pm 0.001$ | $0.914 \pm 0.002$          | $0.684 \pm 0.003$ | $0.210 \pm 0.004$ | $0.586 \pm 0.002$ | $0.074 \pm 0.002$ | $0.967 \pm 0.004$ | $0.577 \pm 0.003$ | $0.494 \pm 0.001$ |
| over-sampling           | $0.692 \pm 0.009$ | $0.918 \pm 0.005$          | $0.666 \pm 0.008$ | $0.203 \pm 0.004$ | $0.599 \pm 0.003$ | $0.077 \pm 0.001$ | $0.913 \pm 0.006$ | $0.601 \pm 0.011$ | $0.513 \pm 0.003$ |
| Re-weight               | $0.697 \pm 0.008$ | $0.928 \pm 0.005$          | $0.684 \pm 0.004$ | $0.206 \pm 0.005$ | $0.587 \pm 0.003$ | $0.075 \pm 0.003$ | $0.915 \pm 0.005$ | $0.603 \pm 0.004$ | $0.515 \pm 0.002$ |
| SMOTE                   | $0.696 \pm 0.011$ | $0.920 \pm 0.008$          | $0.673 \pm 0.003$ | $0.205 \pm 0.004$ | $0.595 \pm 0.003$ | $0.077 \pm 0.001$ | $0.914 \pm 0.005$ | $0.604 \pm 0.007$ | $0.514 \pm 0.002$ |
| Embed-SMOTE             | $0.683 \pm 0.007$ | $0.913 \pm 0.002$          | $0.673 \pm 0.002$ | $0.205 \pm 0.003$ | $0.588 \pm 0.002$ | $0.076 \pm 0.001$ | $0.943 \pm 0.004$ | $0.606 \pm 0.005$ | $0.514 \pm 0.002$ |
| GraphSMOTE <sub>T</sub> | $0.713 \pm 0.008$ | $0.929 \pm 0.006$          | $0.720 \pm 0.002$ | $0.206 \pm 0.005$ | $0.602 \pm 0.004$ | $0.083 \pm 0.003$ | $0.929 \pm 0.005$ | $0.622 \pm 0.003$ | $0.519 \pm 0.001$ |
| GraphSMOTE <sub>O</sub> | $0.709 \pm 0.010$ | $0.927 \pm 0.011$          | $0.712 \pm 0.003$ | $0.215 \pm 0.010$ | $0.591 \pm 0.012$ | $0.080 \pm 0.005$ | $0.905 \pm 0.008$ | $0.616 \pm 0.006$ | $0.515 \pm 0.003$ |
| GraphSMOTE preT         | $0.727 \pm 0.003$ | $0.931 \pm 0.002$          | $0.726 \pm 0.001$ | 0.249±0.002       | $0.641 \pm 0.001$ | $0.126 \pm 0.001$ | $0.937 \pm 0.003$ | $0.639 \pm 0.002$ | $0.531 \pm 0.001$ |
| GraphSMOTE preO         | $0.736 \pm 0.001$ | $\textbf{0.934}{\pm}0.002$ | $0.727{\pm}0.001$ | $0.243 \pm 0.002$ | $0.641{\pm}0.002$ | $0.123 \pm 0.001$ | $0.941 \pm 0.002$ | $0.636 \pm 0.001$ | $0.532{\pm}0.001$ |

Figure: Comparison of different approaches for imabalanced node classification.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

### Experiments



Figure: Affects of over-sampling scale on Cora dataset.



Figure: Affects of hyper-parameter  $\lambda$  on Cora dataset.

|                            | Imbalance Ratio |        |        |        |  |
|----------------------------|-----------------|--------|--------|--------|--|
| Methods                    | 0.1             | 0.2    | 0.4    | 0.6    |  |
| Origin                     | 0.8681          | 0.8998 | 0.9139 | 0.9146 |  |
| over-sampling              | 0.8707          | 0.9039 | 0.9137 | 0.9215 |  |
| Re-weight                  | 0.8791          | 0.8881 | 0.9257 | 0.9306 |  |
| SMOTE                      | 0.8742          | 0.9027 | 0.9161 | 0.9237 |  |
| Embed-SMOTE                | 0.8651          | 0.8967 | 0.9188 | 0.9212 |  |
| $GraphSMOTE_T$             | 0.8824          | 0.9162 | 0.9262 | 0.9309 |  |
| GraphSMOTE <sub>O</sub>    | 0.8849          | 0.9061 | 0.9216 | 0.9311 |  |
| GraphSMOTE <sub>preT</sub> | 0.9167          | 0.9130 | 0.9303 | 0.9317 |  |
| GraphSMOTE <sub>preO</sub> | 0.9117          | 0.9116 | 0.9389 | 0.9366 |  |

Figure: Node classification performance on Cora under various imbalance ratios.

< □ > < □ > < □ > < □ > < □ > < □ >

æ

- Nitesh V Chawla et al. "SMOTE: synthetic minority over-sampling technique". In: Journal of artificial intelligence research 16 (2002), pp. 321–357.
- William L Hamilton, Rex Ying, and Jure Leskovec. "Inductive representation learning on large graphs". In: *Proceedings of the 31st International Conference on Neural Information Processing Systems*. 2017, pp. 1025–1035.
- Nathalie Japkowicz. "The class imbalance problem: Significance and strategies". In: Proc. of the Int'l Conf. on Artificial Intelligence. Vol. 56. Citeseer. 2000.
- Hongyi Zhang et al. "mixup: Beyond empirical risk minimization". In: *arXiv preprint arXiv:1710.09412* (2017).
  - Tianxiang Zhao, Xiang Zhang, and Suhang Wang. "GraphSMOTE: Imbalanced Node Classification on Graphs with Graph Neural Networks". In: *Proceedings of the 14th ACM International Conference on Web Search and Data Mining*. 2021, pp. 833–841.