CSCI 2200 - Spring 2015

Exam 2

Name: \qquad

Instructions:

- Write your name on the front and back of this cover sheet and sign the bottom of this page.
- You have 100 minutes to complete this exam. The exam is worth a total of 100 points.
- Put away laptop computers and other electronic devices. Calculators are NOT allowed. Cheating on an exam will result in an immediate \mathbf{F} for the entire course.
- A one page, two-sided crib sheet is allowed. Rulers are also allowed.
- Write your answers clearly and completely.
- Useful summation formulae are given on the last page.
- Please read each question carefully several times before beginning to work and especially before asking questions. We generally will not answer questions except when there is a glaring mistake or ambiguity in the statement of a question.

I will not discuss the contents of this exam in the presence of anyone who has not yet taken the exam.
\qquad Date: \qquad

Name:

Problem 1 (8)	
Problem 2 (4)	
Problem 3 (15)	
Problem 4 (15)	
Problem 5 (20)	
Problem 6 (20)	
Problem 7 (10)	
Problem 8 (8)	
Total (100)	

1. ($8=4 \times 2$ points) Let A be the set of all integers. Let B be the set of all positive multiples of 4 . Let $C=\{1,2,3,4,5\}$. Let $D=\{0,1\}$.
Circle TRUE or FALSE
(a) $|A|>|B| \quad$ TRUE FALSE
(b) There is at least one surjective function from B to A.

TRUE
FALSE
(c) There are exactly 5 ! functions from C to A.

TRUE
FALSE
(d) The function $f(x)=x^{2}$ is an injective function from D to A TRUE FALSE

Solution:

(a) FALSE: A and B both have cardinality aleph-naught.
(b) TRUE: Since A and B have the same cardinality, there exists a bijection between them.
(c) FALSE: There are infinitely many functions that map C to A.
(d) TRUE: $f(0)=0$ and $f(1)=1$. Therefore, f is an injective function from D to A.
2. (4 points) A set S of numbers is defined recursively by

Basis step: $2 \in S$
Recursive step: If $x \in S$ then $x+3 \in S$ and $2 x \in S$.

Which of the following numbers are elements of S ? Circle all that apply.
(a) 6
(b) 7
(c) 19
(d) 12

Solution: (b) and (c) are elements of S.
7 can be generated from the recursive definition by $2 \cdot 2+3$.
19 can be generated from the recursive definition by $2 \cdot 2 \cdot 2 \cdot 2+3$.
3. (15 points) (Graded by Jai)

Prove by mathematical induction that, for every positive integer $n, 3^{2 n}-1$ is divisible by 8 .

Solution:

This is proof by induction.

Basis step: $(n=1) 3^{2 \cdot 1}-1=9-1=8$, and 8 is divisible by 8 .

Inductive step: Assume $3^{2 k}-1$ is divisible by 8 , or equivalently, $3^{2 k}-1=8 r$ for some integer r.
We will show this implies, $3^{2(k+1)}-1$ is divisible by 8 , or equivalently, that $3^{2(k+1)}-1=8 s$ for some integer s.

$$
3^{2(k+1)}-1=3^{2} \cdot 3^{2 k}-1=9\left(3^{2 k}-1\right)+9-1=9\left(3^{2 k}-1\right)+8 .
$$

Applying the inductive hypothesis, we obtain

$$
9\left(3^{2 k}-1\right)+8=9(8 r)+8=8(9 r+1) .
$$

Therefore, $3^{2(k+1)}-1=8 s$, where $s=9 r+1$ is an integer. So $3^{2(k+1)}-1$ is divisible by 8 . QED
4. (15 points) (Graded by Ashwin)

McDonald's sells Chicken McNuggets in 4, 6, 9 and 20 piece boxes. Give a proof by strong induction that for any integer $n \geq 24$, we can always obtain exactly n McNuggets by buying multiple boxes.

Solution:

This is a proof by strong induction.

Basis step:

For $n=24$, we can buy one 20 piece box and one 4 piece box.
For $n=25$, we can buy one 4 piece box, two 6 piece boxes, and one 9 piece box.
For $n=26$, we can buy two 4 piece boxes and three six piece boxes.
For $n=27$, we can buy three 9 piece boxes.

Inductive step: Assume we can get j McNuggets by buying multiple 4, 6, 9 and 20 piece boxes, where $24 \leq j \leq k$, and $k \geq 27$.
We will show this implies we can get $k+1$ McNuggets by buying multiple 4, 6, 9 and 20 piece boxes.
By the inductive hypothesis, we can get $k-3 \mathrm{McNuggets}$ by buying multiple 4, 6, 9 and 20 piece boxes.
We buy one more 4 piece box to obtain $k+1 \mathrm{McNug}$ gets.
QED
5. $(8+12=20$ points) (Graded by Lingxun)
(a) Consider a full binary tree T. Let $L(T)$ denote the number of leaf nodes in T, i.e., the number of nodes in T without children. Give a recursive definition of $L(T)$.

Solution:

Basis step: For a full binary tree T consisting of a single node, $L(T)=1$.
Recursive step: If T_{1} and T_{2} are disjoint full binary trees, then for $T=T=T_{1} \circ T_{2}$,

$$
L(T)=L\left(T_{1}\right)+L\left(T_{2}\right) .
$$

(b) Recall the recursive definition of the number of nodes in a full binary tree.

Basis step: The number of nodes in a full binary tree T consisting of a single node is $N(T)=1$.
Recursive step: If T_{1} and T_{2} are full binary trees, then the number of nodes in the full binary tree $T=T_{1} \circ T_{2}$ is $N(T)=1+N\left(T_{1}\right)+N\left(T_{2}\right)$.
Prove by structural induction that for any full binary tree $T, L(T)=\frac{N(T)+1}{2}$.

Solution:

This is a proof by structural induction.
Basis step: For a full binary tree T consisting of a single node, $L(T)=1, N(T)=1$, and $1=\frac{1+1}{2}$.

Recursive step: Assume that for disjoint full binary trees T_{1} and $T_{2}, L\left(T_{1}\right)=\frac{N\left(T_{1}\right)+1}{2}$ and $L\left(T_{2}\right)=\frac{N\left(T_{2}\right)+1}{2}$.
We will show this implies that for $T=T_{1} \circ T_{2}, L(T)=\frac{N(T)+1}{2}$.
By the definition of $L(T), L(T)=L\left(T_{1}\right)+L\left(T_{2}\right)$.
Applying the inductive hypothesis, we obtain

$$
\begin{aligned}
L(T) & =\frac{N\left(T_{1}\right)+1}{2}+\frac{N\left(T_{2}\right)+1}{2} \\
& =\frac{N\left(T_{1}\right)+N\left(T_{2}\right)+1+1}{2} \\
& =\frac{N(T)+1}{2},
\end{aligned}
$$

where the last equality follows from the recursive definition of $N(T)$.
QED
6. $(8+12=20$ points) (Graded by Ridwan)

Consider the following recursive algorithm:

```
procedure mystery(n: positive integer)
    if }n=1\mathrm{ then return 1
    else return n}\mp@subsup{n}{}{2}+\mathrm{ mystery ( }n-1
```

(a) Conjecture a closed formula (without a summation) for the number returned by mystery (n).

Solution: mystery (n) returns $\sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6}$.
(b) Give a proof by induction that your conjecture is correct.

Solution:

This is a proof by induction.
Basis step: $(n=1)$ mystery (1) returns 1, and $\frac{1(1+1)(2 \cdot 1+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1$.
Inductive step:
Assume mystery (k) returns $\frac{k(k+1)(2 k+1)}{6}$. We will show this implies mystery $(k+1)$ returns $\frac{(k+1)((k+1)+1)(2(k+1)+1)}{6}=\frac{(k+1)(k+2)(2 k+3)}{6}$.
According to the pseudocode, mystery $(k+1)$ returns $(k+1)^{2}+$ mystery (k).
It follows from the inductive hypothesis that mystery $(k+1)$ returns $(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6}$. Simplifying this expression, we obtain,

$$
\begin{aligned}
(k+1)^{2}+\frac{k(k+1)(2 k+1)}{6} & =\frac{6(k+1)(k+1)+k(k+1)(2 k+1)}{6} \\
& =\frac{(k+1)(6(k+1)+k(2 k+1)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+3)}{6} .
\end{aligned}
$$

QED
7. (10 points) (Graded by Stacy)

A factory makes automobile parts. Each part has a serial number consisting of a digit (from 0 to 9), an uppercase letter (from the English alphabet), and another digit (from 0 to 9), where the digits must be distinct. Example serial numbers are $5 \mathrm{C} 7,1 \mathrm{P} 6$, and 3 Z 0 .
(a) Suppose the factory manufactured 5,000 parts last week. What is the largest integer m for which we can guarantee that at least m of those parts had identical serial numbers?

Solution: 3
(b) Prove your answer to part (a).

Solution:

The number of distinct serial numbers is $10 \cdot 26 \cdot 9=2340$.
By the generalized pigeonhole principle, there is at at least one serial number for which at least $\left\lceil\frac{5000}{2340}\right\rceil=3$ parts use that serial number.
8. (8 points) Circle all that are equivalent to $\binom{26}{5}$.
(a) The number of distinct strings of length 5 that can be generated from the uppercase English alphabet.
(b) The number of ways I can select 22 scoops of ice cream from 5 ice cream flavors.
(c) The number of distinct bit strings of length 21 that contain exactly 5 ones.
(d) The coefficient of $x^{5} y^{21}$ in the binomial expansion of $(x+y)^{26}$.

Solution: (d) is the only item that is equivalent to $\binom{26}{5}$
(a) The number of distinct strings of length 5 that can be generated from the uppercase English alphabet is 26^{5}, which is not equal to $\binom{26}{5}$.
(b) The number of ways I can select 22 scoops of ice cream from 5 ice cream flavors is $\binom{26}{4}$.
(c) The number of distinct bit strings of length 21 that contain exactly 5 ones is $\binom{21}{5}$.
(d) According to the binomial theorem, the coefficient of $x^{5} y^{21}$ is $\binom{26}{21}=\binom{26}{5}$.

