Foundations of Computer Science- CSCI 2200 Exam 2 - Selected Solutions

Question 3 (12 points). Prove by mathematical induction that, for all positive integers $n, \sum_{j=1}^{n} j 2^{j}<n 2^{n+1}$.

Solution:

We will prove this by mathematical induction. Let $P(n)$ denote $\sum_{j=1}^{n} j 2^{j}<n 2^{n+1}$.

Basis Step:

$\sum_{j=1}^{1} j 2^{j}=1 \cdot 2^{1} \quad$ and $n 2^{n+1}=1 \cdot 2^{2}=4$.
Since, $2<4, \mathrm{P}(1)$ is true.

Inductive Step:
We assume that $P(k)$ is true, i.e., for $k \geq 1 \sum_{j=1}^{k} j 2^{j}<k 2^{k+1}$.
We will show this implies $P(k+1)$ is true, i.e., $\sum_{j=1}^{k+1} j 2^{j}<(k+1) 2^{k+2}$.

$$
\begin{aligned}
\sum_{j=1}^{k+1} j 2^{j} & =\sum_{j=1}^{k} j 2^{j}+(k+1) 2^{k+1} \\
& <k 2^{k+1}+(k+1) 2^{k+1} \quad(\text { by the inductive hypothesis }) \\
& =(k+k+1) 2^{k+1} \\
& =(2 k+1) 2^{k+1} \\
& \leq 2(k+1) 2^{k+1} \quad(\text { since } k \geq 1) \\
& =(k+1) 2^{k+1+1} \\
& =(k+1) 2^{k+2}
\end{aligned}
$$

Therefore, $P(k)$ implies $P(k+1)$, and by mathematical induction $\sum_{j=1}^{n} j 2^{j}<n 2^{n+1}$ for all integers $n \geq 1$.

QED

Question 4 (12 points). Consider the sequence:
$a_{1}=1$
$a_{2}=5$
$a_{n}=5 a_{n-1}-6 a_{n-2}$ for $n \geq 3$
Give a proof by strong induction that $a_{n}=3^{n}-2^{n}$ for all positive integers n.

Solution:

This is a proof by strong induction.
Basis Step:
$n=1 \quad a_{1}=1 \quad 3^{1}-2^{1}=1$
$n=2 \quad a_{2}=5 \quad 3^{2}-2^{2}=5$
Inductive Step:
Assume $a_{j}=3^{j}-2^{j}$ for $1 \leq j \leq k, k \geq 2$.
We will show this implies $a_{k+1}=3^{k+1}-2^{k+1}$.
$a_{k+1}=5 a_{k}-6 a_{k-1}$ by definition

$$
\begin{aligned}
& =5\left(3^{k}-2^{k}\right)-6\left(3^{k-1}-2^{k-1}\right) \text { by the inductive hypothesis } \\
& =(5 \cdot 3-6) 3^{k-1}-(5 \cdot 2-6) 2^{k-1} \\
& =(15-6) 3^{k-1}-(10-6) 2^{k-1} \\
& =9 \cdot 3^{k-1}-4 \cdot 2^{k-1} \\
& =3^{k+1}-2^{k+1}
\end{aligned}
$$

QED

Question 5 ($\mathbf{1 7}=\mathbf{2}+\mathbf{5}+\mathbf{1 0}$ points). Recall the recursive definition of a full binary tree:
Basis step: A single vertex r is a full binary tree.
Recursive step: If T_{1} and T_{2} are disjoint full binary trees, then there is a full binary tree $T=T_{1} \circ T_{2}$ consisting of a root node r, with edges connecting to the roots of T_{1} and T_{2}.
(a) Give the recursive definition of the height $H(T)$ of a full binary tree.

Solution:

Basis step: For a full binary tree T consisting of a single node, $H(T)=0$.
Recursive step: For a full binary tree $T=T_{1} \circ T_{2}$, where T_{1} and T_{2} are disjoint full binary trees, $H(T)=1+\max \left(H\left(T_{1}\right), H\left(T_{2}\right)\right)$.
(b) An internal node of a full binary tree is any node that is not a leaf node. Give a recursive definition of the number of internal nodes $\mathcal{I}(T)$ in a full binary tree T.

Solution:

Basis step: For a full binary tree T consisting of a single node, $\mathcal{I}(T)=0$
Recursive step: For a full binary tree $T=T_{1} \circ T_{2}$, where T_{1} and T_{2} are disjoint full binary trees, $\mathcal{I}(T)=1+\mathcal{I}\left(T_{1}\right)+\mathcal{I}\left(T_{2}\right)$
(c) Prove that for any full binary tree $T, \mathcal{I}(T) \leq 2^{H(T)}-1$.

Solution:

This is a proof by structural induction.

Basis step:

For T consisting of a single node, we have $\mathcal{I}(T)=0$, and $2^{H(T)}-1=2^{0}-1=1-1=0$.
Thus, $\mathcal{I}(T) \leq 2^{H(T)}-1$.
Inductive step:. Assume that for disjoint full binary trees T_{1} and T_{2},

$$
\mathcal{I}\left(T_{1}\right) \leq 2^{H\left(T_{1}\right)}-1, \quad \mathcal{I}\left(T_{2}\right) \leq 2^{H(T)_{2}}-1
$$

We will show this implies that for $T=T_{1} \circ T_{2}$,

$$
\begin{aligned}
& \mathcal{I}(T) \leq 2^{H(T)}-1 . \\
& \qquad \begin{aligned}
\mathcal{I}(T) & =1+\mathcal{I}\left(T_{1}\right)+\mathcal{I}\left(T_{2}\right) \quad \text { by definition of } \mathcal{I}(T) \\
& \leq 1+\left(2^{H\left(T_{1}\right)}-1\right)+\left(2^{H\left(T_{2}\right)}-1\right) \quad \text { by the inductive hypothesis } \\
& =2^{H\left(T_{1}\right)}+2^{H\left(T_{2}\right)}+1-1-1 \\
& =2^{H\left(T_{1}\right)}+2^{H\left(T_{2}\right)}-1 \\
& \leq 2^{\max \left(H\left(T_{1}\right), H\left(T_{2}\right)\right)}+2^{\max \left(H\left(T_{1}\right), H\left(T_{2}\right)\right)}-1 \\
& =2 \cdot\left(2^{\max \left(H\left(T_{1}\right), H\left(T_{2}\right)\right)}\right)-1 \\
& =2^{\max \left(H\left(T_{1}\right), H\left(T_{2}\right)\right)+1}-1 \\
& =2^{H(T)}-1
\end{aligned}
\end{aligned}
$$

QED

