CSCI 2200-Spring 2015

Exam 1

Name: \qquad

Instructions:

- Write your name on the front and back of this cover sheet and sign the bottom of this page.
- You have 100 minutes to complete this exam. The exam is worth a total of 100 points.
- Put away laptop computers and other electronic devices. Calculators are NOT allowed. Cheating on an exam will result in an immediate \mathbf{F} for the entire course.
- A one page, two-sided crib sheet is allowed. Rulers are also allowed.
- Write your answers clearly and completely.
- Logical equivalences and rules of inference are given on the last page.
- Please read each question carefully several times before beginning to work and especially before asking questions. We generally will not answer questions except when there is a glaring mistake or ambiguity in the statement of a question.

I will not discuss the contents of this exam in the presence of anyone who has not yet taken the exam.

Signature:

\qquad Date: \qquad

Name:

Problem 1 (12)	
Problem 2 (16)	
Problem 3 (7)	
Problem 4 (10)	
Problem 5 (20)	
Problem 6 (10)	
Problem 7 (15)	
Problem 8 (10)	
Total (100)	

1. $(6+6=12$ points) Graded by Ashwin

(a) Using propositional logic, write a statement that contains the propositions p, q, and r that is true only when exactly one of p, q, and r is false. Your statement should only use the logical connectives \neg, \vee and \wedge.
$(p \wedge q \wedge \neg r) \vee(p \wedge \neg q \wedge r) \vee(\neg p \wedge q \wedge r)$
This solution can be obtained by creating a truth table and generating the DNF.
(b) Give a proposition that is equivalent to $(\neg p \wedge \neg q) \vee r$ that only uses the propositions p, q, and r, and the logical connectives \neg and \rightarrow.

$$
\begin{aligned}
\neg p \wedge \neg q) \vee r & \equiv \neg(p \vee q) \vee r \\
& \equiv(p \vee q) \rightarrow r \\
& \equiv(\neg p \rightarrow q) \rightarrow r
\end{aligned}
$$

2. ($4 \times 4=16$ points) Graded by Stacy

Consider the following propositional functions:
$S(x, y)$: " x saw y."
$L(x, y): " x$ likes $y . "$
$A(y): " y$ is an award winning movie."
$C(y): " y$ is a comedy."
Let the domain for the x be all people and the domain for y be all movies. Translate the following statements into predicate logic.
(a) There is an award-winning movie that is not a comedy.

$$
\exists y(A(y) \wedge \neg C(y))
$$

(b) Someone has seen every award-winning comedy.

$$
\exists x \forall y((C(y) \wedge A(y)) \rightarrow S(x, y)
$$

(c) No one liked every movie he has seen.

$$
\neg \exists x \forall y(S(x, y) \rightarrow L(x, y))
$$

(d) Taz only likes movies that win awards.

$$
\forall y(L(T a z, y) \rightarrow A(y))
$$

3. (7 points) Determine whether the following argument is valid and prove your answer.

$$
\begin{aligned}
& p \rightarrow(q \vee r) \\
& q \wedge \neg r \\
\therefore \quad & p
\end{aligned}
$$

Solution: (Graded by Lingxun)

It's not valid. A counterexample is $p=$ False, $q=$ True, $r=$ False, which satisfies both premises but with $p=$ False.
4. (10 points) Prove that the square root of any (positive) irrational number is irrational.

Solution: (Graded by Lingxun)

Proof by contraposition. We need to prove that if a number x is rational, then x^{2} is also rational.

Assume a number x is rational, so $x=\frac{a}{b}$, where a and b are integers and $b \neq 0$.
Thus, $x^{2}=\frac{a^{2}}{b^{2}}$. Because a and b are integers, a^{2} and b^{2} are also integers. Because $b \neq 0$, $b^{2} \neq 0$. Therefore, x^{2} is rational.
5. (20 points) Let n be an integer between 0 and 99 . Note that $n=10 \cdot a+b$, for some integers a and b, with $0 \leq a \leq 9$ and $0 \leq b \leq 9$. The integers a and b are the digits of n.
Prove that n is divisible by 3 if and only if the sum of its digits is divisible by 3 .

Solution: Graded by Ridwan

First we show that if $10 a+b$ is divisible by 3 , then $a+b$ is divisible by 3 .
Assume $10 a+b$ is divisible by 3 . Then $10 a+b=3 k$ for some integer k. Therefore,

$$
a+b=3 k-9 a=3(k-3 a) .
$$

So $a+b=3 j$ where $j=k-3 a$ is an integers. Therefore $a+b$ is divisible by 3 .
Next we show that if $a+b$ is divisible by 3 then $10 a+b$ is divisible by 3 .
Assume $a+b$ is divisible by 3 Then $a+b=3 k$ for some integer k. Therefore,

$$
\begin{aligned}
a+b+9 a & =3 k+9 a \\
10 a+b & =3(k+3 a),
\end{aligned}
$$

So $10 a+b=3 j$ where $j=k+3 a$ is an integer. Therefore $10 a+b$ is divisible by 3 .
So, we have shown that n is divisible by 3 if and only if the sum of digits is divisible by 3 . QED.
6. (15 points) Prove that for all real numbers x and $y,|x-y| \geq|x|-|y|$.

Solution: (Graded by Jai)

(definition of absolute value: $|a|=a$, if $a \geq 0$ and $|a|=-a$, if $a<0$.)
There are four cases that need be considered. They are: (i) $x \geq 0, y \geq 0$ (ii) $x<0, y<0$ (iii) $x \geq 0, y<0$, and (iv) $x<0, y \geq 0$.

Case (i) $x \geq 0, y \geq 0$
Since $x \geq 0$ and $y \geq 0,|x|=x$ and $|y|=y$.
Therefore $|x|-|y|=x-y$, By definition of absolute value, it holds that $|x-y| \geq x-y$, so $|x-y| \geq|x|-|y|$.

Case(ii) $x<0, y<0$
In this case, $|x|=-x$ and $|y|=-y$. Thus $|x|-|y|=-x-(-y)=y-x$.
Note that, by definition of absolute value, $|x-y|=|-(x-y)|=|y-x|$.
And, as in the previous case, $|y-x| \geq y-x$. Therefore, $|x-y| \geq|x|-|y|$.

Case (iii) $x \geq 0, y<0$
In this case, $|x|=x$ and $|y|=-y$, so $|x|-|y|=x-(-y)=x+y$
$|x-y|=x-y$, as this number will always be positive (given that $x \geq 0$ and $y<0$).
$x-y \geq x+y$ holds true for all $y<0$.
Therefore, $|x-y| \geq|x|-|y|$ holds true.
Case (iv) $x<0, y \geq 0$
Since $x<0,|x|=-x$, and $|y|=y$, as $y \geq 0$.
Thus, $|x|-|y|=-x-y$.
$|x-y|=-(x-y)$, as $x-y$ will always be negative given that $x<0$ and $y \geq 0$.
$y-x \geq-x-y$ holds true for all $y \geq 0$.
Therefore, $|x-y| \geq|x|-|y|$ holds true.

As $|x-y| \geq|x|-|y|$ holds true in all the cases, it can be concluded that $|x-y| \geq|x|-|y|$ is true. QED
7. (10 points) Give a proof by contradiction that for all positive real numbers $x, \frac{x}{(x+1)}<\frac{(x+1)}{(x+2)}$.

Solution (graded by Ashwin)

This is a proof by contradiction.
Assume that x is positive and $\frac{x}{(x+1)}>\frac{(x+1)}{(x+2)}$. Then, $x(\mathrm{x}+2)>(\mathrm{x}+1)(\mathrm{x}+1)$, which means $x^{2}+2 x>x^{2}+2 x+1$. Since $x>0$, this inequality does not hold. Thus a contradiction has been found. So, for all positive real numbers $x, \frac{x}{(x+1)}<\frac{(x+1)}{(x+2)}$.
8. $(3+3+4=10$ points) Graded by Ashwin,Lingxun
(a) Let A, B, and C be sets. According to the inclusion-exclusion principle, what is $|A \cup B \cup C|$?

$$
|A \cup B \cup C|=|A|+|B|+|C|-|A \cap B|-|B \cap C|-|A \cap C|+|A \cap B \cap B|
$$

(b) Let $A=\{0,1,2,3,4,5\}$ and let $B=\{a, b, c\}$. What is $|\mathcal{P}(B) \times A|$?

The cardinality of A is $|A|=6$.
The cardinality of B is $|B|=3$, so $|\mathcal{P}(B)|=2^{3}=8$.
Therefore, $|\mathcal{P}(B) \times A|=8 \times 6=48$.
(c) Disprove the following claim: for all sets X and $Y, \mathcal{P}(X \cup Y) \subseteq \mathcal{P}(X) \cup \mathcal{P}(Y)$.

Counterexample:
Let $X=\{1\}$ and let $Y=\{2\}$.
Then, $\mathcal{P}(X)=\{\emptyset,\{1\}\}, \mathcal{P}(Y)=\{\emptyset,\{2\}\}$, and $\mathcal{P}(X) \cup \mathcal{P}(Y)=\{\emptyset,\{1\},\{2\}\}$.
The power set of the union of X and Y is $\mathcal{P}(X \cup Y)=\{\emptyset,\{1\},\{2\},\{1,2\}\}$.
Since, $\{1,2\} \notin \mathcal{P}(X) \cup \mathcal{P}(Y)$, the claim does not hold.
[SCRATCH PAPER]

