18. Force Dual *Mechanics of Manipulation*

Matt Mason

matt.mason@cs.cmu.edu

http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Briefly dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237

Outline.

Finish planar sliding.

Review representation of polyhedral convex cones in wrench/twist space.

Duality between points and lines.

Extension to oriented plane.

Examples.

Planar sliding, so far

We derived force and torque for planar sliding:

$$\mathbf{f}_{f} = -\mu \operatorname{sgn}(\dot{\theta}) \, \hat{\mathbf{k}} \times \int_{R} \frac{\mathbf{r} - \mathbf{r}_{\mathrm{IC}}}{|\mathbf{r} - \mathbf{r}_{\mathrm{IC}}|} p(\mathbf{r}) \, dA$$
$$n_{fz} = -\mu \operatorname{sgn}(\dot{\theta}) \int_{R} \mathbf{r} \cdot \frac{\mathbf{r} - \mathbf{r}_{\mathrm{IC}}}{|\mathbf{r} - \mathbf{r}_{\mathrm{IC}}|} p(\mathbf{r}) \, dA$$

We noted a simpler expression for translational sliding:

$$\mathbf{f}_f = -\mu \frac{\mathbf{v}}{|\mathbf{v}|} f_0$$
$$\mathbf{n}_f = \mathbf{r}_0 \times \mathbf{f}_f$$

where \mathbf{r}_0 is the **center of friction**

We observed that force and torque are undetermined when p(x) is undetermined.

Planar sliding: limit surface

To explore mapping of planar sliding motion to force we use the **Limit Surface**.

Assume pressure distribution is known, and not necessarily finite.

Define **frictional load** as wrench applied by slider to ground.

Define **Limit Surface** as boundary of set of all possible load wrenches p^* , constrained only to satisfy Coulomb's law locally.

Derive **maximum power inequality**: the frictional load wrench yields maximum power over all wrenches in the limit surface.

Equivalently: during slip-the total fric-

Barbell Limit Surface

LS properties

The barbell LS illustrates some properties that hold generally: Closed, convex, enclosing the origin of wrench space.

Symmetric when reflected through origin.

Orthogonal projection onto the f_x , f_y plane is a circle of radius $\sum \mu f_n$.

Each discrete point of support yields two antipodal flat facets. On each facet several loads map to one motion (rotation about the support point.)

(No discrete points: LS is strictly convex and load-motion mapping is one-to-one.)

Collinear discrete support is even weirder: vertices on LS where one load maps to several velocities (rotation about point collinear with support).

Revisiting representation of PCCs of wrenches an

Why polyhedral convex cones in wrench or twist space?

Possible wrenches resulting from frictional or frictionless contacts. (Positive linear span $pos(\{w_i\})$). Edge representation of a cone.)

Twists consistent with constraints. (Intersection of half spaces reciprocal or repelling to the constraint $\cap half(\mathbf{c}_i)$. Face representation of a cone.)

For 3 space (6D wrench or twist space) represent them by the edges or by the face normals.

For the plane (3D wrench or twist space) we can use 2D graphical techniques:

Reuleaux's method. Label rotation centers. Equivalent to projection of twists to oriented plane.

Moment labeling. Label moments. Equivalent to ...

Force dual

Lecture 18.

Roadmap to graphical techniques

Duality in the projective plane

Recall that for the projective plane there is a duality between *point* and *line*

We can make that concrete by defining a mapping D.

Define D(l) of a line l to be the point p such that $Op \dots$

Define D(p) of a point p to be the locus of D(l) for all l through p.

Note D(p) is a line, and D(D(p)) is p.

Note what happens at infinity.

Note it depends totally on choice of scale and origin.

Check out the movies.

Construction of force dual

Given a (directed) line of force, and an origin;

Construct perpendicular through origin;

Take point on perpendicular, at distance inverse to moment arm;

Note the sign of the moment.

Dual of a signed point

We defined map of directed line to a signed point.

Extend definition to map signed points to something.

- Given signed point *P*, let {*l*} be the set of directed lines through *P*.
- Define *P'* is defined to be $\{l'\}$, with a direction determined by the sign of *P*.
- Note that A simple geometric
 - P' is a directed line
 - P'' = P

Hence the transformation is *dual*.

Representing wrench cones

The method:

- 1. Choose origin and unit length.
- 2. Construct dual of each line of action.
- 3. Take the convex hull.

Zigzag locus

Force dual can represent *non-convex cones*!

Example: The set of contact normals.

Also known as the set of frictionless contact forces.

Force dual is called the *zigzag locus*.

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Briefly dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237