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Proximity Queries between Convex Objects:
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Abstract— This paper presents an interior point approach to
exact distance computation between convex objects repreged
as intersections of implicit surfaces. Exact distance comjtation
algorithms are particularly important for applications in volving
objects that make contact, such as in dynamic simulations ah
in contact point prediction for dextrous manipulation. They
can also be used in the narrow phase of hierarchical collisio
detection. In contrast to geometric approaches developedif
polyhedral objects, we formulate the distance computatiomprob-
lem as a convex optimization problem; this optimization for
mulation has been previously described for polyhedral objets.
We demonstrate that for general convex objects represented
as implicit surfaces, interior point approaches are suffiogntly
fast, and owing to their global convergence properties, arehe
only provably good choice for solving proximity query problems
for some object classes. We use a primal-dual interior point
algorithm that solves the KKT conditions obtained from the
convex programming formulation. For the case of polyhedra ad
quadrics, we establish a theoretical time complexity oD (n'%),
where n is the number of constraints. We present implemen-
tation results for example implicit surface objects, incluing
polyhedra, quadrics, and generalizations of quadrics suchas
superquadrics and hyperquadrics, as well as intersection®f
these surfaces. We demonstrate that in practice, the algahim
takes time linear in the number of constraints, and that disance
computation rates of about 1 kHz can be achieved. We also
extend the approach to proximity queries between deforming
convex objects. Finally, we show that continuous collisiodetec-
tion for linearly translating objects can be performed by sdving
two related convex optimization problems. For polyhedra an
guadrics, we establish that the computational complexity bthis
problem is O(n'?).

Index Terms— Proximity query, closest points, smooth ob-
jects, interior point algorithms, collision detection, dynamic
simulation.

|I. INTRODUCTION

tance computation algorithms are usually used in the nar-
row phase of a collision detection algorithm in application
where knowledge of the closest points is required rather
than just a yes/no answer for collision. Such applications
are characterized by existence of intermittent contaet, i.
phases of contact and no contact between the objects, with
a concomitant need to predict potential contact points. &om
example applications are dynamic simulation ([1],[351])5
computer animation ([11]), dextrous manipulation ([37])]

and haptics ([33],[15]). Other applications where caodiisi
avoidance is the primary goal may also make use of the
knowledge of the closest distance information. Examples
of such applications include robot path planning [43] and
spacecraft safe volume computations [16].

It is well known that the evolution of contact points for
continuous contact states depends on the relative cuevatur
of the two contacting bodies ([36], [27]). Polygonalizatio
may lead to poor approximation of the object curvature
and consequently affect the accuracy of the dynamic sim-
ulation. For applications in engineering analysis of otgec
in intermittent contact [50], such discretization may net b
desirable. To the best of our knowledge, there is no puldishe
study on the effects of polygonal approximations even for
simple dynamic systems. Therefore, to illustrate the ¢ffet
polygonalization, we simulated the motion of a disc rolloTg
a table. Figure 1 shows that the simulated circular disngl|
on a flat plane loses energy, when represented as a polygon,
due to repeated impacts of the vertices with the table. More
generally, polygonalized representations of smooth abjec
can lead to intermittent loss of contact and bouncing in the
simulations. Another aspect of dynamic systems with inter-
mittent contact that we are interested in is the effect opsha

This paper studies the problem of computing the closes, the ensuing dynamics. The effect of shape and surface
points on two convex objects, when each object is degyryature on the dynamic motion of contacting objects is
scribed as an intersection of implicit surfaces. Exact d'S'dramaticaIIy illustrated by a spinning boiled egg and toys
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Similarly, exact representation of shape is important when
modeling robot fingers in contact with smooth objects during
multi-finger dextrous manipulation (Figure 2). Determipin
the first contact point correctly when fingers repositionimigir
finger gaiting is useful since the manipulation operatiars a
sensitive to the contact point and the normal and curvature
at that point ([7],[40]).

The general problem of distance computation between two
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objects X andY can be written as

Minimize  ||x; — yqll2
subjectto:x, € X, y, € YV

1)

where the two objectX andY are represented as compact
(closed and bounded) sets B¥ or R® and the pointsx,
and y, are points in the two objects. This problem has
been extensively studied ([25], [32]), mainly for polyhabr
object representations ([18], [21], [31], [34]). In thispea,
we focus on representing the sé&fsandY” as intersections of
implicit surfaces, including planes, quadrics, superagigad
and hyperquadrics. We assume that an implicit surface model
of each object is given to us. Our choice of object rep-
resentation is motivated by the goal of simulating systems
with smooth objects, where polygonal discretizations ma}f:ig. 2. A dextrous manipulation task that requires closestadce
not be desirable. (While parametric representations cem al computations to predict the contact points of fingers withobject. The
represent smooth objects, they provide a surface desuripti fingers and object are represented as superquadrics.
of objects with nonlinear equations and thus the resulting
problem is not a convex optimization problem even for
convex objects.) The literature on distance computation behyperquadrics. While the distance computation problem for
tween general implicit surfaces is relatively sparse bseau convex objects represented by convex inequalities has been
with a few notable exceptions ([20],[53]), methods for poly known to be a convex optimization problem ([5],[6]), to
hedral representations do not easily generalize to inplicikhe best of our knowledge, interior point algorithms have
surfaces. Having a smooth representation of objects and &bt been previously applied to this problem. Interior point
algorithm to perform distance computation between suchnethods are well suited for this class of optimization prob-
representations will enable the Study of the effects of ehap|ems since they are guaranteed to converge to the g|oba|
and polygonalization on dynamic simulation of systems withgptimum for convex problems. Further, they exhibit poly-
Intermittent contact. nomial convergence for special classes of functions called
Contributions of the papefThis paper focuses on the prob- self-concordant functions. We apply a recently developed
lem of computing the minimum distance between two convexnterior point algorithm [8], [59] to compute the distance
objects, where each object is described as an intersectigfetween convex implicit surface objects and demonstrate
of implicit surfaces. This class of convex objects includeshat it is particularly effective for this class of problems
for example, convex polyhedra, quadrics, superquadrit$, a For polyhedral and quadric surfaces, the algorithm takes
O(n'-%) time, wheren is the number of constraints. We
also illustrate the approach on surfaces such as supeigsiadr

17 T and hyperquadrics. To the best of our knowledge, this is

o T 2overtes the first approach with this demonstrated capability (witho
. T5vertices discretization). Another important advantage of this rodth

By T (oeres is that it provides a uniform framework for proximity quesie

between objects described as intersections of convex poly-
hedra, quadrics, or any arbitrary convex implicit surface.
Further, these proximity queries can be used in the narrow
phase of hierarchical collision detection for implicit sur
faces. We present implementation results for example aitpli
surface objects that show that the algorithm exhibits linea
time performance in practice, and demonstrate that distanc
T T e e ! computation rates of about 1 kHz can be achieved. We also
time (seconds) extend the approach to proximity queries between deforming
convex objects. Finally, we show that continuous collision
Fig. 1. Energy plots of a circle rolling on a table, with thecte  detection for linearly translating objects can be perfatme

approximated as a polygon with vertices. Asn increases, the polygon : T
better approximates the circle and the energy loss deaedabe dynamic by soIvmg two related convex optimization problems. For

simulation uses the Stewart-Trinkle [51] time steppingnfolation and  PoOlyhedra and quadrics, we establish that the time corrglexi
assumes Coulomb friction and inelastic impacts [4]. of this continuous collision detection problema@gn!-?).

14

Total Energy (Joules)
=
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The paper is organized as follows. After a discussiorcollision detection algorithms for implicit and parametri
of related work in Section I, we review the mathematicalcurved convex surfaces. He uses the collinearity property
background for our work in Section Ill. We present theof the surface normals of the closest points to numeri-
formulation of the closest distance problem in Section IVcally compute closest points at the initial configuratiore H
and describe how it can be solved using interior pointexploits geometric coherence to compute closest points at
algorithms in Section V. Section VI provides theoreticalsubsequent configurations. Lin and Manocha [30] consider
and practical results on the complexity of the closest pointurved models described as NURBS surfaces and piecewise
algorithm. Section VII extends the approach to continuouslgebraic surfaces. Using the collinearity property of the
proximity queries for linearly translating objects. We ggat  surface normals, they describe the closest points using a
our implementation results in Section VIII and concludehwit set of polynomial equations. However, the number of roots
a discussion of future work in Section IX. A preliminary can be prohibitively large as it depends on the degree of

version of this work appeared in [13]. the polynomials describing the surfaces; the roots must be
examined to identify the closest points. Note also that it is
1. RELATED WORK not possible to obtain bounds on the number of roots for

systems of equations with fractional indices (as wouldearis
with superquadrics). Schomer et al. [48] describe a coliisi
detection algorithm for curved objects bounded by quadric
gurface patches by finding roots of univariate polynomiéls o
fdegrees 4 and 8. Johnson and Cohen [26] give a lower-upper
bound tree framework for distance computation between any
two object representations for which the following set of
operations is available: bounding volume generation, towe

. . and upper bound on distance, bounding volume refinement,
for convex polyhedra include GJK [21], Lin-Canny [31], and and determination of computation termination. They have

V-Clip [34]' GJK [21] is an iterative algorithm for distance demonstrated their method on polyhedra as well as NURBS
computation between two convex polyhedra. It uses a support

f . - ) L surfaces. Patoglu and Gillespie [39] perform real-timekra
unction description of the polyhedra and takes time liriear . . . .
. . - ing of the closest points between two objects modeled with
the number of vertices. Lin-Canny [31] efficiently computes : o
the distance between two convex polyhedra and tracks tHaearametn(.:.surfacets by formulating it as a control problem
. : . . . and exploiting spatial and temporal coherence.

closest points using adjacency of features. Its running tim
is linear in the number of features (faces, edges, and esjtic =~ The literature on distance computation between general
Both algorithms can track the closest points in (almost) conimplicit surfaces is relatively sparse because, with the ex
stant time when there is temporal coherence [10]. Bobrow [Steption of GJK, methods for polyhedral representations do
proposed an optimization based approach for computing theot easily generalize to implicit surfaces. In fact, no elbs
distance between two convex polyhedra. He formulated théorm solution exists even for the distance between a point
problem as a quadratic programming problem and used and an ellipsoid. Most closely related is recent work on
gradient projection algorithm to solve the problem. Howeve computing the distance between two ellipsoids and other
this approach can suffer from convergence issues [62].  conic sections ([29], [16], [49]). Sohn et. al. [49] exploit

Proximity queries for quadrics and NURBBistance esti- the fact that the closest points on two surfaces are where
mation between non-polyhedral shapes has focused primaritheir common normals intersect the surfaces. They apply
on quadrics and NURBS surfaces. Among the algorithms fotheir line geometry approach to ellipsoids, for which the
polyhedra, only GJK has been extended directly for smootiminimum distance computation is reduced to finding the
convex objects [20]; van den Bergen [53] discusses in detatommon roots of two polynomial equations of degree 8 and
a GJK implementation for convex quadric objects. Howeverl6. Coppola and Woodburn [16] formulate the problem as
this GJK algorithm does not guarantee convergence in a finitan optimization problem. They iteratively solve the praoble
number of steps. Further, computing the support mappingf closest distance from a point to an ellipsoid to arrive at
is difficult for superquadrics with fractional (non-inteyje the optimal solution. Rimon and Boyd [46] use convex opti-
exponents due to the difficulty of solving polynomial equa-mization techniques to find the minimum volume enclosing
tions with fractional exponents. Turnbull and Cameron [52]ellipsoids to model objects, and then compute a conseevativ
extended GJK to convex NURBS surfaces. They describe distance estimate between ellipsoids by treating it as an
procedure to calculate the support mapping for the NURB®igenvalue problem. Choi et al. [14] present a continuous
surfaces which reduces to solving two nonlinear polyno-<ollision detection algorithm for two elliptical disks miog
mial equations in two parameters. They present results fdn the plane. Collisions are identified by checking for the
2D and describe the theory for 3D. Baraff [1] describedreal roots of the univariate discriminant of the charastéri

Proximity queries for polyhedraProximity queries and
collision detection algorithms have an extensive literatu
in computational geometry [18], robotics [21], [31], and
computer graphics [53]. We provide a sampling of the relate
work in these areas; see [32] and [25] for an overview o
collision detection and proximity queries. When collisibe-
tection algorithms estimate the distance between two thjec
they typically use a geometric approach. Popular algosthm
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equation of the two moving ellipses. Although superquadric
are a generalization of quadrics, the problem in genengjizi
the methods in [1],[21],[16],[49] to superquadrics is ttraty

all lead to polynomial equations with fractional exponents
which are very difficult to solve. In general, we do not

know the total number of roots, and even when it is possible
to simplify the polynomials, they may have large integer

exponents.

IIl. M ATHEMATICAL PRELIMINARIES

We now review the mathematical terminology that will be
used in the rest of the paper.
Convex SetA setU C R" is called a convex set if for any
two pointsuy, ups € U and any\ with 0 < A <1, we have

Aug + (1 — )\)112 e U.

Convex FunctionA function f : R® — R is convex if the
domain of f (dom f) is a convex set and for alk;, uy €
dom f and any\A with 0 < X < 1, we have

f(Aul =+ (1 — /\)112) S Af(ul) =+ (1 — )\)f(llg)

Convex Programming Problen€onsider the general nonlin-
ear programming problem given by:

fo(x)

subject to: x € U

Minimize

)

Hyperquadric: A hyperquadric [24] is defined by the
equation

N
f(x) = [Hi(x)|"" —1 =0 whereN >3 and
i=1

H;(x) = (a;x1 + bixa + c;x3 + d;)
ni =li/mi, li,m; € Z"

f(x) convexif 1<n; <oo

f(x) nonconvex if 0 <n; <1

(4)

Hyperquadrics are a more general class of shapes than su-
perquadrics. In particular, they include asymmetric skaje
this case also, the intersection of the plafgéx) < 1 form
a bounding polytope for the hyperquadric and the indices
control the roundedness of the shape.

Self-concordant functiong convex functionf : R — R is
self-concordant ifl f"(z)| < 2f" ()2 for all = € domf.
A convex functionf : R" — R is self-concordant if it is
self-concordant along every line in its domain (see [6] for
details).

IV. PROBLEM FORMULATION

In this section we present the formulation of the min-
imum distance computation problem. We first outline a
geometric approach to the minimum distance problem that
has been popular in prior work on non-polyhedral objects
([1]1,[30],[49]) and connect it to an optimization formuitar.

Let fx be an implicit function representing objeat and

This nonlinear programming problem is called a convexy. pe an implicit function representing objett, and let

programming problem if the objective functiofy is a
convex function and the feasible sEtis a convex set [3].
Usually the setlU is defined by a set of inequality and/or
equality constraints. If the inequality constraints definl/

X4, Yo be the global coordinates of points i and Y
respectively. To compute the closest distance betw&en
and Y, the approach uses the geometric condition that the
normals on the two surfaces at the closest points are aligned

are convex functions and the equality constraints are fineayith each other. Using this and the condition that the closes

thenU is a convex set [6].
SuperquadricA superquadric [24] is defined by the equa-
tion

n2 ns3

1 —1=0

ai

T2 T3

f(x)
a3

n; =li/m;, l,m; € 2", i€ {1,2,3}
f(x) convexif 1<n; <o
f(x) nonconvex if 0 <n; <1

ag

®3)

Although the definition here differs slightly from that in][2
the two definitions are equivalent [24]. Convex superquedri

are a broad class of shapes that include cuboids, rounded
cuboids, ellipsoids, spheres, and (rounded) octahedra. Th

planes a1<1,i=1,23 define a bounding cube for the

superquadric and the indices control the roundedness of the

shape. Different shapes can be obtained by varyingrhe
shape is a rhomboid whetn, = 1, and the shape becomes a
cube as; tends to infinity.

points should lie on the surfaces of the two objects, we can
obtain the closest points by solving the following system of
nonlinear equations
Xg —¥g = —Ax V [fx(xg)
Xg —¥g = Ay Vfr(yy)
fx(xg) =0
fy(yg) =0

where A\x and Ay are scalars. The conditions given by
Equation 5 are precisely the Karush-Kuhn-Tucker (KKT)
conditions for solving the following optimization problem

(®)

Minimize

[xg — ¥gll2
subject to: fx(x4) =0 (6)
fy(yg) =0

However note that whelfixy and fy are nonlinear, the above
problem is honconvex even when the objects are convex and
the solution can therefore get stuck in a local minimum.
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We now formulate the problem of minimum distance
computation between two convex objects as a convex opti-
mization problem. Each object is assumed to be described as s
an intersection of a finite number of implicit primitivese(i,
a finite number of algebraic inequalities). In general, eafch
the intersecting surfaces may be specified in its own reéeren 4
frame. The distance computation problem of Equation 1 can
then be written as .

Minimize  [|x, — y, |3

subject to: x; = Ryixji +pas i =1,...,m
Yo =Ry;jyij +py; j=m+1....n (7)
fixu) <0 i=1,...,m
fily;) <0 j=m+1,...,n T 1o

wherex,, y, € R?® are the global coordinates of points in
the two objectsX and Y respectively;Ryi, pri, k = z,, Fig. 3. Three example objects. The closest points of eachgbaibjects
are the rotation matrix and position of the reference framere shown connected by a line segment.
of each of the intersecting surfaces with respect to theajlob
frame,xy;, yi; € R? are the coordinates of the points in the
local reference frames of the surfaces, gadk = i, j) are The solution to the minimum distance problem of Equa-
the functions representing the implicit surfaces in thealoc tion 8 gives two closest points that lie on the surfaces of
reference frames. The above system Baslinear equality the two objects (i.e., boundaries of the two sets). We use
constraints andh inequality constraints. Note that the linear an interior point algorithm [8] for solving this problem.
constraints in Equation 7 can be any affine transformatiosee Figure 3 for an example solution generated using an
(not necessarily a rigid body transformation). In partazul interior point algorithm. Interior point methods [60] are a
we can handle global deformations like nonuniform scalingclass of optimization algorithms for nonlinear programgnin
by post multiplying the rotation matrix with a scaling matri problems. In contrast to algorithms for finding the closest
From the linear constraints in Equation 7 we can easnypoints that generate iterates that lie on the surface of the
evaluatex;; andy;; and so the inequality constraints can beobjects (gradient projection [5], for example), feasiloteetior
expressed in terms of, andy,. Therefore, without loss of point methods generate iterates that are guaranteed to lie
generality, we can assume that the implicit surface desgrib inside the objects and converge towards the closest points
the objects is described in a global reference frame. Then the boundaries of the objects. This is the main conceptual
distance computation problem of Equation 1 is then giverflifference between interior point methods and other method

by Sequential quadratic programming (SQP) is another method
for solving general nonlinear programming problems [28]. |
Minimize  ||x, — y,|13 contrast to SQP, interior point methods have polynomiagtim
subject to: fi(x,) <0 i=1,...,m (8)  convergence guarantees for certain convex problems, as we
. . describe in Section VI. Moreover, an informal comparison
filyg) <0 j=m+1,...,n

of SQP implementations with interior point algorithm imple
wheref; (k = i, j) are the functions representing the implicit mentations on the NEOS server [17] shows the interior point
surfaces in the global reference frame. The above system haethods to be slightly faster. Therefore, we choose to solve
n inequality constraints. The objective function in Equati®  the optimization problem with an interior point algorithm.
is convex, and if the inequalities represent a convex st (i.
the objects are convex), the minimum distance computation
problem is a convex programming problem. For general
convex surfaces, the distance computation problem is a In this section, we present th@imal-dual interior point
nonlinear program (NLP). For objects described as convealgorithm for solving the optimization problem described i
quadric surfaces, the problem reduces to a quadraticallgquation 8. The Karush-Kuhn-Tucker (KKT) conditions give
constrained quadratic program (QCQP), and if the objectaecessary and sufficient conditions for solving the minimum
are convex polyhedra (intersections of planes), the closeslistance problem in Equation 8, since it is a convex opti-
distance problem becomes a quadratic programming (QRhization problem and satisfies Slater constraint qualificat
problem. For ease of presentation, we rewrite Equation 8 in a general

V. INTERIORPOINT ALGORITHM
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nonlinear program format as
Minimize  fo(x)
subject to: f(x) +s=0 9)
s>0
wherefo(x) = [|x,—y I3, x = [x],yL]" is a6 x 1 column
vector,s is ann x 1 column vector of slack variables, and
f : R® — R is the vector of inequality constraints. The

Lagrangian for the above constrained optimization problem
can be written as

Fig. 4. Schematic illustration of the interior point methéat a path
fo(x) + AT (f(x) +s) (10)  following algorithm. The convex region represents the ifsdasset. The
central path is an arc of strictly feasible points that sdiguation 14 as
where \ is ann x 1 vector of Lagrange multipliers. The the parametey approached). The progress of the iterates generated by

KKT conditions for Equation 9 are the system of non"nearthe interior point solver is indicated by the polygonal licennecting them.
The iterates are guaranteed to lie within a neighborhoqatesented by the

equations below: circular ball, of the central path.
Vio(x) + (VEx)TA=0
f(x)+s=0 (11) . o
LSe — 0 where is the vector of Lagrange multipliers. Thus, the KKT
conditions can be written as

HereL is ann x n diagonal matrix of the\ variables,S is
ann x n diagonal matrix of the slack variablesande is an Vo) + (VE(x)TA =0
n-vector of ones. The above is a systenRef+ 6 nonlinear £(x)+s=0 (14)
equations in th&n + 6 variablesx, A, s. Equation 11 can be
solved by Newton’s method for solving systems of nonlinear LSe —pe =0
equations. It converges to the correct solution if the ahiti
guess isnear enough38]. However, in general, it is very The above equation represents a systerdrof- 6 nonlinear
difficult to supply a good initial guess and there is then noequations in2n + 6 variables and can be approximately
guarantee that Newton’s method will converge. The mairsolved for a giveru.. Note that Equation 11 and Equation 14
difficulty in using Newton’s method is that we have to ensurediffer in the complementarity conditions. As the barrier
s > 0, which may lead to very small step lengths that resulpparametey: approaches, the KKT conditions for the barrier
in convergence problems. problem (Equation 14) approach the KKT conditions of the

Interior point methods are a general class of algorithm®riginal problem (Equation 11). See Figure 4 for a schematic
for solving nonlinear programming problems. In essenceillustration of the interior point method.

these methods approximately solve a sequence of systersgr our proximity query problem, feasible interior point
of nonlinear equations that are formed by perturbing thenethods generate iterates that yield points guaranteed to |

complementarity equationd.fe = 0) in the KKT condi- inside the objects and converge towards the closest points
tions. Following [6], we present the interior point method b on the boundaries of the objects. See the example proximity
reformulating Equation 9 as laarrier problem. guery in Figure 5.

The general structure of interior point methods is indidate
(12) in Algorithm 1, where termination criteriof is the ending

condition for the whole problem (Equation 11) and termi-

subject to: f(x) +s =10 nation criterion2 is the ending condition for approximately

The formulation in Equation 12 is tHearrier formulation [6] ~ SOIVing Equation 14 for the current value pf The outer

of the minimum distance problem of Equation 9 ands  While loop determines the number of timegs has to be
called the barrier parameter, with> 0. Equation 12 differs uPdated, i.e., the number of times Equation 14 has to be
from Equation 9 in that the nonnegativity constraintssare ~ @PProximately solved for the sequence pfvalues. The
not present explicitly, but are implicit in the objectiveng  Nner while loop is a variant of Newton'’s method used for
Lagrangian for the above constrained optimization problen@PProximately solving Equation 14 for a fixed valug.ofThe

Minimize  fo(x) — uzn:ln(si)
1=1

can be written as different interior point implementations (KNITRO [8], [$9
n LOQO [56], [57], IPOPT [58]) vary in the way they calculate
fo(x) — len(si) +AT(f(x) +s) (13) the step lengths for a particular value of the termination

] criteria they use, and the way in which they update
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Progress of the Iterates in Interior point method
T T T T T

i ~

Fig. 5. Example illustrating the sequence of closest postinmeates
generated by the interior point method for two 2D superqgeadbjects,
with indices (22, 1), (78, 71) and semiaxes. The iterates of the interior

point method are mapped to corresponding points in the tbjec

Algorithm 1 Interior point algorithm
Input: initial strictly feasiblexy, initial barrier parameter
10, specified tolerance, and KKT equations
Output: Closest points solutiog

k<20
while termination criterion 1 not satisfiedo
while termination criterion 2 not satisfiedo
Solve the system of linear equationgd&termine
/I Newton direction
Determine step lengthy, by line search
Xpt1 — X + apAxg
Sk+1 < Sk + apAsy
Akt1 — Ak + arAXg
k—k+1
end while
uw— cp Il ¢ <1, may be constant or adaptive
end while
return x;

V1. COMPUTATIONAL COMPLEXITY

are the same as before, ald = Vfy(x) + (VF(x))T\,
F; =f(x) +s, F3 = LSe — pe.

In general, the computational cost of solving a system of
linear equations im unknowns isO(n?). However, we now
establish that the system of linear equations can be sofved i
O(n) time. By simple algebraic manipulation of the above
equations, we obtain the following formulas fax, A\, and
As:

Ax =G Y(~F; — AI(S7IL)(F, + L7'F3))
AN = (S7IL)(A2Ax — Fy + L7'F3) (16)
As = —L7Y(F3 + SA))

whereG = A; +AT(S!L)A,. SinceG is a6 x 6 matrix,
G~! can be computed in constant time. Moreo\®and L
aren xn diagonal matrices, S8~ andL.—! can be computed
in linear time. Thus we can compute all the inverse®m).
Moreover, noting the dimensions ok; and A., we can
see by inspection that the matrix multiplication also reegsii
O(n) operations. So Equation 16 can be evaluate@®in)
time, or in other words, the computation of the Newton
step takesO(n) time. Note that we have not made any
assumptions regarding the primitive surface describirgg th
object. Thus this analysis is valid for any implicit surface
(including planes, quadrics, superquadrics, hyperqusadri
etc.) and for intersections of these implicit surfaces.

For general functions, there is no known bound on the total
number of iterations (including both while loops). However
if the log barrier function of the implicit surface constrts
is a self-concordant function (refer to Section Ill), themu
ber of Newton iterations (which is the number of times
Equation 15 must be solved) is polynomial in a parameter
depending on the structure of the function. For polyhedral
constraints and quadric constraints the number of Newton
iterations required for converging to the optimal solutien
O(n%®). This implies that the theoretical complexity of our
approach for polyhedra and quadric€i&:*-®). Although al-
gorithms with theoretical linear time guarantees are ats!
for polyhedra, for the case of quadrics, as far as we know, thi
is the best known bound. Moreover, our experiments indicate
the algorithm exhibits linear time behavior in practice, as

The total cost of solving a problem using Algorithm 1 is Shown in Figure 6 and Figure 7.

the product of the total number of iterations (consideriathb

For superquadrics and hyperquadrics, the log barrier func-

loops) and the computational effort in solving the system ofion might not be self-concordant in the general case. How-
linear equations to determine the Newton direction in eacf§Ver, note that superquadric and hyperquadric functions ha
iteration. The system of linear equations to be solved t&elf-concordant barriers because they define convex region

determine the Newton direction is

A A" Opxn Ax -k
A2 Onxn Inxn A = _F2 (15)
06 xn S L As —F3

whereA; = V2fo(x) + > i A\ V2 fi(x) is a6 x 6 matrix,
A, = Vf(x) is an x 6 matrix, the definitions oS and L

and every convex region has a self-concordant barrier (its
universal barrier). If this barrier is too hard to find to be
useful computationally, an alternative is to decompose the
function into simpler functions (for example, as seconceord
cones [41]) such that the sum of the barriers for the simpler
functions gives a barrier for the original superquadric or
hyperquadric. However these representations may lead to
computationally slower solutions due to the increased rarmb
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Fig. 8. Plot showing observed linear time behavior of theriotr point
algorithm for superquadrics.

sampling of their configurations. This computation of the
closest distance between two swept objects is closelyealat
to the problem of continuous collision detection ([12],,[9]
[61], [44], [45], [55]), where the time of first contact betere
two colliding objects is to be determined; however most
prior work has been restricted to polyhedral objects. The
advantage of such continuous collision detection metheds i

Running Time (milliseconds)
\

s | the ability to detect collisions even for fast moving obgect
# o ] in the presence of thin obstacles.

] We address the continuous collision detection problem for
linearly translating objects by solving two related convex
optimization problems. Assume the objects are moving along
piecewise linear paths. Léf andY” be two objects described
by fx(x;) < 0 and fy(y;) < 0. Let the two objects be
linearly translating along the directions specified by the
unit vectorsg, and g, with constant velocitiesv, and
of variables and constraints. Glineur and Terlaky [23] pro-vy respectively. The following optimization problem finds
vide self-concordant formulations fég-norm minimization ~the minimum distance between the two objects in the time
that apply to superquadrics and hyperquadrics. However tigterval[0, t.q.], where each object is moving along a single
computational performance of these formulations has not ydine segment. If the minimum distance is greater than zero,
been explored in the literature. Moreover, the observee timthe solution provides the closest points and the timat
complexity of the interior point algorithm inear for this ~ Which the objects are closest. See Figure 9.
class of shapes (Figure 8), which implies that in practiee th
number of iterations is constant, i.e., independent of ihe s
of the problem. The observed linear time behavior of the
interior point algorithm even without self-concordant mep
sentations further justifies the use of an interior poirgeuh

i i i i i i i i
10 20 30 40 50 60 70 80 90 100
Number of Quadric Constraints

Fig. 7. Plot showing observed linear time behavior of theriot point
algorithm for quadrics.

Minimize  ||x, — y,l3
subject to: x;, = Ryx; + ps + 05t
Yo = Ryyi + py +vytgy

solver for this generic nonlinear programming formulation fx(x) <0 a7)
fy(yi) <0
VIlI. CONTINUOUS PROXIMITY QUERIES FOR
t S tmam
TRANSLATING OBJECTS
t>0

We now address the problem of continuous proximity
queries for two linearly translating objects. Such queries When the objects intersect, the problem above has multiple
can be useful in identifying feasible object motions duringsolutions corresponding to zero distance. The time of first
assembly planning. The goal is to determine the exact timeontact can be obtained by solving another convex optimiza-
at which the two moving objects are closest, without digrettion problem using the solution of Equation 17. L@tbe
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t. Thus in Equation 15A; is a7 x 7 matrix andA, is an
n x 7 matrix. This implies that is still a constant sizedx 7
matrix and the complexity argument for solving Equation 16
in Section VI applies directly. Similarly in Equation 18,is
a4 x 1 vector consisting off and¢. ThusA; is a4 x4 matrix
and A, is ann x 4 matrix andG is a4 x 4 matrix. Hence
the computation of the Newton step in both problems takes
O(n) time irrespective of the implicit primitive. Moreover,
as the constraints have a self-concordant log barrier ilmmct
for the case of planes and quadrics, the overall complexity i
O(n'-%) in these cases.
y Obtaining the collision interval for motion with known
linear paths: Computing the path intervals over which two
Fig. _9-_t ComPU;iﬂg éh?diglstanlt_ of Closestt d{ztanfe Usri]ng _mﬂtir':w?lls robots can collide is useful in multiple robot coordination
ggﬁgégyag‘iﬁg/ ansiare algfg e, it "rfecs%;eﬁeﬁoon € ™o " problems where the robots travel along known paths [42].
When we are given the paths traversed by the objects
and wish to determine the path intervals over which the
objects could collide with each other, we solve the follogvin
optimization problem.

Minimize s,
subject to: x;, = R, X; + Pz + 5284
Yo = Ryyl + Py + Sygy

fx(x1) <0 (19)
’ fy(y1) <0
y fx(yg) <0
x fr(xg) <0
Fig. 10. Computing the time of first contact using the contimiproximity Sz, Sy = 0

query gives the solution to the continuous collision dédecproblem. Here s.. and s represent the path Iengths traversed by
z Yy

the objects. The inequalitiefx (y,) < 0 and fy(x4) < 0
the set of intersecting points arge Q be a point specified describe all points in the mtersequon of both objects,alls_’.(_i
in the global coordinate system. To obtain the time of firstenCOde the constraint that the distance between the olects

contact, we solve the problem below, starting from an ihitia 2&70- I fact, we have to SP'Ve_ three more v_a_rla_tlc_)ns of the
feasible guess that is the solution of Equation 17. above problem with the objective function minimizings,,
sy, and—s,, to find the minimum and maximum values ©f

and s,. These define corresponding collision intervals over

Minimize ¢ the path for each object.
subject to: q = R,X; + pa + Vat8s
a =R,y +py + vyt8y VIIl. RESULTS
(18) . .
fx(x;) <0 We now present results illustrating our approach. To solve
the distance computation problem, we used KNITRO 5.0,
fy(y1) <0 ) . L .
a commercially available interior point based solver ([8],
t,>t>0

[59]). We use the primal-dual feasible interior point metho
wheret, is the time obtained from the solution of Equa-in KNITRO, where all the iterates are feasible. We have an
tion 17. See the example in Figure 10. initial feasible solution trivially from points at the cems of

We now establish that the computational complexity ofthe objects. The barrier parameteris initially set to 0.1
solving the Newton step in the continuous collision detatti and reduced by an adaptive factor at each iteration based on
problem along a single linear segmenid¢n), which is the the complementarity gap. For each value ofthe system
same as for the static query problem. We can eliminate of nonlinear equations is approximately solved by Newton’s
and y; from Equation 17 and can write it in the form of method with the step size determined by a trust region
Equation 9 wherex is a7 x 1 column vector that includes method [38].
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v Vv Vi

Fig. 11. Example objects. Objects I-lll are superquadti¢gsis an intersection of superquadrics and halfspaces, and ¥re hyperquadrics.

We depict six example objects in Figure 11, three of whichdetection time) taken by PQP [28], a popular collision detec
are superquadrics. The indices and semiaxes of the thréien software, was comparable for our examples. Note that
superquadrics ar 4,2%) and (1,0.7,1.5) for Object |  our randomly generated object configurations do not provide
(a diamond),(22, 1;, @) and (1,1,1.7) for Object Il (a the benefits of coherence. We also compared our algorithm
soda can), and%, %, %}) and(1,1,1.5) for Object lll (@ on quadric surfaces against SOLID [53], [54], which support
rounded cuboid). Object IV models a computer mouse ang@roximity queries for quadrics without discretization. [SD
is represented as an intersection of a superquadrid dvadf  runs abou0 times faster than our approach for the case of
spaces. The indices and semiaxes of the superquadric aebipsoids. However, our algorithm has a theoretical goara
(22,1 1) and (2,1,1.7). The half spaces are; > <!,  tee, and SOLID cannot deal with general implicit surfaces
z1 < %, 22 > —0.75, andzs > 0.4 wherezy, zo, z3 are the  like superquadrics or hyperquadrics without discretorati
local coordinates of the object. Object V is (the convex hull The timing data for translation-only continuous collision

of) a rounded hexagonal nut modeled as the hyperquadric detection is shown in Table Il. In cases where there is no

|22|"6 + |21 + 0.522)0 + |21 — 0.522|'® +|2.525] < 1. collision, the query time is the time to solve Equation 17.
- In cases with collision, we compute the exact time of first
Object VI is a pyramid modeled as the hyperquadric contact by solving the two optimization problems described

in Equation 17 and Equation 18.
|21 +as| 'O+ |zotas| O+ |zs | O+ |21 — s | O+ |wa—as| ' < 1. . . . . .
Deforming Objects:As stated in Section 1V, the linear

The run time performance of the algorithm on the exampleonstraints in Equation 7 can represent a general affine
objects is shown in Table I, with some test cases depicted itransformation. Thus this framework can easily handle gllob
Figure 3. All data was obtained on a 2.2 GHz Athlon 64deformations such as nonuniform scaling. Figure 12 shows
X2 4400+ machine with 2 GB of RAM. The running times nonuniform scaling of Object | and Object Ill ird steps. The
demonstrate that the distance computation rate is about sicaling matrices used for the two objects are diagonal matri
kHz, which is sufficiently fast for real-time dynamic simu- ces whose diagonal entries &tk 0.5,2) and (0.5, 3,0.67)
lations and interactive haptic simulations. We also geeeéra respectively. The approach can also handle any global de-
triangulations of these objects with about 19,000 triamgleformation where the convexity of the object is preserved.
and found that the distance computation time (not collisiorFor example, consider the global shape deformation for su-
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TABLE | TABLE Il
SAMPLE RUN TIMES, IN MILLISECONDS, FOR PROXIMITY QUERIES SAMPLE CONTINUOUS PROXIMITY QUERY RUN TIMES BETWEEN PAIRS
BETWEEN PAIRS OF OBJECTS USIN&KNITRO 5.0. THE RUN TIMES OF OBJECTS USINAKNITRO 5.0. THE RUN TIMES WERE COMPUTED
WERE COMPUTED FOR EACH PAIR BY AVERAGING THE RUN TIMES OVER FOR EACH PAIR BY AVERAGING THE RUN TIMES OVER100,000PAIRS OF
100,000RANDOM CONFIGURATIONS ALL DATA WAS OBTAINED ON A RANDOM CONFIGURATIONS FOR THE TIME OF FIRST CONTACT QUERIES
2.2 GHz ATHLON 64 X2 4400+VACHINE WITH 2 GB OF RAM. ONLY THOSE CONFIGURATION PAIRS THAT RESULTED IN COLLISIONS
WERE USED AND THE REPORTED QUERY TIME IS THE TOTAL QUERY
Objects | Number of | Proximity query TIME FOR SOLVING BOTH PROBLEMS
constraints | time (millisecs)
1 1, 2 0.84 Objects Query Number of Query
2 L 2 0.91 type constraints | time (millisecs)
3 I, 1 2 0.70 =
1, 1 Closest distance 2 1.32
4 | I, IV 6 0.85
Time of first contact 2 2.03
5 I, v 6 0.76 -
5 Y 5 078 I, 11 Closef,:sft distance g 0.97
7 YAV 5 089 Time of first contact 1.51
8 | I, VI 2 0.89

TABLE Il
SAMPLE PROXIMITY QUERY RUN TIMES BETWEEN DEFORMING PAIRS OF

perquadrics (or hyperquadrics) due to changes in the iadice ©BJECTS USINGKNITRO 5.0. THE RUN TIMES WERE COMPUTED FOR
Note that |f inStead a polygonal representation Of the ijeCEACH PAIR BY AVERAGING THE RUN TIMES AT EACH OF10STEPS IN THE
had been used for this kind of shape change, the polygonal = SHAPE CHANGE OVER 100,000RANDOM CONFIGURATIONS

representation would have to be recomputed. Figure 13 shows

three snapshots of Object | being deformed to Object Ilitin Objects D;’éﬂigon Eé'gg:n?; E?ﬁé'%@é’g
steps. Table Il shows the average distance computatia@stim Wl Nonunfform Scaling 2 104
for both nonuniform scaling and index deformation. Thisadat T, Nonuniform Scaling 2 0.75
shows that both affine and index changing deformations cap T — 1, 1 Index Change 2 0.87
be performed with similar running times to the rigid object [ — Il Il Index Change 2 0.84

proximity query.

Numerical Robustness Issuddfe have observed a small
number of cases where KNITRO failed to converge to thealgorithms make them robust even in the absence of any
optimal solution. For most objects, the failure rates werdnitial information about the closest points. For the class
typically less than 0.01%. The largest failure rate obsi#rveof (convex polyhedra and) convex quadric surfaces, this
was 0.4% when Object | was one of the objects. This may bapproach has a theoretical complexity @tn'-®), wheren
because (as is evident from our formulation) the algorithms the number of implicit function constraints. To the best
needs the second derivatives of the functions represetiiting of our knowledge, this is the first bound on the running
objects, but the second derivative does not exist everyavhetime of proximity queries for convex quadrics. Moreover,
for Object I. Despite this, the solver converges to the ogkim the practical running time behavior is linear in the numktfer o
solution in most cases. Switching to a variant of the interio constraints for all the classes of implicit surfaces thatwaee
point method that uses a conjugate gradient method, alailabstudied. The speed at which distance computations can be
within KNITRO, enabled the solver to converge for some ofperformed enables real-time dynamic simulations and bapti
the failure cases. Therefore adaptively using the two wssia interactions at 1 KHz rates.

of the method could improve robustness even further. An important additional advantage of this method is that
it provides a uniform framework for distance computation
IX. CONCLUSION between convex objects described as arbitrary intergectio

This paper demonstrates that recently developed interig¥f polyhedra, quadrics, or any convex implicit surface.-Fur
point algorithms are particularly effective for computitige ~ thermore, within this framework we can handle global affine
distance between two or more convex objects, where eadteformations of implicit surface objects, and index change
object is described as an intersection of implicit surfacesdeformations of superquadrics (or hyperquadrics) without
This proximity query approach complements the proximitysignificant computational overhead. Finally, we show that
query approaches of GJK [21], Lin-Canny [31], and similarcontinuous collision detection for linearly translatimyglicit
algorithms, since they focus on polyhedra while we focus orsurface objects can be performed by solving two related con-
smooth implicit surfaces. We demonstrated our algorithm orvex optimization problems. For polyhedra and quadrics, we
example implicit surface objects including convex polyfegd establish that the computational complexity of this comins
quadrics, superquadrics, hyperquadrics, and their iders collision detection problem i®(n'-?).
tions. The global convergence properties of interior point Future Work:There are several directions for future work.
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Fig. 12. Proximity queries on deforming (superquadric)eoty, with the deformation described by monotonic scaliffte deformation is performed in
10 steps. (a) The original objects. (b) The objects midwagugh the scaling. (c) The scaled objects.

(@) (b) (©

Fig. 13. Proximity queries on deforming superquadric aisiewith the deformation governed by monotonic change obagpts. Object | is transformed

to Object Il in 10 steps. (a) The original objects. (b) Midwdrough the deformation, deformed Object | has indices’, %, %). (c) The final objects.
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