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Outline.

• An example: the unicycle.

• Integrable and nonintegrable constraints

• Vector fields and distributions

• Frobenius’s theorem
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Holonomic does not mean unconstrained!!!

• Holonomic means the constraints can be written as equations
independent of q̇

f(q, t) = 0

• A mobile robot with no constraints is holonomic.

• A mobile robot capable of arbitrary planar velocities is
holonomic.

• A mobile robot capable of only translations is holonomic.
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Unicycle constraint

The unicycle cannot move sideways.
Let

q̇ =







ẋ

ẏ

θ̇







and let

w1 = (sin θ,− cos θ, 0)

so the constraint is written w1q̇ = 0.

x

y

θ(x, y)

(

sin θ

− cos θ

)
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Unicycle freedom

The unicycle can move in two direc-
tions, expressed by defining

g1(q) =







0

0

1






, g2(q) =







cos θ

sin θ

0







and noting that the unicycle’s motion
is (missing from book)

q̇ = u1g1 + u2g2

where u1 and u2 are arbitrary reals.
They are the controls.

So, how many DOFs does the unicy-
cle have?

x

y

θ(x, y)

(

sin θ

− cos θ

)
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Unicycle freedom

The unicycle can move in two direc-
tions, expressed by defining

g1(q) =







0

0

1






, g2(q) =







cos θ

sin θ

0







and noting that the unicycle’s motion
is (missing from book)

q̇ = u1g1 + u2g2

where u1 and u2 are arbitrary reals.
They are the controls.

So, how many DOFs does the unicy-
cle have? THREE!!!
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y

θ(x, y)

(

sin θ

− cos θ
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Unsteered cart constraint and freedom

The unsteered cart cannot turn, and
cannot move sideways. Let

w1 = (sin θ,− cos θ, 0) , w2 = (0, 0, 1)

so the two constraints are written
w1q̇ = 0, w2q̇ = 0. Expanding the
products:

ẋ sin θ − ẏ cos θ = 0

θ̇ = 0

These can be integrated:

θ = θ0

(x − x0) sin θ0 − (y − y0) cos θ0 = 0

.x;y/

x

y

x
y

Leaves of the
foliation
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Unicycle versus cart

• Unicycle.
• One velocity constraint.
• Three freedoms.

• Unsteered cart
• Two velocity constraints.
• Integrable. Equivalent to two

configuration constraints.
• One freedom.

System is nonholonomic if the con-
straint cannot be written in the form
f(q, t) = 0.

x

y

θ(x, y)

(

sin θ

− cos θ

)
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How can you tell?

How can you tell whether a velocity
constraint is integrable?

1. Try to integrate it for a while.

2. Determine whether the DOFs
were reduced.

3. Lie brackets!!! (Frobenius’s theo-
rem) x

y

θ(x, y)

(

sin θ

− cos θ

)

.x;y/

x

y
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Pfaffian constraints

A set of k Pfaffian constraints are of the form

wi(q)q̇ = 0, i = 1 . . . k

where the wi are linearly independent row vectors, and q̇ is a column
vector.

All the velocity constraints we have considered for the unicycle and

the cart are Pfaffian.
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Vector fields

A vector field is a smooth map

f(q) : C 7→ TqC

from configurations q to velocity vec-
tors q̇.

Note: In differential geometry “vector”
sometimes means specifically “veloc-
ity vector”.

g1: turning x

y

µ

g2: forward
rolling

x

y

µ

Lecture 5. Mechanics of Manipulation – p.11



Distributions

A distribution is a smooth map as-
signing a linear subspace of TqC to
each configuration q of C.

Example: The linear span of g1 and
g2.

Recall that for the unicycle

_q = u1g1 + u2g2

for u1, u2 ∈ R. So the figure shows the
feasible velocities for every q.

(Well, it only shows a circular patch
where it should show a whole plane
at every q.)

x

y

 �

Lecture 5. Mechanics of Manipulation – p.12



Regular distributions and Lie brackets

A distribution is regular if its dimension is constant over the
configuration space.

Let f, g be two vector fields on C. Define the Lie bracket [f, g] to
be the vector field

∂g
∂q

f −
∂f
∂q

g

What is this thing written ∂g
∂q or ∂f

∂q ? Matrix. Each column is partial of

velocity w.r.t. configuration variable.
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Lie brackets, example.

Let’s take the Lie bracket [g1, g2].

∂g1

∂q
=







0 0 0

0 0 0

0 0 0







∂g2

∂q
=







0 0 − sin θ

0 0 cos θ

0 0 0







For the new vector field defined by the Lie bracket we obtain

g3 = [g1, g2] =
∂g2

∂q
g1 −

∂g1

∂q
g2

=







− sin θ

cos θ

0
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Lie brackets example continued

g3 =







− sin θ

cos θ

0







Physically, g3 moves sideways. It is linearly independent of g1 and g2,
and it violates the constraint w1.

What is its physical significance? Given two vector fields f and g,

1. Follow f for some time ǫ;

2. Follow g for ǫ;

3. Follow −f for ǫ;

4. Follow −g for ǫ.

In the limit as ǫ approaches zero, the result of the above motion
approaches the Lie bracket [f, g]. The Lie bracket could have been
called “parallel parking product”.
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Involutive distribution

• A distribution is involutive if it is closed under Lie bracket
operations.

• The involutive closure of a distribution ∆ is the closure ∆ of
the distribution under Lie bracketing.
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Frobenius’s theorem

Theorem 2.8 (Frobenius’s theorem):
A regular distribution is integrable if and only if it is involutive.
Proof:

To prove that an integrable distribution is involutive, take the
Taylor series expansion of the parallel parking maneuver as a
function of ǫ. The second order terms are Lie brackets! If the
distribution is involutive, the Lie brackets must also be contained
in the distribution.

To prove that involutive distributions are integrable . . . �

nonholonomic ↔ parallel parking helps
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