# 15. Moment Labeling Mechanics of Manipulation 

Matt Mason<br>matt.mason@cs.cmu. edu<br>http://www.cs.cmu.edu/~mason

Carnegie Mellon

## Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

## Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

## Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

## Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

Chapter 5 Rigid Body Statics 93
5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

## Chapter 6 Friction 121

6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

## Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

## Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

## Outline.

Review: where are we? Where are we going?
Moment labeling: practical introduction.
Moment labeling: a more formal approach.
Relation to PCC's in wrench space.
Examples.

## Where are we?

Wrench and twist spaces.

- Chasles' theorem: rigid body motion is a twist.
- Poinsot's theorem: forces on rigid body are a wrench

Polyhedral convex cones.

- Edge representation: $\operatorname{pos}\left(\left\{\mathbf{e}_{i}\right\}\right)$
- Face representation: $\cap\left\{\operatorname{half}\left(\mathbf{n}_{i}\right)\right\}$
- Supplementary cone: $\operatorname{pos}\left(\left\{\mathbf{n}_{i}\right\}\right)$ or $\cap\left\{\operatorname{half}\left(\mathbf{e}_{i}\right)\right\}$

Oriented plane.

- Rays in planar homogeneous coordinate space $(x, y, w)$.
- Project to $w=1$ plane, with + or - to remember sign of $w$.
- Convexity: interior and exterior line segments.


## Where are we going?

Graphical techniques for planar contact problems:

|  | Project cone to <br> oriented plane | Project supplementary <br> cone to oriented plane |
| :--- | :--- | :--- |
| single wrench | (acc'n center) | line of action |
| single diff'l twist | IC | $?$ |
| wrench cone | force dual | moment labeling |
| diff'I twist cone | Reuleaux | $?$ |

## Possible resultants for one contact.

For a frictionless contact, force is along contact normal, magnitude is indeterminate.
I.e., the (directed) line of force is determined.

Another definition of line of force: Iocus of zero moment points.


## Another way of drawing the line of force.

If we indicate sign of moment at each point...
... half plane of $\oplus$ to the left;
... half plane of $\ominus$ to the right;
zero moment points are the boundary.
Gives line of force and its direction.


## Reuleaux's method has two interpretations!

The cone of differential twists reciprocal or repelling to a given wrench.
The cone of wrenches in the positive linear span of a given wrench.
Reciprocal or repelling turns any wrench-PCC rep'n into a twist-PCC rep'n.


## Superiority of wrench interpretation.

Actually the wrench interpretation is more useful.

Differential twist cone is only first order approximation.
Wrench interpretation extends to
 include friction.

Wrench interpretation extends beyond convex cones.

## Possible resultants of two contacts.

Remember how to construct resultant of two forces in the plane?
We can represent this set of resultants by a cone drawn in the plane.


## Some more challenging problems

How do we deal with these cases:

- Possible resultants of two parallel contacts?
- Possible resultants of three contacts?



## Some more challenging problems

How do we deal with these cases:

- Possible resultants of two parallel contacts?
- Possible resultants of three contacts?


Let's try Reuleaux's method and reinterpret.

## Some more challenging problems

How do we deal with these cases:

- Possible resultants of two parallel contacts?
- Possible resultants of three contacts?


Let's try Reuleaux's method and reinterpret.


## Interpreting the labeled regions.

The set of all forces that go between
$\oplus$ and $\ominus$, in the right direction.
They can graze, but cannot go through the interior.


## More formally

Given a set of contact wrenches $\left\{w_{i}\right\}$,
Let $\oplus_{i}$ and $\ominus_{i}$ be the points of nonnegative and nonpositive moments, respectively, for contact $w_{i}$,

Let $\oplus$ be the intersection of all nonnegative regions

$$
\oplus=\cap \oplus_{i}
$$

and let $\ominus$ be the intersection of all nonpositive regions

$$
\ominus=\cap \ominus_{i}
$$

Then the possible resultants $\operatorname{pos}\left(\left\{w_{i}\right\}\right)$ is the set of all wrenches making nonnegative moments with all points in $\oplus$ and nonpositive moments with all points in $\ominus$.

## Why does it work?

If, for example, all $w_{i}$ give positive moments with respect to some point,

Then so does any wrench of the form

$$
\sum k_{i} w_{i}
$$

if all the $k_{i}$ are nonnegative.
So, represent every $w_{i}$ by where it can't go,
Intersect to determine where none of the $w_{i}$ can go,
That's where wrenches $\operatorname{pos}\left(\left\{w_{i}\right\}\right)$ cannot go.

## Examples

Sliding friction (preview).
Two facing cones.
Disk in concrete.
GOAT against step.

## Chapter 1 Manipulation 1

1.1 Case 1: Manipulation by a human 1
1.2 Case 2: An automated assembly system 3
1.3 Issues in manipulation 5
1.4 A taxonomy of manipulation techniques 7
1.5 Bibliographic notes 8

Exercises 8

## Chapter 2 Kinematics 11

2.1 Preliminaries 11
2.2 Planar kinematics 15
2.3 Spherical kinematics 20
2.4 Spatial kinematics 22
2.5 Kinematic constraint 25
2.6 Kinematic mechanisms 34
2.7 Bibliographic notes 36 Exercises 37

## Chapter 3 Kinematic Representation 41

3.1 Representation of spatial rotations 41
3.2 Representation of spatial displacements 58
3.3 Kinematic constraints 68
3.4 Bibliographic notes 72

Exercises 72

## Chapter 4 Kinematic Manipulation 7

4.1 Path planning 77
4.2 Path planning for nonholonomic systems 84
4.3 Kinematic models of contact 86
4.4 Bibliographic notes 88

Exercises 88

## Chapter 5 Rigid Body Statics 93

5.1 Forces acting on rigid bodies 93
5.2 Polyhedral convex cones 99
5.3 Contact wrenches and wrench cones 102
5.4 Cones in velocity twist space 104
5.5 The oriented plane 105
5.6 Instantaneous centers and Reuleaux's method 109
5.7 Line of force; moment labeling 110
5.8 Force dual 112
5.9 Summary 117
5.10 Bibliographic notes 117

Exercises 118

Chapter 6 Friction 121
6.1 Coulomb's Law 121
6.2 Single degree-of-freedom problems 123
6.3 Planar single contact problems 126
6.4 Graphical representation of friction cones 127
6.5 Static equilibrium problems 128
6.6 Planar sliding 130
6.7 Bibliographic notes 139

Exercises 139

Chapter 7 Quasistatic Manipulation 143
7.1 Grasping and fixturing 143
7.2 Pushing 147
7.3 Stable pushing 153
7.4 Parts orienting 162
7.5 Assembly 168
7.6 Bibliographic notes 173

Exercises 175

## Chapter 8 Dynamics 18

8.1 Newton's laws 181
8.2 A particle in three dimensions 181
8.3 Moment of force; moment of momentum 183
8.4 Dynamics of a system of particles 184
8.5 Rigid body dynamics 186
8.6 The angular inertia matrix 189
8.7 Motion of a freely rotating body 195
8.8 Planar single contact problems 197
8.9 Graphical methods for the plane 203
8.10 Planar multiple-contact problems 205
8.11 Bibliographic notes 207

Exercises 208

## Chapter 9 Impact 211

9.1 A particle 211
9.2 Rigid body impact 217
9.3 Bibliographic notes 223

Exercises 223

Chapter 10 Dynamic Manipulation 225
10.1 Quasidynamic manipulation 225
10.2 Briefly dynamic manipulation 229
10.3 Continuously dynamic manipulation 230
10.4 Bibliographic notes 232

Exercises 235
Appendix A Infinity 237

