
On Explainability of Graph
Neural Networks via
Subgraph Explorations

Chao Chen

v1

v2 v3

v4

v5
v6

v7

2

Scope of Explanations for GNN:

Node-level / Edge-level: GNNExplainer[1], PGExplainer[2] (explain a target node)
Highlight important edges or nodes.
Cons: not guarantee to be connected, ignore interactions within graphs.

Model-level: XGNN[3] (explain a target model)
Extract the most important patterns for model’s prediction w.r.t. a specific class 𝑐!

𝐺∗ = argmax
#

𝑃 𝑓 𝐺 = 𝑐!

Cons: not input-dependent, less precise

Subgraph-level: SubgraphX (explain a target node or graph)
Extract a subgraph for target graph’s prediction

𝐺∗ = arg max
#! $%"!#

𝑆𝑐𝑜𝑟𝑒 𝑓, 𝐺, 𝐺!

[1] Ying, Rex, et al. "Gnnexplainer: Generating explanations for graph neural networks." NeurIPS, 2019.
[2] Luo, Dongsheng, et al. "Parameterized explainer for graph neural network." NeurIPS, 2020.
[3] Yuan, Hao, et al. "Xgnn: Towards model-level explanations of graph neural networks." SIGKDD 2020.

3

Notations

We consider a graph classification model 𝑓 ⋅ , such that 𝑦 is the predicted class for input graph 𝐺.
We want to explain the outcome 𝑦 by extracting a connected subgraph.

𝐺∗ = arg max
#! $%"!#

𝑆𝑐𝑜𝑟𝑒 𝑓, 𝐺, 𝐺!

𝐺! ≤ 𝑁&!' is a connected subgraph with no more than 𝑁&!' number of nodes;
𝑆𝑐𝑜𝑟𝑒 ⋅,⋅,⋅ is a scoring function evaluating the importance of 𝐺! given 𝑓 and 𝐺.

Solve by searching.
1. Brute-force is intractable and thus employ Monte Carlo Tree Search (MCTS).
2. Use Shapley value as scoring function.

v2 v3

4

Exploring subgraph by MCTS

Build a search tree:
Root is the input graph;
Each node 𝑁! is a connected graph;
Each edge is a node-pruning action 𝑎:
[Remove a node, all connected edges are removed.
If there are multiple disconnected subgraphs,
retain the largest one.]

Pair 𝑁! , 𝑎(: 𝐺(is obtained by pruning 𝑎(from 𝑁!.

If we search all possible leaf nodes, time complexity
is exponential (combination problem);
MCTS provides the clues about which actions to take.

Root 𝑁) = 𝐺
v1

v2 v3

v4

v5
v6

v7

…
v1

v2 v3

v4

v5
v6

𝑎: prune v7

𝑁! = 𝐺!
𝑎(

𝑁(= 𝐺(
v1

v2 v3

v4

v5

…

After multiple actions …

…

Leaf: connected graph with
no more than 𝑁&!' nodes.

v2 v3

5

Exploring subgraph by MCTS

After building the search tree, in MCTS:
For each pair 𝑁! , 𝑎(, we record four variables:

C 𝑁! , 𝑎(: the number of counts selecting 𝑎(from 𝑁!.
W 𝑁! , 𝑎(: the total reward for all 𝑁! , 𝑎(.

Q 𝑁! , 𝑎(= 𝑊 𝑁! , 𝑎(/C 𝑁! , 𝑎(: the average reward for 𝑁! , 𝑎(.

R 𝑁! , 𝑎(= 𝑆𝑐𝑜𝑟𝑒 𝑓, 𝐺, 𝐺(: immediate reward measuring the
importance of 𝐺(.

The criteria for action selection is:

𝑎∗ = argmax
*$

𝑄 𝑁! , 𝑎(+ 𝑈 𝑁! , 𝑎(

𝑈 𝑁! , 𝑎(= 𝜆𝑅 𝑁! , 𝑎(
∑+ 𝐶 𝑁! , 𝑎+
1 + 𝐶 𝑁! , 𝑎(

Then update four variables in the path.

Root 𝑁) = 𝐺

…

𝑎: prune v7

𝑁! = 𝐺!
𝑎(

𝑁(= 𝐺(…

After multiple actions …

Leaf: connected graph with
no more than 𝑁&!' nodes.

v1

v2 v3

v4

v5
v6

v7

v1

v2 v3

v4

v5
v6

v1

v2 v3

v4

v5

6

The score function – Shapley Value

𝑆𝑐𝑜𝑟𝑒 ⋅,⋅,⋅ is used in explanation quality evaluation and the MCTS rewards.
If we use the predicted scores from the trained GNN 𝑓 for subgraph 𝐺!, “it cannot capture the
interactions between different graph structures, thus affecting the explanation results.”
We use Shapley values: the GNN predication is the game gain, and graph structures are players.

7

The score function – Shapley Value

To study SV of a subgraph 𝐺! with 𝑉 = 𝑣,, … , 𝑣+ from a graph 𝐺 with 𝑉 = {𝑣,, … , 𝑣! , … , 𝑣&}.
The set of players 𝑃 = 𝐺! , 𝑣+-,, … , 𝑣& , and SV of the player 𝐺! is:

𝜙 𝐺! = I
.⊆0\{#!}

𝑆 ! 𝑃 − 𝑆 − 1 !
𝑃 !

𝑚 𝑆, 𝐺!

𝑚 𝑆, 𝐺! = 𝑓 𝑆 ∪ 𝐺! − 𝑓 𝑆
𝑆 is the possible coalition set of players, 𝑚 is the marginalized contribution.

Time consuming! It enumerates all possible coalitions.
-> Only consider 𝐿-hop neighborhood of 𝐺! (GNN 𝑓 contains 𝐿 layers)
Replace 𝑃 by 𝑃4 = 𝐺! , 𝑣+-,, … 𝑣5 (within 𝐿-hop neighborhood)

-> Monte-Carlo sampling
Sample 𝑇 coalition sets 𝑆!, and the averaged contribution score is regarded as the approximation:

𝜙 𝐺! =
1
𝑇
I
67,

8

𝑚 𝑆! , 𝐺!

8

Overview of SubgarphX

Upper row: compute SV by MC sampling; lower row: explore subgraph in a search tree.

9

Experiments

Datasets: [molecular: MUTAG, BBBP] [Sentiment: Graph-SST2] [synthetic: BA-2Motifs, BA-shape]
Target model: GCNs, GATs, GINs.
Baselines: GNNExplainer, PGExplanier, MCTS_GNN
MCTS_GNN uses MCTS to explore subgraphs but employs the GNN predictions of these subgraphs as the scoring function.

Qualitative experiments (no group truth)
Quantitative metrics: Fidelity, sparsity and efficiency.

Fidelity: it removes the important structure from the input graphs, and computes the difference
between predictions.

Sparsity: the fraction of structures being identified as important.
Efficiency: running time.

10

Experiments

Qualitative experiments:

11

Experiments

Quantitative experiments: (Fidelity and Sparsity)

12

Experiments

Quantitative experiments: (Efficiency) [For 50 graphs with an average of ~25 nodes in BBBP]

MCTS* doesn’t use Monte Carlo sampling: 𝜙 𝐺! = ∑.⊆04\{#!}
. ! 0 : . :, !

0 !
𝑚 𝑆, 𝐺!

MCTS+ uses MC sampling but doesn’t use approximation 𝑃4.

v1

v2 v3

v4

v5

v2 v3

13

Experiments

Pruning strategy:
1. Low2High:
Arranges the nodes based on node degrees from low to high.
Only consider to prune top-k lowest degree nodes.
2. High2Low is similar, but prunes top-k highest degree nodes.

High2Low should be more efficient but may ignore optimal solutions.

…

𝑎: prune v7

𝑁! = 𝐺!
𝑎(

𝑁(= 𝐺(…

After multiple actions …

v1

v2 v3

v4

v5
v6

v7

v1

v2 v3

v4

v5
v6

Thank you

