Sean Kermes
Billiards Project

The game of billiards provides a simple, yet surprisingly interesting simulation and planning problem. When considered as just a collection of circles in the plane, collision detection is as simple as it ever is, allowing the focus of the problem to remain elsewhere. Being able to simulate the action of a number of rolling pool balls is not in and of itself particularly useful, but the algorithm can often be modified slightly to be useful in other contexts. The inverse problem is also interesting: given the initial placement of a number of balls, and their desired locations, what velocities should we give them so that they all end up where we would like them to? This problem has useful applications in animation, where an animator often wants to specify the ending configuration of a number of objects, but simply changing the initial conditions is too non-intuitive to be useful. The main problem worked on is the shot planning problem. Given a cue ball, an object ball and a number of other balls, what initial velocity does the cue ball need in order to sink the object ball into the desired pocket? This problem differs from the path planning problems we discussed in class because of the method of control. With the unicycle or a similar robot the motion could be controlled at any time during its run, no matter how constrained that motion might be. In my problem, however, the only time at which I have any control over the motion of the system is in the initial velocity of a single ball. This makes the search methods discussed in class ill-suited to finding a shot in billiards.

The code I have written can be divided into two main parts: the simulator and the planner. The simulator is almost identical to the simulator described in the Lubachevsky paper ([4]). It has the slight addition of checking for balls entering pockets: each time a ball collides with a wall the simulator checks to see if the ball is sufficiently close to the center of a pocket so that it would fall in. If it is so close, the simulator removes the ball from the table (teleporting it to a location past the upper left corner) and sets its velocity to zero, so that it cannot be involved in any more collisions. It leaves the ball in the array, however, to avoid the hassle of making sure all the indices are properly updated. As a final detail, if the ball just sunk happens to be the object ball, the simulator makes a note of that fact. The two optimizations mentioned in [4] are absent from my simulator, however. The sectoring method of dividing the board into smaller segments so that one doesn’t have to check each pair of balls for collision times was abandoned in favor of the slower, but significantly easier to code naïve approach. He also mentions using a heap to store the events, so that the first step of choosing the next one can be accomplished in O(log n) time instead of the O(n) which my program takes, since it has to search through the whole list instead of updating a heap. My simulator also does not apply any frictional forces to the balls, either while rolling or during impact. Reasons for this are discussed later.

There are two papers which provide the basis for my simulator. The first, [4] does exactly that. It provides an algorithm to simulate a number of bodies in motion which experience what Lubachevsky refers to as “discrete asynchronous pairwise interactions.” What this means is that the balls, for the most part, move around independent of each other, except for isolated instances where two of them collide (the paper shows that the probability of three balls colliding at the same time is zero). The algorithm in this paper involves scheduling these pairwise interactions instead of proceeding from timestep to timestep. The algorithm finds the next collisions to occur and moves to that time, where it resolves the collision and updates the velocities of the affected balls, then feeds that new information back into the scheduler, to determine what those balls will hit next.

The other paper [2] describes a method of sectoring the table in order to increase the efficiency of the algorithm. By only having a ball consider balls in sectors near to it as possibilities for collision, and by considering moving from one sector to another as a type of collision (one which involves to change in velocity, but a change in the set of possible colliding balls) each ball does not have to check all the balls on the table after each collision. This sectoring method breaks down when most of the balls cluster in one sector, such as during the break, and in that case [2] recommends a dynamic sectoring approach, where a sector with too many balls in it is re-sectored until each sub-sector has a reasonable number of elements. As mentioned previously, this did not make it into the program.

The planner works in much the same way that I described in my proposal, with a few limitations. Because the simulator abandoned friction, all bounces have to be frictionless, which means that there is no leeway in the angle at which balls leave the rail, making the planning somewhat more constrained. Under the assumption that ball-to-ball collisions are elastic no spin could have been imparted to any ball but the cue, so this constraint does not affect the majority of the bounces. From some more reading on [1] I gather that in real billiards this is almost the case, except for very powerful hits with correspondingly large spin. The lack of friction also means that that there is nothing to be gained by having the cue ball spin. Since the two constraints on the cue’s velocity were that it would have to travel fast enough to hit its target with sufficient velocity to give that ball its required speed, and that it had to have a large enough linear velocity to allow it to spin as fast at it needed, and both of these constraints have since been removed by removing friction, there is really no constraint on the cue’s speed. Thus the planner finds the angle which it has to travel, and then assigns it x and y components of velocity with an arbitrary magnitude.

I have successfully added the ability for the planner to find combination shots. The method for doing so is similar to how I described it in my proposal, with some important differences. Because I am considering shots bouncing off the boundaries of the table, the equations for finding which balls are best for a particular shot are not very useful, since they only consider shots with no bouncing. Instead, I assume that any ball on the table could make a particular shot, though if possible the cue ball is preferable. If the cue ball is unable to make the shot in question, I iterate through all possible other balls until I find one which can make the shot. I then remove that one from the list of valid balls to make a shot, and find the location which the next ball in the chain will need to move to in order to strike it correctly. Then I start again, checking if the cue ball can make this new shot.

Because of the abandonment of friction, the work of [5] and [6] became rather less relevant to my planner. Conversely, [1] provided some useful inspiration for a new method of computing the location of bounces. The method described in my draft for finding a path for two rail bounces is overly complicated and confusing. The new method for finding the locations of the bounces can be discovered by examining figures 1 and 2.

 Figure 1

[image: image1.jpg]

 Figure 2
[image: image2.jpg]

Because bouncing off a rail only negates part of the velocity (in this case the y component) the magnitude remains unchanged. This means that if the three legs of the path were lined up end to end as shown in figure 2, they would make a straight line, whose slope is fairly simple to deduce. The change in y is the distance from ball 1 to the bottom, plus the distance from ball 2 to the top, plus the height of the table. The change in x is the horizontal distance from ball 1 to ball 2. Since the slope of any part of a straight line is the same as the slope of the whole thing, this allows us to easily get an equation for the line. The same technique can be applied to a path with a single bounce.

The problem of finding a path bouncing off two perpendicular rails is rather more difficult. Given a pair of rails and the location of the ball and the target, only one order of bounces makes sense: either clockwise or counterclockwise; the other order of bounces will never be able to complete the path. For a visual demonstration, see figures three and four. The problem with this is that while it is visually obvious which way to hit the ball, it is not so clear from a computer’s standpoint. This being a fairly trivial problem, I decided to put my efforts elsewhere, and it ended up not getting solved. Of course, had it been, an application of the above technique would have been sufficient to find the point on each rail where the bounce would occur.

[image: image3.jpg]

 Figure 3

In this situation, only

the clockwise bounce

 Figure 4

order works.

[image: image4.jpg]

The last thing that the planner does is estimate the time that it will take for all the balls to complete their bounces and sink the object ball. This is somewhat difficult, since each ball in the chain will move slower than the ball before, depending on how directly it was hit. Thus the planner makes a gross estimate by finding the total length of the path, then multiplying it by 1.5 times the velocity scalar originally applied to the cue. This is pure magic, but intuition suggests that it should provide a suitable upper bound for most cases.

As I left for Thanksgiving break, I was certain that I had a decent grasp on the equations in [5] and [6] that would allow me to add frictional bounces to the simulator. As I changed trains in New York I had written enough pseudocode to feel confident enough to begin writing real code. Somewhere near Philadelphia I was pretty sure I had it working. However, by the time I got all the way home it was apparent that something was very, very wrong. Over the course of the next few days all attempts at figuring out what was wrong failed, and I decided that I should focus on getting the rest of the thing to work well. In the intervening period, I think I have identified two possible sources of error, though I am not sure which is the problem, nor how to fix them. The first is the jump(ball, time, obstacle) method in Simulator.cpp. This is the one that would have implemented the Routh impact model, bouncing balls off walls. At the time I wrote the code I felt that I had a good grasp on what I was doing, but it repeatedly gave me nonsensical answers under testing, and I am fairly certain that it wasn’t because of some silly rounding errors or anything like that. I reworked my equations and pseudocode, but all the fixes I tried didn’t make any significant difference.

The second place that the friction model was having trouble was in the interaction_time methods. [4] gave some equations for finding the interaction time of two balls with no friction, and finding the time a ball reaches a wall isn’t hard. However, adding friction complicated things significantly. The specifics of the algorithm I tried are not relevant to this discussion (and, frankly, a little embarrassing). I suppose there is a chance that I got it right, but it seems likely that that method was partly responsible for my friction tests not working correctly.

I have completed many of the goals which I set at the inception of this project. My program can find the initial velocity of a cue ball given the initial location of all the balls and the target pocket, assuming that the cue ball is struck perfectly straight. It can find combination shots, and it can find shots off one or two rails. It can simulate the actions of frictionless billiard balls. A nasty case of life prevented me from being able to use a frictional impact model, and therefore from solving the third interesting problem (the first two being simple planning and simulation) of finding the initial velocities of a bouncing ball which needs to spin in order to make a shot. I feel that I have gained a fair understanding of the utility, limitations and complications of closed form planning.
Works Cited

[1] Chris A., et al. http://easypooltutor.com. Last updated Jul. 23, 2006.

[2] Harless, G., and Rogers, R., 1995. Achieving O(N) in Simulating the Billiards
Problem in Discrete-Event Simulation. Proceedings of the 1995 Winter
Simulation Conference, ed. C. Alexopoulos, K. Kang, W. Lilegdon, and D.
Goldsman, 751-756. Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers.

URL:http://portal.acm.org/citation.cfm?doid=224401.224724
[3] Lin, Z.M.; Yang, J.S.; Yang, C.Y., "Grey decision-making for a billiard robot,"
Systems, Man and Cybernetics, 2004 IEEE International Conference on , vol.6,
no.pp. 5350- 5355 vol.6, 10-13 Oct. 2004

URL: http://ieeexplore.ieee.org/iel5/9622/30425/01401044.pdf?isnumber=3042
∏=STD&arnumber=1401044&arnumber=1401044&arSt=+5350&ared=+5355+v
ol.6&arAuthor=Lin%2C+Z.M.%3B+Yang%2C+J.S.%3B+Yang%2C+C.Y.
[4] Lubachevsky, Boris D., “How To Simulate Billiards and Similar Systems,” Journal
of Computational Physics, v.94 n.2, p.255-283, June 1991
URL:http://arxiv.org/abs/cond-mat/0503627
[5] Partridge, C., and Spong, M. 2000. Control of planar rigid body sliding with impacts
and friction. International Journal of Robotics Research 19(4):336–348.

URL: http://ijr.sagepub.com/cgi/content/abstract/19/4/336
[6] Spong, M.W., "On the controllability of an air hockey puck," Control Applications,
2000. Proceedings of the 2000 IEEE International Conference on , vol., no.pp.32-
37, 2000

URL: http://ieeexplore.ieee.org/iel5/7211/19423/00897395.pdf?isnumber=19423
∏=STD&arnumber=897395&arnumber=897395&arSt=32&ared=37&arAuthor=
Spong%2C+M.W.
