5. Nonholonomic constraint *Mechanics of Manipulation*

Matt Mason

matt.mason@cs.cmu.edu

http://www.cs.cmu.edu/~mason

Carnegie Mellon

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- Issues in manipulation 5 1.3
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- Bibliographic notes 36 2.7 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93 Polyhedral convex cones 99
- 5.2
- 5.3 Contact wrenches and wrench cones 102 5.4
- Cones in velocity twist space 104 5.5
- The oriented plane 105
- Instantaneous centers and Reuleaux's method 109 5.6
- Line of force; moment labeling 110 5.7
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- Single degree-of-freedom problems 123 6.2
- Planar single contact problems 126 6.3
- Graphical representation of friction cones 127 6.4
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- Motion of a freely rotating body 195 8.7
- Planar single contact problems 197 8.8
- Graphical methods for the plane 203 8.9
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Brie y dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237

Outline.

- An example: the unicycle.
- Integrable and nonintegrable constraints
- Vector fields and distributions
- Frobenius's theorem

Holonomic does not mean unconstrained!!!

- Holonomic means the constraints can be written as equations independent of \dot{q}

f(q,t) = 0

- A mobile robot with no constraints is holonomic.
- A mobile robot capable of arbitrary planar velocities is holonomic.
- A mobile robot capable of only translations is holonomic.

Unicycle constraint

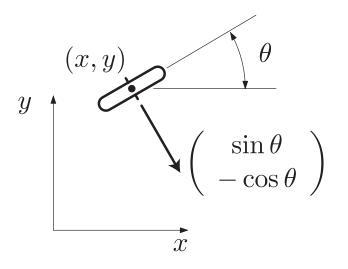
The unicycle cannot move sideways. Let

$$\dot{\mathbf{q}} = \left(\begin{array}{c} \dot{x} \\ \dot{y} \\ \dot{\theta} \end{array}\right)$$

and let

$$\mathbf{w}_1 = (\sin\theta, -\cos\theta, 0)$$

so the constraint is written $\mathbf{w}_1 \dot{\mathbf{q}} = 0$.



Unicycle freedom

The unicycle can move in two directions, expressed by defining

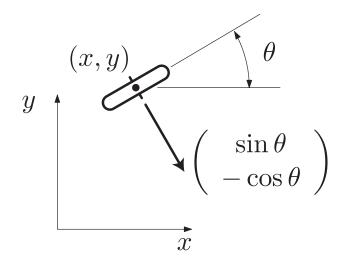
$$\mathbf{g}_1(\mathbf{q}) = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}, \mathbf{g}_2(\mathbf{q}) = \begin{pmatrix} \cos\theta\\ \sin\theta\\ 0 \end{pmatrix}$$

and noting that the unicycle's motion is (missing from book)

$$\dot{\mathbf{q}} = u_1 \mathbf{g}_1 + u_2 \mathbf{g}_2$$

where u_1 and u_2 are arbitrary reals. They are the *controls*.

So, how many DOFs does the unicycle have?



Unicycle freedom

The unicycle can move in two directions, expressed by defining

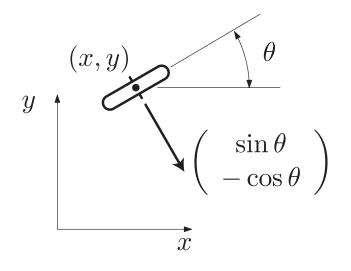
$$\mathbf{g}_1(\mathbf{q}) = \begin{pmatrix} 0\\ 0\\ 1 \end{pmatrix}, \mathbf{g}_2(\mathbf{q}) = \begin{pmatrix} \cos\theta\\ \sin\theta\\ 0 \end{pmatrix}$$

and noting that the unicycle's motion is (missing from book)

$$\dot{\mathbf{q}} = u_1 \mathbf{g}_1 + u_2 \mathbf{g}_2$$

where u_1 and u_2 are arbitrary reals. They are the *controls*.

So, how many DOFs does the unicycle have? *THREE*!!!



Unsteered cart constraint and freedom

The unsteered cart cannot turn, and cannot move sideways. Let

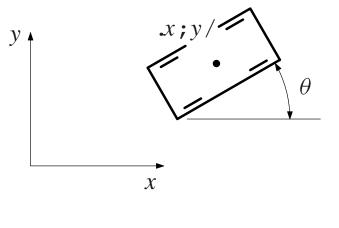
$$\mathbf{w}_1 = (\sin \theta, -\cos \theta, 0), \mathbf{w}_2 = (0, 0, 1)$$

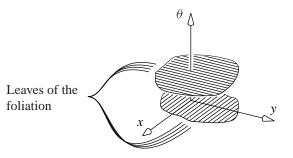
so the two constraints are written $\mathbf{w}_1 \dot{\mathbf{q}} = 0$, $\mathbf{w}_2 \dot{\mathbf{q}} = 0$. Expanding the products:

$$\dot{x}\sin\theta - \dot{y}\cos\theta = 0$$
$$\dot{\theta} = 0$$

These can be integrated:

$$(x - x_0)\sin\theta_0 - (y - y_0)\cos\theta_0 = 0$$



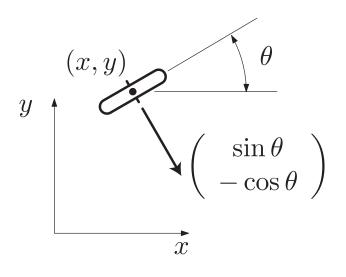


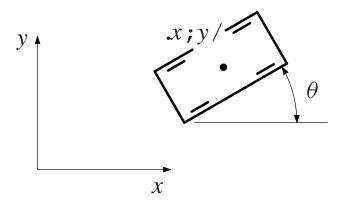
 $\theta = \theta_0$

Unicycle versus cart

- Unicycle.
 - One velocity constraint.
 - Three freedoms.
- Unsteered cart
 - Two velocity constraints.
 - *Integrable*. Equivalent to two configuration constraints.
 - One freedom.

System is nonholonomic if the constraint *cannot* be written in the form f(q,t) = 0.

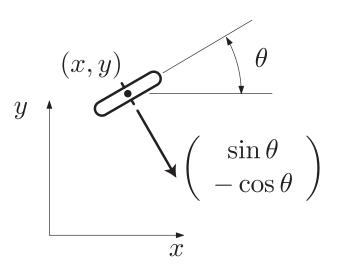


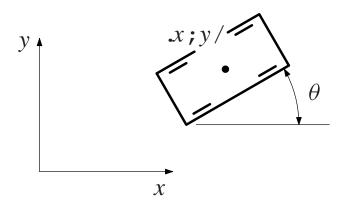


How can you tell?

How can you tell whether a velocity constraint is integrable?

- 1. Try to integrate it for a while.
- 2. Determine whether the DOFs were reduced.
- 3. Lie brackets!!! (Frobenius's theorem)





Pfaffian constraints

A set of *k* **Pfaffian constraints** are of the form

 $\mathbf{w}_i(\mathbf{q})\dot{\mathbf{q}}=0, i=1\ldots k$

where the \mathbf{w}_i are linearly independent row vectors, and $\dot{\mathbf{q}}$ is a column vector.

All the velocity constraints we have considered for the unicycle and the cart are Pfaffian.

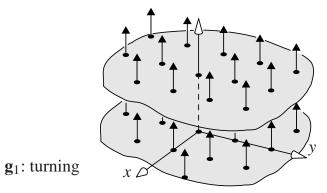
Vector fields

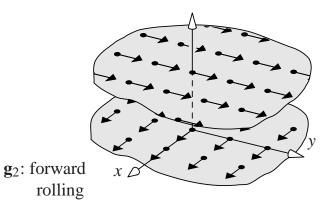
A vector field is a smooth map

 $f(\mathbf{q}): \mathbf{C} \mapsto \mathbf{T}_{\mathbf{q}}\mathbf{C}$

from configurations ${\bf q}$ to velocity vectors $\dot{{\bf q}}.$

Note: In differential geometry "vector" sometimes means specifically "veloc-ity vector".





Distributions

A **distribution** is a smooth map assigning a linear subspace of T_qC to each configuration q of C.

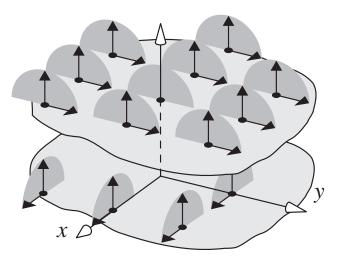
Example: The linear span of \mathbf{g}_1 and \mathbf{g}_2 .

Recall that for the unicycle

$$\mathbf{q} = u_1 \mathbf{g}_1 + u_2 \mathbf{g}_2$$

for $u_1, u_2 \in \mathbf{R}$. So the figure shows the feasible velocities for every \mathbf{q} .

(Well, it only shows a circular patch where it should show a whole plane at every \mathbf{q} .)



Regular distributions and Lie brackets

A distribution is **regular** if its dimension is constant over the configuration space.

Let f, g be two vector fields on C. Define the Lie bracket [f, g] to be the vector field

$$\frac{\partial \mathbf{g}}{\partial \mathbf{q}}\mathbf{f} - \frac{\partial \mathbf{f}}{\partial \mathbf{q}}\mathbf{g}$$

What is this thing written $\frac{\partial g}{\partial q}$ or $\frac{\partial f}{\partial q}$? Matrix. Each column is partial of velocity w.r.t. configuration variable.

Lie brackets, example.

Let's take the Lie bracket $[\mathbf{g}_1, \mathbf{g}_2]$.

$$\frac{\partial \mathbf{g}_1}{\partial \mathbf{q}} = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
$$\frac{\partial \mathbf{g}_2}{\partial \mathbf{q}} = \begin{pmatrix} 0 & 0 & -\sin\theta \\ 0 & 0 & \cos\theta \\ 0 & 0 & 0 \end{pmatrix}$$

For the new vector field defined by the Lie bracket we obtain

$$\mathbf{g}_{3} = [\mathbf{g}_{1}, \mathbf{g}_{2}] = \frac{\partial \mathbf{g}_{2}}{\partial \mathbf{q}} \mathbf{g}_{1} - \frac{\partial \mathbf{g}_{1}}{\partial \mathbf{q}} \mathbf{g}_{2}$$
$$= \begin{pmatrix} -\sin \theta \\ \cos \theta \\ \\ \\ \text{Lecture f} & 0 \end{pmatrix}$$
Mechanics of Manipulation - p.14

Lie brackets example continued

$$\mathbf{g}_3 = \begin{pmatrix} -\sin\theta\\ \cos\theta\\ 0 \end{pmatrix}$$

Physically, g_3 moves sideways. It is linearly independent of g_1 and g_2 , and it violates the constraint w_1 .

What is its physical significance? Given two vector fields f and g,

- 1. Follow **f** for some time ϵ ;
- 2. Follow g for ϵ ;
- 3. Follow $-\mathbf{f}$ for ϵ ;
- 4. Follow $-\mathbf{g}$ for ϵ .

In the limit as ϵ approaches zero, the result of the above motion approaches the Lie bracket [f, g]. The Lie bracket could have been called "parallel parking product".

Involutive distribution

- A distribution is **involutive** if it is closed under Lie bracket operations.
- The **involutive closure** of a distribution Δ is the closure $\overline{\Delta}$ of the distribution under Lie bracketing.

Frobenius's theorem

Theorem 2.8 (Frobenius's theorem): A regular distribution is integrable if and only if it is involutive. Proof:

To prove that an integrable distribution is involutive, take the Taylor series expansion of the parallel parking maneuver as a function of ϵ . The second order terms are Lie brackets! If the distribution is involutive, the Lie brackets must also be contained in the distribution.

To prove that involutive distributions are integrable \ldots

nonholonomic \leftrightarrow parallel parking helps

Rotatio

Chapter 1 Manipulation 1

- 1.1 Case 1: Manipulation by a human 1
- 1.2 Case 2: An automated assembly system 3
- 1.3 Issues in manipulation 5
- 1.4 A taxonomy of manipulation techniques 7
- 1.5 Bibliographic notes 8 Exercises 8

Chapter 2 Kinematics 11

- 2.1 Preliminaries 11
- 2.2 Planar kinematics 15
- 2.3 Spherical kinematics 20
- 2.4 Spatial kinematics 22
- 2.5 Kinematic constraint 25
- 2.6 Kinematic mechanisms 34
- 2.7 Bibliographic notes 36 Exercises 37

Chapter 3 Kinematic Representation 41

- 3.1 Representation of spatial rotations 41
- 3.2 Representation of spatial displacements 58
- 3.3 Kinematic constraints 68
- 3.4 Bibliographic notes 72 Exercises 72

Chapter 4 Kinematic Manipulation 77

- 4.1 Path planning 77
- 4.2 Path planning for nonholonomic systems 84
- 4.3 Kinematic models of contact 86
- 4.4 Bibliographic notes 88 Exercises 88

Chapter 5 Rigid Body Statics 93

- 5.1 Forces acting on rigid bodies 93
- 5.2 Polyhedral convex cones 99
- 5.3 Contact wrenches and wrench cones 102
- 5.4 Cones in velocity twist space 104
- 5.5 The oriented plane 105
- 5.6 Instantaneous centers and Reuleaux's method 109
- 5.7 Line of force; moment labeling 110
- 5.8 Force dual 112
- 5.9 Summary 117
- 5.10 Bibliographic notes 117 Exercises 118

Chapter 6 Friction 121

- 6.1 Coulomb's Law 121
- 6.2 Single degree-of-freedom problems 123
- 6.3 Planar single contact problems 126
- 6.4 Graphical representation of friction cones 127
- 6.5 Static equilibrium problems 128
- 6.6 Planar sliding 130
- 6.7 Bibliographic notes 139 Exercises 139

Chapter 7 Quasistatic Manipulation 143

- 7.1 Grasping and fixturing 143
- 7.2 Pushing 147
- 7.3 Stable pushing 153
- 7.4 Parts orienting 162
- 7.5 Assembly 168
- 7.6 Bibliographic notes 173 Exercises 175

Chapter 8 Dynamics 181

- 8.1 Newton's laws 181
- 8.2 A particle in three dimensions 181
- 8.3 Moment of force; moment of momentum 183
- 8.4 Dynamics of a system of particles 184
- 8.5 Rigid body dynamics 186
- 8.6 The angular inertia matrix 189
- 8.7 Motion of a freely rotating body 195
- 8.8 Planar single contact problems 197
- 8.9 Graphical methods for the plane 203
- 8.10 Planar multiple-contact problems 205
- 8.11 Bibliographic notes 207 Exercises 208

Chapter 9 Impact 211

- 9.1 A particle 211
- 9.2 Rigid body impact 217
- 9.3 Bibliographic notes 223 Exercises 223

Chapter 10 Dynamic Manipulation 225

- 10.1 Quasidynamic manipulation 225
- 10.2 Brie y dynamic manipulation 229
- 10.3 Continuously dynamic manipulation 230
- 10.4 Bibliographic notes 232 Exercises 235

Appendix A Infinity 237