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Outline.

e Review of spatial displacements
e Homogeneous coordinates

e Pllcker coordinates of a line

e Screw coordinates
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Review of spatial displacements

Definition: rigid motion
Theorem 2.2: any displacement of E™ can be represented as a
rotation composed with a translation.

Definition: a screw is a line plus a pitch.
Definition: a twist is a motion along a screw.

Theorem 2.7 (Chasles’s theorem): every displacement of E? is a
twist.

These can guide design of representations.
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Homogeneous coordinates

Recall theorem 2.2: a displacement can be decomposed into a
rotation followed by a translation.

X' = Rx+d

We can write it more compactly. Add a fourth component to points:

(o1 )

L3
\ 1)
(Remember, we did this before. If the fourth element is 0 we get points

at infinity. Now we’re focusing on ordinary points.)
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Transforms using homogeneous coords

Define the homogeneous coordinate transform matrix 7

( )

R d

\ 0 0 0|1

And write
x' = TX

It's just a more compact way of writing:
X' = Rx+d

Especially useful for expressions such as x’ = 137157 X.
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Pllicker coordinates

Screw coordinates are built on top of
Plucker coordinates, which are a way
of representing lines.

Let p be a point on the line;
Let g be the direction vector ;
Let go = p x q, the moment vector ;

Then (g, o) gives the six Plucker co-
ordinates ;

(Note choice of p doesn’'t matter:

PPxg=pxq+(p'—p)xq
=pxq
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Plliicker’'s excess numbers

Pllicker coordinates give six numbers. A line requires only four.

First, since qy = p x g, there is a constraint:
g-do=0
Second, scaling gives same the line

(q7 qO) = k(q7 qO)

(So, why not normalize, scaling by 1/|q|? Sometimes, as we shall
see, |g| = 0!)
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Reading Plucker coordinates: generic case

Nonzero qq is orthogonal to a plane
containing the line.

| o — ,do
Magnitude |qo|/|a| gives distance to 4 A
line.
¢ gq
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Plicker coords of line through origin

Zero (. Line passes through origin.

o7

do
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Plicker coords of line at infinit&qo

Nonzero qq is orthogonal to a plane
containing the line.

Magnitude of |qq|/|q| gives distance to
line.

Work it out as a limiting process. Hold
Jo constant as line goes to infinity.

[~—




Using Plucker coordinates

Direction of line : q.
Distance of line from O: |qo|/|q]-

Point-on-line test for point x:

(X—=p)xq=0
XXgq—pxqg=0
XX =(o

Find point on line closest to O:

qxdo/q-q, forq#0
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A topical example.

GALVEZ et al.: INTRINSIC TACTILE SENSING FOR OPTIMIZATION OF FORCE DISTRIBUTION 27

(@) ®)

Fig. 2. Lateral and top drawings of a pipe crawling robot getting into a curve.

the authors report the design of a quadruped walking robot with
passive articulated feet that adapt to the ground, thus being able
to detect the orientation of the local ground surface by means of
two angle sensors integrated at each robot’s ankle.

Most tactile sensors, whether based on conductive silicone
rubber, pressure-sensitive semiconductors, or piezoelectric
elements, detect contact position using surface-mounted arrays
of force-sensitive elements [24]. In this paper, a simpler system
for the estimation of the normal vectors using a five-axis
force/torque sensor is presented. This use of force sensors was
first pointed out by Salisbury [30] in the context of manipula-
tion systems. It is usually called intrinsic contact sensing for
the use of internal force and torque measurements [1], [2], [6].
Force-based contact sensors have been actually implemented in
robotic hands [4], [21], [35] and object shape detection systems
[33]. To the authors’ best knowledge, no existing legged robots
implement this technique.

Lecture 8.
I IvaTemNeI- T AT R Qenvemier: Morunn

contact point

Fig. 3. Problem statement and reference system.

where

I__F><M 5
°=TEE ©)

The line of action of the force or wrench axis is a line through
rp and parallel to F parameterized by A. This line intersects
the foot surface in two locations: one corresponding to a force
pulling out of the surface and one corresponding to a force
pushing into the surface. Because adhesive forces are not al-
lowed, the contact point is determined as the intersection point
for which the contact force points inwardly at the foot surface,
that is
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Moment about a point

Moment of a line [; about a point p;.
In analogy with unit force in direction
g-. What would the torque be?

(P2 — P1) x (‘3—;)

P2 X 02 —P1 X 02
Q2]
o2 — P1 X (2
Q2|

P1

P2
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Moment about a line

Moment of a line [, about a line ;.

Think of the torque at p;, and take the
component in the g; direction:

1 Qo2 — P1 X Q2

|91 [P

01 -To2 — 1 - P1 X Q2
102

01 - o2 ~ 02 - P1 X (1
102

01 - Jo2 +d2 - Jo1

19102|

It's symmetric. Moment of [; about I
= moment of [, about ;.

This interesting product has LOTS of
uses ... Lecture 8,
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Reciprocal product / virtual product

Define reciprocal product , or virtual product

(91, 901) * (d2,902) = 01 - oz + 02 - Jo1

For normalized Plicker coordinates, reciprocal product gives
moment between the two lines.
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More uses for Plicker coordinates

Look at moment geometrically. Distance between the lines times
sine of the angle.

dsina = (q1,qo1) * (02, 0o2)/]d102|

Note we can also get the angle by

sinav = Q1 X 02/|q102]

So to get the (signed) distance between two lines:

(d1,do1) * (d2, qo2)

d:
02 % Q1]

To tell if two lines intersect, check if reciprocal product is zero.
(Parallel lines intersect at infinity!)
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Example: using Plucker

Find the angle and distance between the two lines:

y

N>
%
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Screw coordinates

A screw is a line plus a scalar pitch. Seven numbers?

No! We aren’t really using those six numbers. Plenty of room to
sneak pitch in.

Given a line (g, qg), and pitch p. Define the screw coordinates to be
(S,%), Where

S={(
S = (o +pQ

Why does this work? Recall g - qq is zero.
To get the pitch back

S-S =0-Co+pq-9
_5"%

P="g7s
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Special case screws

Zero pitch: just like Plucker coordinates.

Infinite pitch: s= 0.
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Representing a twist

A twist is a screw plus a magnitude. Seven numbers?

No! Remember Plicker coordinates don't use scale. So take Pliicker
coordinates, normalize them, and scale.

Let 6 be the angle of rotation, d the distance of translation, both
nonzero.

Let p = d/6 be the pitch.

(57%)
ss

Substituting the definition of screw coordinates, we obtain

s 5 1
0> 02 —— (4q,0q, + Op
(\s| \s|> g (79 0% + 6p0)

1
T (69,690 + dq)
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Twists of zero or infinite pitch

Infinite pitch is translation:

1
ql

Zero pitch is rotation, identical to scaled Pllcker coordinates:

(87 SO) — (07 dq)

9(57 SO) — 9<q7 qO)

assuming Plucker coordinates were normalized.
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Twists of zero or infinite pitch

Here is an interesting and instructive ambiguity. Somebody gives
you, for example, a twist with screw coordinates:

(0,0,0,1,0,0)

Is it a zero pitch screw with axis at infinity? l.e. a rotation about an
axis at infinity?
Or is it an infinite pitch twist? l.e. a translation in the z direction?

Both!
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Consider the extremes
Translation: infinite pitch. (t,ty) = (0,0’). A very nice way to
represent a translation.

Rotation through origin: zero pitch.

(tto) = O(, 2

s’ Is|

g Qo
:9 Ty T T

(Iq\ \qI)
= (0n,0)

Angle times axis. We didn’t cover it, but some people like it. Behaves

well at small 0, but doesn’t extend to one-to-one smooth map.
Obviously.
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Differential twists

Consider velocity v along [ and angular velocity w
about /.

Let p be any point on .

Plucker coordinates of [ are

(9,d0) = (w, P X w)

Pitch is |v|/|w| SO screw coordinates are

(8 %) = (W, P X w+ —w)

(5,%) = (W, pXw+V)
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Differential twists

The vector s, gives vel of origin vg

(S %) = (w; Vo)

So, for differential twists, screw coords are close to
standard practice.

Important corollary. Screw coordinates for differ-
ential twists form a vector space. We can add dif-
ferential twist screw coordinates, and we can mul-
tiply them by scalars.

Lecture 8.
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