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7.3 Stable pushing 153
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Outline.

e Finish the “voting theorem”.
We've proven that line of motion dictates rotation direction.
Prove that line of force dictates rotation direction.
Prove the voting theorem.

e Application to stable pushing.
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Pushing

Can we predict direction of rotation?
Line of pushing [, defined along vel of point in pusher.

Line of motion [,, defined along vel of point in slider.
Line of force [ defined as usual.
Two edges of friction cone [, and Ix.

) Ip=1r g lM:lPlL ZTF IR ) lR=lF
\\/ K\ o

/e /e Ve
N

Rightsliding Fixed Leftsliding

Lecture 21. Mechanics of Manipulation — p4



Which way will it turn?

Easy to predict from [, or from [, but what you know is i, I, and
Ip.
Main result: I;, I, and [p vote on rotation direction.

First: [, dictates rotation direction.
Second: [ dictates rotation direction.
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Line of motion dictates

Theorem: For quasistatic pushing of a rigid body in the plane, with
uniform coefficient of friction, the line of motion dictates the rotation
direction.

Let y-axis be line of motion, let origin be contact point, let ;¢ be
IC coordinate, let ms(x1c) be frictional moment as function of IC.
Show my(x1c) is monotone decreasing.

Look at values at 0™, 0, oo, apply intermediate value theorem.
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Line of force dictates . ..

Theorem: For quasistatic pushing of a rigid body in the plane, with

uniform coefficient of friction, the line of force dictates the rotation
direction.

Proof:
Choose origin at center of friction, construct limit surface.
Normals at f,-f, plane are horizontal.

By convexity, normals in upper half point up, in lower half point
down.
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Voting theorem

Theorem: For quasistatic pushing of a planar

rigid body with uniform coefficient of friction, ro- I I
tation direction is determined by a vote ip, I, s\ /4
and lRr.
AN
Construct voting tree. "IN

If edges of friction agree, then so does
line of force, and theorem follows.

Consider case where edges do not agree.

l;, votes —, [ votes +, and [p votes —.
The majority is —.

Assume positive rotation. So I and
[, would vote + by previous
theorems. If [, is right of ry then it is
right of Ip, so we have right sliding. So
lr = l1: a contradiction.
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The voting theorem really works.

Demo on overhead.

It tells you which way it turns but
not how fast, and
not about what IC.

Very useful when pushing with a translating edge.
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Stable pushing

Sometimes we want to turn while
pushing!

How can we achieve a stable push?
No slip of slider along pusher.
No rolling of slider on pusher.

Voting theorem by itself is not enough.
We need more constraints on the IC.

Lecture 21.

—

}

—

&
SRS |

RO o

[a—)

Mechanics of Manipulation — p10



Peshkin’s bound

The voting theorem is a bound on
IC’s. It tells you whether the IC is in
the positive plane, the negative plane,
or the line at infinity. We need tighter
bounds!

Circumscribe slider support R by a
circle centered at center of friction.

Construct IC for every possible sup-
port dipod.

Conjecture: resulting locus includes
every possible support, not just
dipods.

If we allow line of force to vary, locus
sweeps out “tip line”.

Note duality of tip line to contact point!
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The “‘bisector bound”

Construct line from contact to center
of friction.

pusher

: : possible
Construct perpendicular bisector. contact

rotation
centers

IC is on c.o.f. side of perp bisector.
Proof never published.

bisector
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The vertical strip bound

Project support region R onto pushing
line of force.

possible
rotation

|IC must fall in inverse projection. B—

Proof: Force balance impossible oth-
erwise.
applied
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Not slipping off the pusher

Slipping of slider on pusher corre-
sponds to left or right edge of FC.

ICs for left edge
of friction cone

No slipping: interior of FC.

ICs for right edge
of friction cone

<

ICs attainable only by force
direction in friction cone interior
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Not rolling off the pusher

Rolling corresponds to force through

left or right corner of block. oty iy
Not rolling: line of force between cor-
ners.

/G\
ICs attainable only by wrench
between the two corners
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Combining constraints, planning a path

We eliminate all failure modes;

we can also incorporate nonholo con-

straints of the pusher;
and we plan a path using NHP.
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7.4  Parts orienting 162
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