CSCI 2200-Spring 2014

Exam 1 - Solutions

Name:

1. ($15=7+8$ points) Using propositional logic, write a statement that contains the propositions p, q, and r that is true when both $p \rightarrow q$ and $q \leftrightarrow \neg r$ are true and is false otherwise. Your statement must be written as specified below.
Graded by Yuriy (both (a) and (b))
(a) Write the statement in disjunctive normal form.

$$
(p \wedge q \wedge \neg r) \vee(\neg p \wedge q \wedge \neg r) \vee(\neg p \wedge \neg q \wedge r)
$$

(b) Write the statement using only the \vee and \neg connectives.

$$
\neg(\neg p \vee \neg q \vee r) \vee \neg(p \vee \neg q \vee r) \vee \neg(p \vee q \vee \neg r)
$$

Name:

\qquad
2. ($15=5 \times 3$ points) Consider the following propositional functions:
$D(x):$ " x is a dog."
$H(x): " x$ is happy."
$F(x)$:" x is fluffy."
$L(x)$: " x likes cheese."
Let the universe of discourse be all mammals.
Translate the following statements into predicate logic.
Graded by Scott ((a) - (e))
(a) Not all dogs are fluffy.

$$
\exists x(D(x) \wedge \neg F(x))
$$

(b) All fluffy dogs like cheese.

$$
\forall x((D(x) \wedge F(x)) \rightarrow L(x))
$$

(c) All dogs are happy and some of them are fluffy.

$$
\forall x(D(x) \rightarrow H(x)) \wedge \exists x(D(x) \wedge F(x))
$$

(d) If Taz is a dog, then Taz likes cheese.

$$
D(\mathrm{Taz}) \rightarrow L(\mathrm{Taz})
$$

(e) There is only one dog who is fluffy, happy, and likes cheese.

$$
\exists!x(D(x) \wedge F(x) \wedge H(x) \wedge L(x))
$$

3. (10 points) Determine whether the following argument is valid and give a formal proof of your answer.

$$
\begin{aligned}
& p \rightarrow(\neg r \rightarrow \neg q) \\
\therefore & (p \wedge q) \rightarrow r
\end{aligned}
$$

Graded by Dean

The argument is valid.

1. $p \rightarrow(\neg r \rightarrow \neg q) \quad$ premise
2. $\neg p \vee(\neg r \rightarrow \neg q) \quad$ Table 7, equiv. 1 applied to (1)
3. $\neg p \vee(\neg \neg r \vee \neg q) \quad$ Table 7 , equiv. 1 applied to (2)
4. $\neg p \vee(r \vee \neg q) \quad$ double negation equiv. applied to (3)
5. $\neg p \vee(\neg q \vee r) \quad$ commutative equiv. applied to (4)
6. $(\neg p \vee \neg q) \vee r \quad$ associative equiv. applied to (5)
7. $\neg(p \wedge q) \vee r \quad$ DeMorgan's Law applied to (6)
8. $(p \wedge q) \rightarrow r \quad$ Table 7, equiv. 1 applied to (7)

Name:

4. (10 points) A number n is a multiple of 3 if $n=3 k$ for some integer k.

Prove that if n^{2} is a multiple of 3 , then n is a multiple of 3 .

Graded by Stacy

Note: This question should have specified that n is an integer. To help compensate for this omission, the lowest score you can receive on this question is 5/10. Contact Stacy if you have any questions.

This is a proof by contraposition. Assume that n is not a multiple of 3 . Then, either $n=3 k+1$ for some integer k or $n=3 k+2$ for some integer k. We consider each case separately.

Case 1: $n=3 k+1$
If $n=3 k+1$, then $n^{2}=9 k^{2}+6 k+1=3\left(3 k^{2}+2 k\right)+1$. So, $n^{2}=3 j+1$ where $j=3 k^{2}+2 k$ is an integer. Therefore, n^{2} is not a multiple of 3 .

Case 2: $n=3 k+2$
If $n=3 k+2$, then $n^{2}=9 k^{2}+12 k+4=3\left(3 k^{2}+4 k+1\right)+1$. So, $n^{2}=3 j+1$ where $j=3 k^{2}+4 k+1$ is an integer. Therefore, n^{2} is not a multiple of 3 .
Q.E.D.
5. (10 points) Prove that if x is an irrational number, then $\frac{1}{x}$ is irrational. Note that if x is irrational, then $x \neq 0$.

Graded by Dean

This is a proof by contraposition. Assume that $\frac{1}{x}$ is rational. By definition of a rational number, $\frac{1}{x}=\frac{p}{q}$ for some integers p and q, with $q \neq 0$. We also know that $\frac{1}{x}$ cannot equal 0 , since there is no way to divide 1 by anything and get 0 . Thus, $p \neq 0$.

It follows that $x=\frac{q}{p}$, which means that x can be written as $\frac{r}{s}$, where $r=q$ and $s=p$ are integers, with $s \neq 0$. Therefore, x is rational. Q.E.D.
6. ($6=3+3$ points) Let $A_{i}=\{0,1,2, \ldots i\}$. What are the contents of the set A, where A is as defined below? You can explain your answer using English or set builder notation. You do not need to use logical expressions.

Graded by Scott

(a) $A=\bigcap_{i=1}^{n} A_{i}$.

Answer: $A=A_{1}=\{0,1\}$
(b) $A=\bigcup_{i=1}^{n} A_{i}$.

Answer: $A=A_{n}=\{0,1,2, \ldots, n\}$.
7. ($10=5 \times 2$ points) Circle True or False for each of the following statements.

Graded by Dean

(a) There is a set A such that $\mathcal{P}(A)=12 \quad$ True False
(b) $|\{\emptyset\} \times\{1,2\}|=0$

True
False
(c) For all sets, A, B, and C,
$(A \cup B) \cup(A \cap C)-B=A$
True False
Counterexample:
$A=\{1,2\}, B=\{1\}, C=\emptyset$
$(A \cup B) \cup(A \cap C)-B=\{2\} \neq A$
(d) $\sqrt{2} \in \mathbf{Q}$

True False
(e) For all sets A and $B, A \cup B=\overline{\bar{A} \cup \bar{B}}$

True
False

Name:

\qquad
8. (10 points) Using the definitions from set theory and the set identities, prove that $A-(B \cap C)=(A \cap \bar{B}) \cup(A \cap \bar{C})$.

Graded by Scott

$$
\begin{aligned}
A-(B \cap C) & =\{x \mid x \in(A-(B \cap C))\} & & \text { by definition of set builder notation } \\
& =\{x \mid(x \in A) \wedge(x \notin(B \cap C))\} & & \text { by definition of difference } \\
& =\{x \mid(x \in A) \wedge \neg(x \in(B \cap C))\} & & \text { by definition of } \notin \\
& =\{x \mid(x \in A) \wedge((\neg(x \in B) \vee \neg(x \in C))\} & & \text { by DeMorgan's Law for propositional logic } \\
& =\{x \mid(x \in A) \wedge((x \notin B) \vee(x \notin C))\} & & \text { by definition of } \notin \\
& =\{x \mid(x \in A) \wedge((x \in \bar{B}) \vee(x \in \bar{C}))\} & & \text { by definition of complement } \\
& =\{x \mid(x \in A) \wedge(x \in \bar{B} \cup \bar{C})\} & & \text { by definition of union } \\
& =\{x \mid x \in A \cap(\bar{B} \cup \bar{C})\} & & \text { by definition of intersection } \\
& =\{x \mid x \in(A \cap \bar{B}) \cup(A \cap \bar{C})\} & & \text { by distributive identity for sets } \\
& =(A \cap \bar{B}) \cup(A \cap \bar{C}) & & \text { by definition of set builder notation }
\end{aligned}
$$

9. ($4=4 \times 1$ points) Circle True or False for each of the following statements.

Graded by Stacy (both (a) and (b)))
(a) Let $f: \mathbf{N} \rightarrow \mathbf{N}$ be $f(x)=4 x+1$
f is injective. True False
f is surjective. True False There is no $x \in \mathbf{N}$ for which $f(x)=2$.
(b) Let $f: \mathbf{Z} \rightarrow \mathbf{Z}$ be $f(x)=3 x^{4}-3$
f is injective. True False
f is surjective. True False

