CSCI 2200 - Spring 2015

Exam 1

Name:

Instructions:

- Write your name on the **front and back** of this cover sheet and **sign the bottom of this page**.
- You have <u>100 minutes</u> to complete this exam. The exam is worth a total of 100 points.
- Put away laptop computers and other electronic devices. Calculators are NOT allowed. Cheating on an exam will result in an **immediate** \mathbf{F} for the entire course.
- A one page, two-sided crib sheet is allowed. Rulers are also allowed.
- Write your answers clearly and completely.
- Logical equivalences and rules of inference are given on the last page.
- Please read each question carefully several times before beginning to work and especially before asking questions. We generally will not answer questions except when there is a glaring mistake or ambiguity in the statement of a question.

I will not discuss the contents of this exam in the presence of anyone who has not yet taken the exam.

Signature: ____

Date: _____

Name:

Problem 1 (12)	
Problem 2 (16)	
Problem 3 (7)	
Problem 4 (10)	
Problem 5 (20)	
Problem 6 (10)	
Problem 7 (15)	
Problem 8 (10)	
Total (100)	

1. (6+6=12 points) Graded by Ashwin

(a) Using propositional logic, write a statement that contains the propositions p, q, and r that is true only when exactly one of p, q, and r is false. Your statement should only use the logical connectives \neg, \lor and \land .

 $(p \land q \land \neg r) \lor (p \land \neg q \land r) \lor (\neg p \land q \land r)$

This solution can be obtained by creating a truth table and generating the DNF.

(b) Give a proposition that is equivalent to $(\neg p \land \neg q) \lor r$ that only uses the propositions p, q, and r, and the logical connectives \neg and \rightarrow .

$$\begin{array}{rcl} \neg p \wedge \neg q) \lor r & \equiv & \neg (p \lor q) \lor r \\ & \equiv & (p \lor q) \to r \\ & \equiv & (\neg p \to q) \to r \end{array}$$

2. $(4 \times 4=16 \text{ points})$ Graded by Stacy

Consider the following propositional functions:

S(x, y): "x saw y." L(x, y): "x likes y." A(y): "y is an award winning movie." C(y): "y is a comedy."

Let the domain for the x be all people and the domain for y be all movies. Translate the following statements into predicate logic.

(a) There is an award-winning movie that is not a comedy.

$$\exists y \ (A(y) \land \neg C(y))$$

(b) Someone has seen every award-winning comedy.

$$\exists x \; \forall y \; ((C(y) \land A(y)) \to S(x,y)$$

(c) No one liked every movie he has seen.

$$\neg \exists x \; \forall y \; (S(x,y) \to L(x,y))$$

(d) Taz only likes movies that win awards.

$$\forall y \ (L(Taz, y) \to A(y))$$

3. (7 points) Determine whether the following argument is valid and prove your answer.

$$p \to (q \lor r)$$
$$q \land \neg r$$
$$\therefore \quad p$$

Solution: (Graded by Lingxun)

It's not valid. A counterexample is p = False, q = True, r = False, which satisfies both premises but with p = False.

4. (10 points) Prove that the square root of any (positive) irrational number is irrational.Solution: (Graded by Lingxun)

Proof by contraposition. We need to prove that if a number x is rational, then x^2 is also rational.

Assume a number x is rational, so $x = \frac{a}{b}$, where a and b are integers and $b \neq 0$.

Thus, $x^2 = \frac{a^2}{b^2}$. Because a and b are integers, a^2 and b^2 are also integers. Because $b \neq 0$, $b^2 \neq 0$. Therefore, x^2 is rational.

5. (20 points) Let n be an integer between 0 and 99. Note that $n = 10 \cdot a + b$, for some integers a and b, with $0 \le a \le 9$ and $0 \le b \le 9$. The integers a and b are the digits of n. Prove that n is divisible by 3 if and only if the sum of its digits is divisible by 3.

Solution: Graded by Ridwan

First we show that if 10a + b is divisible by 3, then a + b is divisible by 3. Assume 10a + b is divisible by 3. Then 10a + b = 3k for some integer k. Therefore,

$$a + b = 3k - 9a = 3(k - 3a).$$

So a + b = 3j where j = k - 3a is an integers. Therefore a + b is divisible by 3.

Next we show that if a + b is divisible by 3 then 10a + b is divisible by 3. Assume a + b is divisible by 3 Then a + b = 3k for some integer k. Therefore,

$$a + b + 9a = 3k + 9a$$

 $10a + b = 3(k + 3a),$

So 10a + b = 3j where j = k + 3a is an integer. Therefore 10a + b is divisible by 3.

So, we have shown that n is divisible by 3 if and only if the sum of digits is divisible by 3. QED.

6. (15 points) Prove that for all real numbers x and y, $|x - y| \ge |x| - |y|$.

Solution: (Graded by Jai)

(definition of absolute value: |a| = a, if $a \ge 0$ and |a| = -a, if a < 0.)

There are four cases that need be considered. They are: (i) $x \ge 0$, $y \ge 0$ (ii) x < 0, y < 0 (iii) $x \ge 0$, y < 0, and (iv) x < 0, $y \ge 0$.

Case (i) $x \ge 0, y \ge 0$ Since $x \ge 0$ and $y \ge 0, |x| = x$ and |y| = y. Therefore |x| - |y| = x - y, By definition of absolute value, it holds that $|x - y| \ge x - y$, so $|x - y| \ge |x| - |y|$.

Case(ii) x < 0, y < 0In this case, |x| = -x and |y| = -y. Thus |x| - |y| = -x - (-y) = y - x. Note that, by definition of absolute value, |x - y| = |-(x - y)| = |y - x|. And, as in the previous case, $|y - x| \ge y - x$. Therefore, $|x - y| \ge |x| - |y|$.

Case (iii) $x \ge 0$, y < 0In this case, |x| = x and |y| = -y, so |x| - |y| = x - (-y) = x + y|x - y| = x - y, as this number will always be positive (given that $x \ge 0$ and y < 0). $x - y \ge x + y$ holds true for all y < 0. Therefore, $|x - y| \ge |x| - |y|$ holds true.

Case (iv) x < 0, $y \ge 0$ Since x < 0, |x| = -x, and |y| = y, as $y \ge 0$. Thus, |x| - |y| = -x - y. |x - y| = -(x - y), as x - y will always be negative given that x < 0 and $y \ge 0$. $y - x \ge -x - y$ holds true for all $y \ge 0$. Therefore, $|x - y| \ge |x| - |y|$ holds true.

As $|x-y| \ge |x| - |y|$ holds true in all the cases, it can be concluded that $|x-y| \ge |x| - |y|$ is true. QED

7. (10 points) Give a proof by contradiction that for all positive real numbers x, $\frac{x}{(x+1)} < \frac{(x+1)}{(x+2)}$.

Solution (graded by Ashwin)

This is a proof by contradiction. Assume that x is positive and $\frac{x}{(x+1)} > \frac{(x+1)}{(x+2)}$. Then, x(x+2) > (x+1)(x+1), which means $x^2 + 2x > x^2 + 2x + 1$. Since x > 0, this inequality does not hold. Thus a contradiction has been found. So, for all positive real numbers x, $\frac{x}{(x+1)} < \frac{(x+1)}{(x+2)}$.

- 8. (3+3+4=10 points) Graded by Ashwin,Lingxun
 - (a) Let A, B, and C be sets. According to the inclusion-exclusion principle, what is $|A \cup B \cup C|$?

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B| - |B \cap C| - |A \cap C| + |A \cap B \cap B|$$

(b) Let $A = \{0, 1, 2, 3, 4, 5\}$ and let $B = \{a, b, c\}$. What is $|\mathcal{P}(B) \times A|$?

The cardinality of A is |A| = 6. The cardinality of B is |B| = 3, so $|\mathcal{P}(B)| = 2^3 = 8$. Therefore, $|\mathcal{P}(B) \times A| = 8 \times 6 = 48$.

(c) Disprove the following claim: for all sets X and Y, $\mathcal{P}(X \cup Y) \subseteq \mathcal{P}(X) \cup \mathcal{P}(Y)$.

Counterexample:

Let $X = \{1\}$ and let $Y = \{2\}$. Then, $\mathcal{P}(X) = \{\emptyset, \{1\}\}, \mathcal{P}(Y) = \{\emptyset, \{2\}\}, \text{ and } \mathcal{P}(X) \cup \mathcal{P}(Y) = \{\emptyset, \{1\}, \{2\}\}.$ The power set of the union of X and Y is $\mathcal{P}(X \cup Y) = \{\emptyset, \{1\}, \{2\}, \{1, 2\}\}.$ Since, $\{1, 2\} \notin \mathcal{P}(X) \cup \mathcal{P}(Y)$, the claim does not hold.

[SCRATCH PAPER]