TABLE 6 Logical Equivalences.

Equivalence	Name
$\begin{aligned} & p \wedge \mathbf{T} \equiv p \\ & p \vee \mathbf{F} \equiv p \end{aligned}$	Identity laws
$\begin{aligned} & p \vee \mathbf{T} \equiv \mathbf{T} \\ & p \wedge \mathbf{F} \equiv \mathbf{F} \end{aligned}$	Domination laws
$\begin{aligned} & p \vee p \equiv p \\ & p \wedge p \equiv p \end{aligned}$	Idempotent laws
$\neg(\neg p) \equiv p$	Double negation law
$\begin{aligned} & p \vee q \equiv q \vee p \\ & p \wedge q \equiv q \wedge p \end{aligned}$	Commutative laws
$\begin{aligned} & (p \vee q) \vee r \equiv p \vee(q \vee r) \\ & (p \wedge q) \wedge r \equiv p \wedge(q \wedge r) \end{aligned}$	Associative laws
$\begin{aligned} & p \vee(q \wedge r) \equiv(p \vee q) \wedge(p \vee r) \\ & p \wedge(q \vee r) \equiv(p \wedge q) \vee(p \wedge r) \end{aligned}$	Distributive laws
$\begin{aligned} & \neg(p \wedge q) \equiv \neg p \vee \neg q \\ & \neg(p \vee q) \equiv \neg p \wedge \neg q \end{aligned}$	De Morgan's laws
$\begin{aligned} & p \vee(p \wedge q) \equiv p \\ & p \wedge(p \vee q) \equiv p \end{aligned}$	Absorption laws
$\begin{aligned} & p \vee \neg p \equiv \mathbf{T} \\ & p \wedge \neg p \equiv \mathbf{F} \end{aligned}$	Negation laws

TABLE 8 Logical Equivalences Involving Biconditional Statements.

$$
\begin{aligned}
& p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p) \\
& p \leftrightarrow q \equiv \neg p \leftrightarrow \neg q \\
& p \leftrightarrow q \equiv(p \wedge q) \vee(\neg p \wedge \neg q) \\
& \neg(p \leftrightarrow q) \equiv p \leftrightarrow \neg q
\end{aligned}
$$

TABLE 7 Logical Equivalences Involving Conditional Statements.

$$
\begin{aligned}
& p \rightarrow q \equiv \neg p \vee q \\
& p \rightarrow q \equiv \neg q \rightarrow \neg p \\
& p \vee q \equiv \neg p \rightarrow q \\
& p \wedge q \equiv \neg(p \rightarrow \neg q) \\
& \neg(p \rightarrow q) \equiv p \wedge \neg q \\
& (p \rightarrow q) \wedge(p \rightarrow r) \equiv p \rightarrow(q \wedge r) \\
& (p \rightarrow r) \wedge(q \rightarrow r) \equiv(p \vee q) \rightarrow r \\
& (p \rightarrow q) \vee(p \rightarrow r) \equiv p \rightarrow(q \vee r) \\
& (p \rightarrow r) \vee(q \rightarrow r) \equiv(p \wedge q) \rightarrow r
\end{aligned}
$$

TABLE 1 Rules of Inference.

Rule of Inference	Tautology	Name
$\therefore \begin{gathered} p \\ \frac{p \rightarrow q}{q} \end{gathered}$	$(p \wedge(p \rightarrow q)) \rightarrow q$	Modus ponens
$\begin{aligned} & \neg q \\ & \frac{p \rightarrow q}{\neg p} \end{aligned}$	$(\neg q \wedge(p \rightarrow q)) \rightarrow \neg p$	Modus tollens
$\begin{aligned} & \quad p \rightarrow q \\ &=\frac{q \rightarrow r}{p \rightarrow r} \end{aligned}$	$((p \rightarrow q) \wedge(q \rightarrow r)) \rightarrow(p \rightarrow r)$	Hypothetical syllogism
$\begin{aligned} & p \vee q \\ \therefore & \neg p \\ \therefore & q \end{aligned}$	$((p \vee q) \wedge \neg p) \rightarrow q$	Disjunctive syllogism
$\therefore \frac{p}{p \vee q}$	$p \rightarrow(p \vee q)$	Addition
$\therefore \frac{p \wedge q}{p}$	$(p \wedge q) \rightarrow p$	Simplification
$\begin{gathered} p \\ \therefore \frac{q}{p \wedge q} \end{gathered}$	$((p) \wedge(q)) \rightarrow(p \wedge q)$	Conjunction
$\begin{aligned} & p \vee q \\ & \therefore \neg p \vee r \\ & q \vee r \end{aligned}$	$((p \vee q) \wedge(\neg p \vee r)) \rightarrow(q \vee r)$	Resolution

TABLE 2 Some Useful Summation Formulae.	
Sum	
$\sum_{k=0}^{n} a r^{k}(r \neq 0)$	$\frac{\text { Closed Form }}{r-1}, r \neq 1$
$\sum_{k=1}^{n} k$	
$\sum_{k=1}^{n} k^{2}$	$\frac{n(n+1)}{2}$
$\sum_{k=1}^{n} k^{3}$	
$\sum_{k=0}^{\infty} x^{k},\|x\|<1$	
$\sum_{k=1}^{\infty} k x^{k-1},\|x\|<1$	$\frac{n(n+1)(2 n+1)}{6}$

TABLE 1 Set Identities.

Identity	Name
$A \cap U=A$	Identity laws
$A \cup \emptyset=A$	
$A \cup U=U$	Domination laws
$A \cap \emptyset=\emptyset$	Idempotent laws
$A \cup A=A$	Complementation law
$A \cap A=A$	Commutative laws
$\overline{(\bar{A})}=A$	
$A \cup B=B \cup A$	Associative laws
$A \cap B=B \cap A$	Distributive laws
$A \cup(B \cup C)=(A \cup B) \cup C$	
$A \cap(B \cap C)=(A \cap B) \cap C$	De Morgan's laws
$A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$	
$A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$	Absorption laws
$\overline{A \cap B}=\bar{A} \cup \bar{B}$	
$\overline{A \cup B}=\bar{A} \cap \bar{B}$	
$A \cup(A \cap B)=A$	
$A \cap(A \cup B)=A$	
$A \cup \bar{A}=U$	
$A \cap \bar{A}=\emptyset$	

