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Kinematic foundations.
We will focus on rigid motions in

the Euclidean plane (E2)

Euclidean three space (E3)

the sphere (S2)

Why the sphere? Rigid motions of the sphere correspond to
rotations about a given point in E

3.
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Kinematics foundations: some definitions
First, some general definitions. Let X be the ambient space, either
E

2, E
3, or S

2.

• A system is a set of points in the space X.

• A configuration of a system is the location of every point in the
system.

• Configuration space is a metric space comprising all
configurations of a given system.
(What kind of space is configuration space? Devise a metric.)
(Note: Every metric for cspace is sort of defective.)

• The degrees of freedom of a system is the dimension of the
configuration space. (A less precise but roughly equivalent
definition: the minimum number of real numbers required to
specify a configuration.)
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Kinematics foundations: systems, DOFs

System Configuration DOFs
point in plane x, y 2
point in space x, y, z 3
rigid body in plane x, y, θ 3
rigid body in space x, y, z, φ, θ, ψ 6
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Kinematics foundations: rigid bodies, displacements
Definitions:

A displacement is a change of configuration that does not
change the distance between any pair of points, nor does it
change the handedness of the system.

A rigid body is a system that is capable of displacements only.

A d isp la c e m e n t A d ila tio n A re fle c tio n

Transformations, rigid and otherwise.
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Kinematics foundations: moving and fixed planes
We will consider displacements to apply to every point in the
ambient space. E.g., displacements are described as motion of
moving plane relative to fixed plane.

Moving p lane

Fixed plane

Moving and fixed planes.
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Kinematics foundations: rotations and translations
A rotation is a displacement that leaves at least one point fixed.
A translation is a displacement for which all points move equal
distances along parallel lines.

O 

Rotation
about O

Rotation about a
point on the body

Rotation about a
point not on the body
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Kinematics foundations: digression for group theory
A group is a set of elements X and a binary operator ◦ satisfying the
following properties:

Closure: for all x and y in X, x ◦ y is in X.

Associativity: for all x, y, and z in X, (x ◦ y) ◦ z is equal to
x ◦ (y ◦ z).

Identity: there is some element, called 1, such that for all x in X
x ◦ 1 = 1 ◦ x = x.

Inverses: for all x in X, there is some element called x−1 such
that x ◦ x−1 = x−1 ◦ x = 1.

(Did I remember them all?)
Some groups are commutative (Abelian) and some are not. The
integers with addition are a commutative group. Nonsingular k by k
matrices with matrix multiplication are a noncommutative group.
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Kinematics foundations: Displacements as a group
Every displacement D can be described as an operator on the
ambient space X, mapping every point x to some new point
D(x) = x′.

The product of two displacements is the composition of the
corresponding operators, i.e. (D2 ◦D1)(·) = D2(D1(·)).

The inverse of a displacement is just the operator that maps
every point back to its original position.

The identity is the null displacement, which maps every point to
itself.

In other words:

The displacements, with functional composition, form a
group.
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Kinematics foundations: SE(2), SE(3), and SO(3)

These groups of displacements have names:

SE(2): The special Euclidean group on the plane.

SE(3): The special Euclidean group on E
3.

SO(3): The special orthogonal group.

Whence the names?

Special: they preserve handedness.

Orthogonal: referring to the connection with orthogonal
matrices, which will be covered later.
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Kinematics foundations: do displacements commute?
Does SO(3) commute? NO! No, no, no. (If you have found a
commutative way of representing spatial rotations, you are
confused.)
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Kinematics foundations: do displacements commute?
Does SE(3) commute?
Does SE(2) commute?
Does SO(2) commute?
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Time for a digression . . .

Next we look at SE(2), SO(3), and SE(3).

First, it helps if we contemplate the infinite . . .
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The projective plane.
The basic idea:

Start with the Euclidean plane E
2.

Add some points, the ideal points or the points at infinity.

Call the new structure the projective plane—P
2.

You can do it formally by defining an ideal point for each set of
parallel lines, but we will employ a more concrete method using
homogeneous coordinates.
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Homogeneous coordinates.
Let the Cartesian coordinates of some point in E

2 be

(η, ν)

Then we will say that

(x, y, w) , (wη,wν,w)

are the homogeneous coordinates of the point, provided

w 6= 0

To go from homogeneous to Cartesian:







x

y

w






7→

(

x/w

y/w

)

, w 6= 0 (1)
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Point in E
2 versus line through origin of E

3

Scaling the homogeneous coordinates does not change the point!


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
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)
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(

x/w

y/w

)

, a, w 6= 0 (2)

So, homogeneous coordinates represent a point in E
2 by a line

through the origin of E
3.
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Central projection
The Euclidean plane can be embedded as the w = 1 plane.
We can also embed a sphere of points satisfying x2 + y2 + w2 = 1.
A line through the origin of E

3

intersects the sphere in antipodal points

intersects the w = 1 plane at the appropriate point (x/w, y/w).

These constructions are central projection, either to the sphere or
to the plane.

(x,y,w)

(x/w,y/w,1)

(x,y,w)
p

x2 + y2 + w 2
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Ideal points
The original idea: extend E

2 by adding some ideal points.

Euclidean point: line through origin of E
3 intersecting w = 1

plane.

Ideal point: line through origin of E
3 parallel to w = 1 plane.

With Cartesian coords, no place to put ideal points. With
homogeneous coordinates, there’s a big gaping hole!
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The projective plane
So . . .

define the projective plane P
2 to be the set of lines through the

origin of E
3.

A line in E
2 is represented by plane through origin of E

3.

The ideal points form a line! The line at infinity. The equator of
the embedded sphere.

“Parallel lines” intersect at infinity.

Duality. Two points determine a line. Two lines determine a
point. Every axiom of the projective plane has a dual axiom by
switching “line” and “point”.

Noneuclidean geometry!!!
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