
IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002 713

Performance of a Distributed Robotic System Using
Shared Communications Channels

Paul E. Rybski, Student Member, IEEE, Sascha A. Stoeter, Maria Gini, Dean F. Hougen, Member, IEEE, and
Nikolaos P. Papanikolopoulos, Senior Member, IEEE

Abstract—We have designed and built a set of miniature robots
called Scouts and have developed a distributed software system to
control them. This paper addresses the fundamental choices we
made in the design of the control software, describes experimental
results in a surveillance task, and analyzes the factors that affect
robot performance.

Space and power limitations on the Scouts severely restrict the
computational power of their on-board computers, requiring a
proxy-processing scheme in which the robots depend on remote
computers for their computing needs. While this allows the robots
to be autonomous, the fact that robots’ behaviors are executed
remotely introduces an additional complication—sensor data and
motion commands have to be exchanged using wireless commu-
nications channels. Communications channels cannot always be
shared, thus requiring the robots to obtain exclusive access to
them.

We present experimental results on a surveillance task in which
multiple robots patrol an area and watch for motion. We discuss
how the limited communications bandwidth affects robot perfor-
mance in accomplishing the task, and analyze how performance
depends on the number of robots that share the bandwidth.

Index Terms—Distributed software architecture, mobile robots,
multiple robots, resource allocation.

I. INTRODUCTION

CONTROLLING a group of miniature mobile robots in a
coordinated fashion can be a very challenging task. The

limited volume of miniature robots greatly limits the kinds of
on-board computers and sensor processing systems they can
use. One way to overcome these limitations is to use a commu-
nications link with a more powerful off-board processor. Un-
fortunately, the robots’ small size also limits the bandwidth of
their communications system and prevents the use of large ca-
pacity communications hardware (such as a wireless Ethernet).

Manuscript received April 3, 2001; revised April 1, 2002. This paper was rec-
ommended for publication by Associate Editor T. Arai and Editor S. Hutchinson
upon evaluation of the reviewers’ comments. This work was supported in part
by the Defense Advanced Research Projects Agency (DARPA), Microsystems
Technology Office (Distributed Robotics), under ARPA Order G155, Program
Code 8H20, issued by DARPA/CMD under Contract MDA972-98-C-0008,
in part by the Doctoral Dissertation Fellowship Program at the University of
Minnesota, Minneapolis, in part by the Microsoft Corporation, and in part by
the Idaho National Engineering and Environmental Laboratory (INEEL). This
paper was presented in part at the 7th International Conference on Intelligent
Autonomous Systems, Marina del Rey, CA, March 25–27, 2002, and in part at
the 1st International Joint Conference on Autonomous Agents and Multiagent
Systems, Bologna, Italy, July 15–19, 2002.

The authors are with the Center for Distributed Robotics, Department
of Computer Science and Engineering, University of Minnesota, Min-
neapolis, MN 55455 USA (email: rybski@cs.umn.edu; stoeter@cs.umn.edu;
gini@cs.umn.edu; hougen@cs.umn.edu; npapas@cs.umn.edu).

Digital Object Identifier 10.1109/TRA.2002.803460

Fig. 1. Scout robot shown next to a ruler (in centimeters) for scale.

Scheduling access to the shared bandwidth becomes critical for
effective operation.

We describe a case study of a group of miniature robots which
must use very low capacity radio frequency (RF) communica-
tions systems due to their small size. The size limitations of
these robots also restrict the amount of on-board computational
power they can carry, forcing them to rely on off-board deci-
sion processes. Thus, all the sensor data are broadcast to a re-
mote computer or a larger robot and actuator commands are re-
layed back to the miniature robots. The operation of these robots
is completely dependent on the RF communications links they
employ. In order to handle high demand for this low-capacity
communications system, a novel process management/sched-
uling system has been developed.

In the experiments we describe, the robots are deployed to
create a sensor network in an indoor environment and patrol
the area watching for motion. We show how sharing bandwidth
affects the performance of the robots when they are used in a
surveillance task.

II. M INIATURE ROBOTIC SYSTEMS

We have developed a set of small robotic systems, called
Scouts [1], which are designed for reconnaissance and surveil-
lance tasks. The Scout, shown in Fig. 1, is a cylindrical robot
11.5 cm in length and 4 cm in diameter. Scouts locomote in two
ways. They can use their wheels to travel over smooth surfaces
(even climbing a 20slope), and they are capable of jumping

1042-296X/02$17.00 © 2002 IEEE

714 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Fig. 2. Scout using its spring-loaded tail to jump up a stair.

over objects 30 cm in height using their spring-loaded tails.
Fig. 2 shows the Scout jumping up a step.

The Scouts can transmit video from a small camera to a
remote source for processing. They can also transmit and
receive digital commands over a separate communications link
that uses anad hocpacketized communications protocol. Each
Scout has a unique network ID, allowing a single RF channel
to carry commands for multiple robots. By interleaving packets
destined for different robots, multiple Scouts can be controlled
simultaneously.

Due to the Scout’s limited volume and power constraints,
the two on-board microprocessors are only powerful enough
to handle communications and actuator controls. There is very
little memory for any high-level decision process and no ability
to process video. In order for the Scouts to accomplish any-
thing useful, they must be paired with an off-board computer
or a human teleoperator.

Video data is broadcast over a fixed-frequency analog radio
link, and must be captured by a video receiver and fed into
a framegrabber for digitizing. Because the video is a contin-
uous analog stream, only one robot can broadcast on a given
frequency at a time. Signals from multiple robots transmitting
on the same frequency disrupt each other and become useless.
We will use the terms video frequency and video channel inter-
changeably throughout this paper.

The RF limitations of the Scout pose two fundamental dif-
ficulties when trying to control several Scouts. First, the com-
mand radio has a fixed bandwidth. This limits the number of
commands it can transmit per second, and therefore, the number
of Scouts that can be controlled simultaneously. Currently, our
interrobot communications network operates on a single carrier
frequency, with a command throughput of 20–30 packets per
second.

Second, there are generally not enough commercial frequen-
cies available to allow for a large number of simultaneous analog
transmissions. With the current Scout hardware,there are only
two video frequencies available.1 As a result, video from more
than two robots can be captured only by interleaving the time
each robot’s transmitter is on. Thus, an automated scheduling
system is required. Sharing the bandwidth among robots affects
the performance, as we will see in the description of our exper-
imental results in Section V.

1This was true when this paper was originally written. Since then, the number
of available commercial frequencies has increased to six.

III. D YNAMIC RESOURCEALLOCATION

The decision processes that control the actions of the Scouts
need to be able to connect to all the resources necessary to con-
trol the physical hardware. We have designed a software archi-
tecture [2] that connects groups of decision processes with re-
source controllers that have the responsibility of managing the
physical resources in the system.

This distributed software architecture dynamically coor-
dinates hardware resources transparently across a network
of computers and shares them between client processes. The
architecture includes various types of user interfaces for robot
teleoperation and various sensor interpretation algorithms
for autonomous control. The architecture is designed to be
extremely modular, allowing for rapid addition of behaviors
and resources to create new missions.

Access to robotic hardware and computational resources is
controlled through processes calledresource controllers(RCs).
Every physical resource has its own RC. Any time a behavior or
another decision process needs a particular resource, it must be
granted access to the appropriate RC. Some physical hardware
can only be managed by having simultaneous access to groups
of RCs. This grouping is handled by a second layer calledag-
gregate resource controllers(ARCs). Every ARC is an abstract
representation of the group of RCs that it manages. An ARC
provides a specialized interface into the group of RCs that it
manages.

A. An Example of ARCs and RCs

In order for a process to control a single Scout, several
physical resources are required. First, a robot which is not
currently in use by another process must be selected. Next, a
command radio which has the capacity to handle the demands
of the process is needed. (Refer to Section III-C for a discus-
sion of the radio’s capacity.) If the Scout is to transmit video,
exclusive access to a fixed video frequency is required, as well
as a framegrabber connected to a tuned video receiver. Each
instance of these four resources is managed by its own RC.

Fig. 3 illustrates the interconnections between the compo-
nents in the system. In this example, a hierarchy of behaviors is
responsible for controlling two robots, and a user interface tele-
operation console lets a user control a third. Each component
has its own ARC which attempts to gain access to the appro-
priate resources. There are three Scout robots, all of which share
a single video frequency. A single video receiver is attached to
a video processing card and a Scout command radio is attached

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 715

Fig. 3. An instance of the architecture. Three Scouts are controlled by a combination of behaviors and a teleoperation console. All three share the same video
frequency, so only one robot can be controlled at a given time. Solid lines indicate active connections (where data can flow between components) whiledashed
lines indicate connections that are not currently active but may become active later.

to a serial port. The ARCs must share the video frequency and
framegrabber RCs. The ARC owned by the teleoperation con-
sole does not need the framegrabber, but still needs control of
the video frequency to operate. In this situation, only one of the
three ARCs will be able to send commands to its robot at a time,
and thus, the ARCs must have their access scheduled.

B. Resource Scheduler

Access to RCs must be scheduled when there are not enough
RCs to satisfy the requirements of the ARCs. The central
component which oversees the distribution and access to the
ARCs and RCs is the RESOURCE CONTROLLER MANAGER.
The RESOURCE CONTROLLER MANAGER maintains a master
schedule of all active ARCs and grants access to each of their
RCs when it is their turn to run. When requesting access to a
set of RCs, an ARC must specify a minimum amount of time
that it must run to get any useful work done. This value, which
is generally on the order of seconds to minutes, is called the
minimum runtime value.

The RESOURCECONTROLLER MANAGER’s scheduling algo-
rithm tries to grant simultaneous access to as many ARCs as
possible. ARCs are divided into sets depending on the RCs they
request. ARCs that ask for independent sets of RCs are put into
different groups. These groups will run in parallel with each
other since they do not interact in any way. The ARCs that
have some RCs in common are examined to determine which
ARCs can operate in parallel and which are mutually exclusive.
ARCs which request a nonsharable RC cannot run at the same
time, and must break their total operating time into slices. ARCs
which have a sharable RC in common may be able to run simul-
taneously, assuming that the capacity requests for that sharable
RC do not exceed its total capacity.

ARCs with higher priorities are given precedence over ARCs
with lower priorities. The RESOURCECONTROLLER MANAGER

attempts to generate a schedule which allows all ARCs of the
highest priority to run as often as they are able to. Any ARC
of a lower priority which can run at the same time, without in-
creasing the wait time of any of the higher priority ARCs, is also
allowed to run. Lower priority tasks that cannot be so scheduled
must wait (possibly indefinitely) for the higher priority tasks to
complete.

Once the schedule has been generated, the schedule manager
iterates over it in a simple round-robin fashion. ARCs are started
and stopped according to the length of their minimum runtimes
until the controlling behaviors request that they be removed
from the schedule, at which point the RESOURCECONTROLLER

MANAGER recalculates the new schedule. As an example, in
Fig. 3, the sequence that the three ARCs would be run in is(1, 2,
3, 1, 2, 3, …). For a more detailed discussion on the scheduling
algorithm as well as examples, please refer to [3].

C. Sharable Resources

Sharable RCs, such as the Scout radio, have to manage their
own schedules to ensure that each of the ARCs using them is
given a chance to send packets to their robot at their requested
rate. When requesting access to a sharable RC, an ARC must
specify a usage parameter which defines how often it will make
requests and, if relevant, what kinds of requests will be made.
In order to streamline the scheduling process, commands sent
to sharable RCs must have a constant interval between invoca-
tions. In addition, each request must be completed before the
next request is made. However, because the CPU load of any
given computer will vary depending on how many components
are running on it, the runtime of any given request may vary.

Sharable RCs use a simple rate monotonic algorithm (RMA)
[4] to schedule access. Other, more complex, algorithms could
be used, such as the algorithm for proportional share resource
allocation [5] or the algorithm proposed in [6] for fair allocation

716 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Fig. 4. Typical schedule for a sharable RC such as a radio RC showing what
timeslots are available to the scheduled ARCs.

of a single resource to a set of tasks. In our system, we rely on
user-set priorities for sharing resources, so we are not as con-
cerned about fairness and more concerned about efficiency and
simplicity.

Requests with higher frequencies have precedence over
requests with lower frequencies. Once again, however, the
user-set priorities must be maintained. Thus, higher user-set
priority ARCs have precedence over lower user-set priority
ARCs regardless of the frequency of the requests. This can
cause a disruption in the way requests are handled by the
scheduling algorithm, and may produce a schedule which is
suboptimal in its usage of the RCs. Only when all of the higher
priority RCs have been scheduled will the lower priority RCs
be allowed access. If a sharable RC cannot schedule all the
ARCs, the responsibility for handling requests is given to the
RESOURCECONTROLLER MANAGER.

Once the requests for access have been granted, the ARCs
can use them in any way they see fit. Until they make a request
for a specific command to be sent to the radio, for instance, the
timeslices devoted to those ARCs are empty and the radio does
nothing.

As illustrated in Fig. 4, several ARCs have been granted ac-
cess to a radio, which is a sharable RC. ARC1 has requested one
half of the available bandwidth, and thus, is given every other
timeslot. ARC2 and ARC3 have requested one quarter and one
eighth of the available bandwidth, respectively. There is still
enough bandwidth for another ARC to request the remaining
one eighth of the available bandwidth of this RC. This schedule
could not exist in the example shown in Fig. 3 because those
ARCs cannot run simultaneously. If they each had their own
video frequency and framegrabber ARCs, then this radio RC
schedule would be possible.

IV. DISTRIBUTED SURVEILLANCE TASK

The Scouts are used in a distributed surveillance task where
they are deployed into an area to watch for motion. This is useful
in situations where it is impractical to place fixed cameras be-
cause of difficulties relating to power, portability, or even the
safety of the operator. In this task, the Scouts can either be de-
ployed into their environment by a human or another robot, or
they can autonomously find their way into useful areas.

Several simple behaviors have been implemented to do the
task. All the behaviors use the video camera, which currently
is the only environmental sensor available to the Scout. Using
the video camera presents several problems. One problem is the

(a) (b)

(c) (d)

(e) (f)

Fig. 5. Effects of RF noise in Scout video. (a) Acceptable image. (b) Motor RF
noise. (c) Weak signal. (d) Loss of synchronization. (e) Saturation. (f) Inversion.

Scout’s proximity to the floor, which severely restricts the area
it can view.

Since the video is broadcast over an RF link to a workstation
for processing, its quality often degrades due to noise caused by
the Scout’s motors, multipath reflections caused by obstacles
around the robot, or weak signals caused by proximity to the
ground and excess distance between transmitter and receiver.
Fig. 5 illustrates how noise can affect the quality and clarity of
returned images.

In earlier work, we used a simple frame averaging algo-
rithm to reduce the effects of noise [7]. This approach only
dealt with the problem of spurious horizontal lines and white
noise (Fig. 5(b) and 5(c), respectively). If the image became
saturated/inverted (Fig. 5(e) and 5(f), respectively), or if
vertical synchronization was lost [Fig. 5(d)], averaging only
compounded the problem.

Currently, the grayscale histogram of the Scout video is nor-
malized [Fig. 6(b)] in order to accentuate the contrasts between
light and dark areas. However, this has the side effect of en-
hancing RF noise. To compensate, we apply a 55 median
filter [Fig. 6(c)] over the image to smooth the data. The median
filter is faster than applying a Gaussian convolution mask, and
does a fairly good job of removing much of the most common
noise. We have implemented several heuristic filters to remove
the data corrupted by RF noise. These filters were generated by
hand after analyzing how the video is corrupted by RF noise.
Often, when the video transmitted from a Scout is severely cor-
rupted, the best choice to reduce the noise is to reposition the

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 717

(a) (b)

(c) (d)

Fig. 6. Scout image processing algorithms. (a) Raw image. (b) Normalized
histogram. (c) Median filtered. (d) Difference of two frames.

Scout. Fig. 6(d) shows the result of performing frame differ-
encing and connected region extraction. This image was gener-
ated by rotating the Scout counterclockwise in place. The white
regions are connected regions that are different between the two
images. The two gray rectangles highlight blobs that are likely
caused by the Scout’s motion. All of the other blobs are consid-
ered caused by random RF noise (the decision depends on their
shape and area) and are ignored.

The behaviors we have implemented for this task are as de-
scribed below.

Locate-Goal: Determining the location of the darkest (or
lightest) area of the room is accomplished by spinning the Scout
in a circle and checking the mean value of the pixels in the
image. The circular scan is accomplished in a number of dis-
crete movements. The Scout captures an image, rotates for half
a second, takes a new image, and subtracts the new image from
the old one. A large difference in the images indicates the Scout
moved. This approach can fail if the image quality is so low
that motion in the image cannot be distinguished from noise. If
the robot is operating in an area of very low light or uniform
color, there may not be enough detail in the images to generate
significant differences. Normalizing the histogram, as described
earlier, helps to increase the contrast between different objects
in the image, allowing the objects to stand out when the Scout
moves.

Drive-Toward-Goal: Identifying a dark area to move
toward is a simple matter of analyzing a strip in the image
along the horizon and determining the horizontal position of
the darkest area. The Scout computes the darkest region and
tries to servo in that direction. The Scout will stop when its
camera is either pressed up against a dark object, or if it is in
shadows. If either of these two methods fail, this behavior will
time out and quit after a minute or two of operation. Scout
motion in this behavior is continuous, and the Scout does not
check its movements by frame differencing because it does not

move very quickly. The difference between subsequent frames
captured during forward motion is often minimal, making it
difficult for the Scout to detect its own motion.

Detect-Motion: Detecting moving objects is accomplished
using frame differencing. The Scout stays still and subtracts se-
quential images in the video stream, and determines whether
the scene changes at all (caused by movement in the image). RF
noise can also cause a great deal of perceived motion between
frames. This is filtered out by analyzing the shapes and sizes of
the blobs and ignoring blobs that are caused by noise. Currently,
a hand-tuned filter is used for this decision process.

Handle-Collisions: If the Scout drives into an obstacle, all
motion in the image frame will stop. If no motion is detected
after the Scout attempts to move, it will invoke this behavior
and start moving in random directions in an attempt to free it-
self. In addition to freeing the Scout, this random motion has
the additional effect of changing the orientation of the antenna,
which might improve reception.

V. EXPERIMENTAL RESULTS

The Scouts’ ability to accomplish the surveillance task was
examined with a series of experimental runs. These experiments
were designed to test the individual and team performances
of the Scouts and the controlling architecture in a number of
different situations and group configurations. In particular, we
were interested in evaluating:

• the effectiveness of the vision-based behaviors for navi-
gating the Scouts to useful positions;

• the performance of the scheduling system with multiple
Scouts using the limited bandwidth RF video channels to
detect motion;

• the performance of the robotic team given a set of specific
constraints for the system and the environment.

Three experiments were run to evaluate the Scouts’ perfor-
mance.

A) Visual Servoing. A Scout has to locate a dark area and
move to it.

B) Hiding and Viewing a Room. One or more Scouts have
to hide in a dark area and turn to view a bright area.

C) Detecting Motion. One or more Scouts have to detect
a moving object.

A. Visual Servoing

An initial experiment was done to determine how well the
Scout could locate and move to an area, using images from
its camera. The environment consisted of a roughly 2.5 m
3 m enclosure with uniformly-colored walls and a 1 m0.5 m
black rectangle on one side of the enclosure as the target for
the Scout. The Scout was started 1.5 m away from the center of
the target. This experiment was designed to examine the Scout’s
Locate-GoalandDrive-Toward-Goal behaviors.

Nine trials were run to see how long it would take the Scout
to locate the black target object and move to it. A camera was
mounted on the ceiling of the room and was used to view the
progress of the Scout from above. This camera was used for data
logging purposes only. The Scout did not use this video data to
navigate. A simple tracking algorithm was used to automatically

718 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

(a)

(b)

Fig. 7. Experiment A: Visual Servoing. Validation of theLocate-Goal and
Drive-Toward-Goal behaviors. (a) Top-down view of the experiment (160�
120 pixel image). (b) Average distance in pixels of the Scout from the target.

chart the progress of the Scout as it moved toward the target.
Fig. 7(a) shows the view from the overhead camera as well as
a superimposed plot of the path that the Scout took to reach its
objective during one of its nine trials. In each case, the Scout
successfully located the target and moved to it.

Fig. 7(b) shows a plot of average distance from the Scout to
the target vs. time for all of these trials. In the first 70–80 s,
the Scout used itsLocate-Goalbehavior to find the dark spot.
Once a suitable spot was located, the Scout used itsDrive-
Toward-Goal behavior until it came in contact with the goal,
somewhere between 150–160 s after the start of the trial.

B. Hiding and Viewing a Room

To test the ability of the Scouts to operate in a more real-
world environment, a test course was set up in our lab using
chairs, lab benches, cabinets, boxes, and miscellaneous other
materials. The goal of each Scout in these experiments was to
find a suitable dark hiding place, move there, and turn around
to face a lighted area of the room.

Fig. 8. Experiment B: Hiding and Viewing. Positions that the Scouts found for
themselves in the 6.09 m by 4.26 m room are represented as dots.

The environment, shown in Fig. 8, was 6.09 m by 4.26 m
and had a number of secluded areas in which the Scout could
hide. The test course had 13.48 mof open space, 7.99 mof
obstructed space, and 4.47 mof potential hiding places. The
Scouts were started at the center of one of the 16 tiles (each of
which is 0.09 m) in the center of the room, and were pointed at
one of eight possible orientations. Both the position index and
orientation were chosen from a uniform random distribution.

The hiding and viewing experiment was divided into three
cases, each using a different number of Scouts or communica-
tions channels. Within each case, ten trials were run. The stop-
ping positions and orientations of the Scouts from the end of
the trials were used later for the detect-motion experiment (Ex-
periment C). In the first case, a single Scout on a single video
frequency was used to serve as a baseline. The second case used
two Scouts that had to share a single video frequency. The third
case used two Scouts, each on its own video frequency.

When Scouts shared a single video frequency, access to the
video frequency was scheduled by the RESOURCECONTROLLER

MANAGER. For these experiments, each Scout’s behavior re-
quested 10 s intervals of access to the video frequency. How-
ever, since the video transmitter requires 2–3 s of warm-up time
before the image stabilizes, Scouts effectively had only 7 s of
useful viewing time when they were granted access.

Fig. 8 shows the hiding places found for all trials. Over all
the trials, the Scouts were able to hide themselves 90% of the
time. In the remaining 10% of the time, the Scouts reached a 60 s
timeout on theDrive-Toward-Goal behavior, and stopped out
in the open where they could be more easily seen and bumped
into. This timeout was required because the Scouts are unable to
determine with confidence if progress is being made in moving
toward a hiding position. This timeout was also encountered on
some successful hiding trials, as the Scout continued to try to
progress to a darker hiding position, even after reaching cover.
For this reason, the nonhiding trials are not considered outliers
in the time data.

Once the Scouts had positioned themselves, they attempted
to orient themselves to view a lighted area of the room. Fig. 9
shows the times for the Scouts to reach their final poses (posi-
tions and orientations). In the cases with two Scouts, the value

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 719

Fig. 9. Experiment B: Hiding and Viewing. The average time that it took the
Scouts to complete each trial, shown for the three different cases. The averages
are over 10 trials per case. The times are plotted using a box representation
where the center line is the median value, the top and bottom lines of the box
represent the upper and lower quartile values, respectively, and the lines at the
top and bottom of each plot represent the rest of the distribution. The notches in
the box represent an estimate of the distribution’s mean.

plotted is the average time. As can be seen from the figure, two
Scouts on a single video frequency took longer to reach their
final poses than a single Scout. This is to be expected—the
Scouts are time-multiplexing the video frequency resource.
There is also a somewhat greater average time for two Scouts
on two different video frequencies to reach their final poses
than there is for the single-Scout case (for the first case,
mean , ; for the third case, mean ,

), however, these differences are not statistically
significant at the 95% confidence level (two-tailed, two-sample

test,).
One interpretation of these results is that one Scout is better

than two on the same frequency (as the task is accomplished
more quickly by one) and that one Scout and two on different
frequencies are approximately equal on this task. However, this
ignores the fact that two Scouts can potentially accomplish more
than a single Scout.

Nonetheless, even if two Scouts could accomplish twice as
much as one after reaching their final poses, one Scout is still
better, on average, than two on the same frequency. The time two
Scouts spent hiding is significantly greater than twice the time
one Scout spent. This is because when switching cameras, up to
30% of the time is lost waiting for the video transmitter to warm
up. For this reason, deploying two Scouts sequentially would
make more sense than deploying them in parallel, if the Scouts
must share the video frequency. An instant-on transmitter would
eliminate this advantage for sequential deployment.

Since the overall mission is surveillance, one measure of
Scout performance after deployment is the open area viewed.
Fig. 10 shows the total area viewed by the Scouts for each
case. Considering the area viewed, two Scouts on different
frequencies are better than one, as the area viewed is larger
(for one Scout, mean , ; for two Scouts with

Fig. 10. Experiment B: Hiding and Viewing. The total areas that the Scouts
were able to view.

two frequencies, mean ,). This difference is
significant (one-tailed, two-sampletest,).

C. Detecting Motion

A third experiment was run to test the Scouts’ detect-motion
abilities. Four different cases were tested, including a single
Scout using a single video frequency, two Scouts sharing a
single video frequency, two Scouts using two different video
frequencies, and four Scouts sharing two different video
frequencies.

For each of the four cases, the Scouts were placed in ten dif-
ferent positions in the environment. These positions were the
same as the hiding positions obtained in the previous experi-
ment. In the case using four Scouts, for which no hiding ex-
periment was run, the positions were randomly sampled with
replacement from the results of the other hiding experiments. In
each position, five individual motion detection trials were run,
bringing the total number of individual trials to 200.

In these experiments, the video frequency was swapped be-
tween the robots every eight seconds, and the delay for the
camera to warm up was set to four seconds. These values were
chosen to give the Scouts a lower latency between observations.
The longer warm-up time was necessary because the detect-
motion behavior is more sensitive to noise than the navigation
behaviors.

The moving target the Scouts had to detect was a Pioneer 1
mobile robot [8]. A Pioneer was chosen for its ability to repeat-
edly travel over a path at a constant speed. This reduced some of
the variability between experiments that the use of human sub-
jects might have caused.2 The Pioneer entered the room from
the right and made its way over to the left, moving at a speed of
approximately 0.57 m/s and traversing the room in 8.5 s on av-
erage. Once it had moved 4.87 m into the room, it turned around

2Additional experimentation showed that the Scouts were at least as good at
detecting human motion as they were at detecting the Pioneer.

720 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Fig. 11. Example Scout placement in the room. In this instance, there are two
Scouts that view the path of the Pioneer robot, shown in dark gray in the middle
of the room. The fields of view of the two Scouts do not happen to overlap.

Fig. 12. Experiment C: Detecting Motion. The areas that the Scouts were able
to view. Averages are computed over 50 trials, five trials for each of the ten
positions of the Scouts.

and moved back out again. With a 4 s average turn time, the
Pioneer was in the room on average for 21 s.

Fig. 11 illustrates the fields of view seen by two Scouts and
the area of the Pioneer’s path that they cover. While the views of
these Scouts do not overlap, there was a large amount of overlap
in some of the other placements of Scouts.

Fig. 12 shows the total areas viewed by the Scouts in each of
the four cases. The area viewed by four Scouts is significantly
greater (at the 95% confidence level) than the areas viewed in the
other cases, but not by a factor of four over that viewed by one
Scout, nor by a factor of two over that viewed by two Scouts.
The size and configuration of the environment was such that
there was usually a great deal of overlap in the areas viewed by
individual Scouts. Redundancy was probably not as useful in
this environment (two or three Scouts might have sufficed), but
would probably be more effective in larger or more segmented
environments.

Fig. 13 shows the total amount of time the target was seen by
the Scouts in each of the four cases. There are two major factors
that affect the performance of the Scouts at detecting motion:

Fig. 13. Experiment C: Detecting Motion. The actual time that the Scouts
detected the motion of the Pioneer.

Fig. 14. Experiment C: Detecting Motion. Single frequency cases. The
horizontal axis represents the maximum possible time the Pioneer could be
detected by the Scouts and the vertical axis represents the time it actually was.
The closer these two values are, the better the performance.

the nature of the detect-motion algorithm and the sharing of the
bandwidth.

The detect-motion algorithm is sensitive to the distance of
the moving object from the Scout and to the direction of move-
ment with respect to the optical axis of the Scout. When the
Pioneer moved perpendicularly across the Scout’s optical axis,
the Scout was able to detect it easily. However, when the Pioneer
moved parallel to the optical axis, the Scout had a difficult time
detecting it. This is due to the relatively small change between
successive video frames. For the same reason, movements of
objects farther away are harder to detect. More details on this
are in Section VI-A.

To make more explicit the effect of sharing the video fre-
quency, we show the actual time that the Pioneer was seen com-
pared to the potential time it could have been seen. By plotting

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 721

Fig. 15. Experiment C: Detecting Motion. Double frequency cases. The
horizontal axis represents the maximum possible time the Pioneer could be
detected by the Scouts and the vertical axis represents the time it actually was.
The closer these two values are, the better the overall performance.

the measured target detection time for the cases using a single
frequency (see Fig. 14) and for the cases using two frequencies
(see Fig. 15), we see clearly how sharing bandwidth reduces
performance.

Fig. 14 shows the plot of the cases with a single frequency
using one and two Scouts. As can be seen, the one-Scout case
had a much higher success rate than the two-Scout case. This
was expected because the robots in the two-Scout case were
not able to view the entire area at one time. Since they had to
share a video frequency, they had to take turns observing their
respective fields of view. Since the Pioneer was moving rela-
tively quickly (over 0.5 m/s), it would be missed if the Scout
did not have access to the video frequency at that time.

Fig. 15 shows the actual time the Pioneer was detected com-
pared to the potential time it could have been detected for the
experiments with two and four Scouts using two frequencies.

To complete our analysis, we need to account for an addi-
tional factor. The area traversed by the Pioneer that was visible
to the Scouts and the amount of time the Pioneer was visible
were different across experiments. This was caused by the fact
that the Scouts did not always hide in the best viewing positions.
In some experiments, one Scout was facing the wall instead of
facing the open area, and so it did not contribute to the detection
task at all. In other cases, two Scouts were very close, with their
viewing areas almost completely overlapping.

Figs. 16 and 17 show, respectively, the area traversed by the
Pioneer that was in the field of view of the Scouts, and the time
the Pioneer was in the field of view of the Scouts for the different
experiments. This gives an indication of the complexity of the
task. The smaller the area and the shorter the time, the smaller
is the opportunity for the Scout(s) to detect the Pioneer even
when there is no frequency swapping. The figures also illustrate
the advantages of using a larger number of Scouts. Both the
viewable area traversed by the Pioneer and the time that the
Pioneer was in view have higher means and smaller variances
when more Scouts were used. This provides a justification for

Fig. 16. Experiment C: Detecting Motion. The areas traversed by the Pioneer
that the Scouts were able to view.

Fig. 17. Experiment C: Detecting Motion. The potential time that the Scouts
could have been able to view the Pioneer. This is calculated as the amount of
time the Pioneer was in the field of view of a Scout even if the Scout was not
active at the time.

the use of more Scouts than strictly needed to cover the area.
Given the chance the Scouts will not hide in good places, using
more Scouts reduces the variability in the results and provides
more opportunities for the detection of motion.

However, we should caution that the differences were not al-
ways statistically significant at the 95% confidence level. In par-
ticular, four robots were found to be significantly better than one
in these measures, but four robots were not found to be signif-
icantly better than two on different frequencies for either mea-
sure, and two robots on the same frequency were not found to be
significantly better than one for Pioneer path area viewed. This
is due to the overall better placement of two Scouts using two
different frequencies than two Scouts on the same frequency. If
the two-robot results are pooled to give a larger sample size, then
two Scouts are significantly better on these measures than one,
and four are significantly better than two. Pooling these results

722 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

(a) (b)

Fig. 18. How the target’s distance from the Scout and the direction of the target’s motion affects how well the Scout can detect it. (a) The further the moving
object is from the Scout, the less likely it will be detected. (b) The closer the direction of motion comes to being parallel to the optical axis, the lesslikely the Scout
will detect it.

is justified, as the differences between their means are not sig-
nificantly different, but we cannot rule out the slight possibility
that these results are real effects of the differences in robot in-
teractions in these two cases, rather than simple random noise.

VI. A NALYSIS

When deploying a group of Scouts to create a sensor net, we
need to be able to predict their success at detecting motion. Ide-
ally, we would like to guarantee that any motion in the envi-
ronment will be detected. This clearly depends on the number
of sensors in the network, their placement, the communications
bandwidth, and the size of the area covered.

There is a tradeoff between placing a large number of Scouts
and being able to process their visual information. Many Scouts
can view a potentially larger area and provide for redundancy in
case of failures. However, increasing the number of Scouts in-
creases the load on the communications channels. When Scouts
share video channels, the effectiveness of their detection abil-
ities decreases. Consequently, the number of available video
channels is the major factor which limits the number of Scouts
that can be used effectively.

The motion detection problem we have presented is similar
to the Art Gallery problem [9], [10], in which a robot attempts
to find a minimal number of observation points allowing it to
survey a complex environment. Our problem is complicated by
the fact that the Scouts have a limited field of view, and that in-
cidence and range constraints significantly affect their ability to
detect motion. In [11], a randomized algorithm for sensor place-
ment is proposed, which takes incidence and range constraints
into account, but not the field of view.

More importantly, we are interested in detecting motion, not
just in covering an area. As we will show, the peculiarities of
our motion detection algorithm, combined with the limited field
of view of the Scouts, make detection of motion much more
complicated. In addition, we are not free to place the Scouts in
their best viewing position—they have to find a hiding place
autonomously. Finally, since Scouts cannot place themselves in

open areas, where they are likely to be seen or stepped on, the
size of the environments they can cover is limited by the max-
imum distance at which they can detect motion.

We are interested in using our extensive experimental results
to analyze the factors that affect the probability that motion will
be detected and how they affect it. Factors we have considered
are: (1) distance, background, and direction of motion which
affects the motion detection algorithm, and (2) size and shape
of the environment which affects the placement of the Scouts.

We have not considered other factors that could affect per-
formance, such as taking into account explicit knowledge of
the motion of the moving object(s). Even though in our exper-
iments we have used a single object moving at constant speed
on a straight line, we do not use any of this information in the
motion detection algorithm.

A. Factors Affecting the Motion Detection Algorithm

Our motion detection algorithm (described earlier in Sec-
tion IV) works by computing the difference between sequen-
tial frames of video. The algorithm fails if the motion is not
large enough to be distinguishable from RF noise. When the
target is too far away from the camera, the motion between
subsequent video frames is too small to be detected. Fig. 18(a)
shows how the probability of detecting motion decreases as the
target distance increases. Additionally, when the target moves
almost parallel to the optical axis of the camera, there is not
enough difference between subsequent video frames to detect
motion. Fig. 18(b) shows how the probability of detecting mo-
tion changes with the direction of the movement of the target
with respect to the Scout. An additional factor that affects the
ability to detect motion is the background. If the target is the
same color (or intensity for grayscale video) as the background,
the motion detection algorithm will fail to detect anything. We
ignore this factor in our calculations, since we run our experi-
ments in an environment full of clutter where the target is un-
likely to blend into the background for much of its motion.

The experimental evidence we collected on the effect of dis-
tance and incidence in detecting motion of an object as large as

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 723

Fig. 19. Top-down view of a complex (multiroom) environment and how it
could be broken into multiple smaller convex regions. Each region would have
its own Scout (or set of Scouts) to monitor it.

a Pioneer 1 shows that the Scout cannot be further than 4.87 m
from the moving object. Combining this with the fact that the
Scout’s video camera has a field of view of 48makes the max-
imum area that one Scout can theoretically monitor 9.95 m.

B. Factors Affecting the Placement of the Scouts

To detect motion, Scouts must be placed in areas of open
space through which targets are likely to move. These spaces
should not be longer than the range in which the Scouts can
effectively track motion. Our problem is complicated by the
fact that Scouts have to autonomously find their hiding places
and they cannot be placed precisely to minimize the required
number, as in the Art Gallery problem. In addition, Scouts have
to hide to avoid being seen or stepped on. Scouts tend to hide on
the periphery of the open area facing toward it. Because of this,
the best type of environment for them is a convex one which is
no larger than approximately 5 m across. Since any motion will
happen in the central open area, the Scouts place their back-
sides (their blind spots) next to the walls where no motion can
take place. Large complex environments can be subdivided into
smaller regions. Fig. 19 illustrates such a subdivision. For full
coverage, each convex region needs its own set of Scouts.

C. Paths of Motion

A priori knowledge about the motions expected in an area can
help in determining the number of Scouts needed, the sharing
of the bandwidth, and the choice of the motion detection algo-
rithm. For instance, assuming there is a single moving target,

Lavalle [12] proposed strategies for maintaining the visibility
of the moving target with a moving observer. Pursuit evasion
has been studied as a computational geometry problem. Guibas
et al. [13] provide bounds on the number of pursuers needed
to track an evader depending on the geometric and topological
complexity of the environment.

We are interested in a more general setting, where there are
multiple observers, each with limited motions, limited com-
puting power, limited communications channels, and potentially
multiple targets.

In the results reported here, we use knowledge about where
the motion occurs only to measure how well the Scouts do the
task and extrapolate from our experimental results how well we
should expect them to do in a different environment. In all our
experiments motion occurred and the Scouts detected it 92% of
the time. However, this does not help us understand what factors
affect the performance. We know that motion occurs only on a
path through the center of the region covered by the Scouts. We
assume that every cell within that path has detectable motion at
some point during the time that the Scout is observing it. This
reduces the problem to determining how much of the Scout’s
field of view intersects with the path taken by the target and
computing the probability that motion will be detected in those
cells.

D. Probabilistic Model of Motion Detection

We make two assumptions. First, the size of the environment
is known. If this is not the case, then exploration must be done
to acquire the missing information. Second, a detectable motion
could occur in any location and at any time. We discretize the
space using a grid and assume that motion will occur with the
same probability in any cell.

We will use the following binary random variables:

We know that since nothing can be detected
by a robot when the camera is not on. So, we have

is the probability theth robot detects motion
in the th cell, given that motion occurs in theth cell and the
camera of theth robot is on. is defined as

This is the quantity we measured in our experiments.
When multiple robots are used, there are two complicating

factors: (1) their cameras might share the same communications
channel, and (2) their fields of view might partially overlap. We
are primarily interested in the probability that motion is seen by

724 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

Fig. 20. Multiple robots sharing two video channels. Four robots (0–3) share video channel 1 and six robots (4–9) share video channel 2. This chart shows a
typical round-robin schedule of which two robots are active at each time index. The cycle repeats itself after time index 12.

at least one robot. In the case of two robots, assuming they both
see the sameth cell, this is expressed as

If the two robots share a single channel, then .
If the robots are on two different channels, then

.
In general, given robots, looking at all possible combina-

tions of detection and camera availability can be prohibitively
expensive. In our system, all video channels change from one
Scout to the next at exactly the same time. Thus, determining
which Scouts are simultaneously active reduces significantly the
number of combinations to be considered. For instance, if four
Scouts share one channel and six Scouts share a second channel,
we can see in Fig. 20 which Scouts on each channel are active at
any given time. There are only 12 pairs of robots that can have
their cameras active at any time.

E. Comparing the Analysis to the Empirical Results

There are two difficulties that arise when trying to predict the
performance of the Scouts in an environment. First, the perfor-
mance of the behaviors which place the Scouts in the environ-
ment is highly dependent on the local structure of the environ-
ment and is difficult to properly generalize. Secondly, because
the placements of the Scouts are difficult to generalize, the over-
laps between the video channels on the Scout robots are also
difficult to generalize.

We want to answer the question“How many video channels
and robots are needed to detect motion in an environment with a
given level of confidence?”If we assume that the environments
are no larger than the ones in which we ran our experiments,
then from our results, it would appear that two robots using two
video channels would probably suffice, since this configuration
has a higher mean detection motion time than any of the other
cases, as shown in Fig. 13. However, since nothing is knowna
priori about the nature of the moving object, four robots will
see more of the environment than two robots and have a better

chance of detecting motion because they will be more likely to
see it from a range of different angles and different distances.

We can assign a value to by inte-
grating over the distances and angles that the Scout saw motion.
Given the data shown in Fig. 18(a) and (b), .

So, given the four experimental cases, the probability that
they will detect motion in exactly one square,

, is given as the following.
Case 1: One robot, one video channel. A single robot has

access to 100% of the bandwidth of the channel and so
is 1.

Case 2: Two robots, one video channel. In the experiments,
because the camera required a few seconds of warm-up time
before the image was acquired, was actually only 0.25.
The value of is 0 because the two cameras cannot be
active at the same time.

Case 3: Two robots, two video channels. Each robot had ac-
cess to 100% of its own bandwidth, so like Case 1,
for . Additionally, since the cameras are independent,

, as well.

Case 4: Four robots, two video channels. Each robot had
to share access to its video channel, so like Case 2,

for . Because there are only two video chan-
nels, only two robots will be actively viewing at any time. The
schedule is deterministic, similar to what is shown in Fig. 20,
and so it is known which Scouts are active at any time. For
the sake of this example, we assume without loss of gener-
ality that robots 1 and 3 are active when robots 2 and 4 are
not, and vice versa. This pruning allows us to remove terms
which are 0, greatly reducing the number of terms. In this case,

for and , since both cameras
are on only 25% of the time as in Case 2.

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 725

Fig. 21. Average probability of detecting a moving target as a function of the
room size and the four different experimental cases.

This model suggests that if the number of robots is doubled
but the number of video frequencies stays the same, the perfor-
mance of the team in detecting motion in a single location in the
environment will be halved.

Watching an area with two Scouts may have a 61% chance to
detect motion, but if the Scouts are not looking where the mo-
tion occurs, they will not detect anything. To decide how many
Scouts to use, the size of the environment needs to be taken
into account. If it is likely that a small number of Scouts can
cover most of the area, then fewer robots (preferably with dif-
ferent video channels) are desirable. However, if the environ-
ment is very large, so that the percentage of the area covered by
the Scouts is much smaller, then multiple Scouts would be pre-
ferred. This would be the case even if the individual chances for
detecting motion might be less. Formally, this is represented as

, where is the percentage
of the area that the Scouts are able to see with their cameras.

As shown in Fig. 21, as the size of the environment increases,
the probability of detecting motion in each of the four cases
decreases. An interesting effect is seen when comparing the 1
Robot/1 Freq case with the 4 Robot/2 Freq case. When the en-
vironment size approaches 6.27 m, the benefits of having mul-
tiple robots, even those that are sharing channels, becomes evi-
dent. The 4 Robots/2 Freq case has a higher probability of seeing
the target primarily because of the additional area that they can
see. The plateaus in the graph represent cases where the Scouts
can see the entire area. In this case, the probability of detecting
the target is just because .

VII. RELATED WORK

Automatic security and surveillance systems using cameras
and other sensors are becoming more common. These typically
use sensors in fixed locations, either connectedad hocor, in-
creasingly, through the shared communications lines of “intelli-
gent buildings” [14] or by wireless communications in “sensor
networks” [15]–[17]. These may be portable to allow for rapid
deployment [18], but still require human intervention to reposi-

tion when necessary. This shortcoming is exacerbated in cases
in which the surveillance team does not have full control of the
area to be investigated. Our system is designed to require as little
human intervention as possible. The Scouts have the ability to
reposition themselves if they initially place themselves in a bad
location. Static sensors have another disadvantage—they do not
provide adaptability to changes in the environment or in the task.
In case of poor data quality, for instance, we could have our
robots move.

Mobile robots such as the Scouts can overcome the problems
with static sensors by giving the sensor wheels and autonomy.
Robotics research for security applications has traditionally fo-
cused on single, large, independent robots designed to replace a
single human security guard as he makes his rounds [19]. Such
systems are now available commercially and are in place, for ex-
ample, in factory, warehouse, and hospital settings [20]. How-
ever, the single mobile agent is unable to observe many places at
once—one of the reasons why security systems were developed.

Because of their small size and portability, many Scouts
can be carried into an area for deployment by a human or
another robot. Multiple Scouts can simultaneously monitor a
much larger area than a single robot could. Further, mobile
robots larger than the Scouts are unable to conceal themselves,
which they may need to do in hostile or covert operations.
They may also be too large to explore tight areas. These are
environments in which the small size of the Scout robots gives
them an advantage over a single larger robot. Multiple mobile
robots for security have recently been investigated [21]. In
this case, the robots were meant to augment human security
guards and fixed-sensor systems in a known and semitailored
environment. In the task we describe in this paper, the Scouts
are fully autonomous.

Recently, there has been a significant interest in miniature
robots. Constructing robots that are small, easily deployable,
and can do useful work and operate reliably over long periods of
time has proven to be very difficult. Many problems suggest the
use of miniature robots [22]. Most miniature robots have wheels
[23], [24], others roll [25].

Energy consumption is a major problem [17] for small robots,
as well as sensors used in sensor networks. Due to their small
size and limited power, most miniature robots have to use proxy
processing, as in Inabaet al. [26], and communicate via a wire-
less link with the unit where the computation is done. This be-
comes a problem when the bandwidth is limited, as in the case
of our Scout robots. Because of their limited size, not only is all
processing for the Scout done off-board, but also the RF com-
munication is done using only a few channels. This severely
limits the ability to control multiple robots at once.

Our software architecture provides support for distribution of
resources across robots, use of shared resources, and seamless
integration of autonomous and human-supervised control [2].
We need to be able to write missions for teams of heteroge-
neous robots, as well as handle resource allocation for minia-
ture robots. Other architectures based on components, such as
the one described in [27], are meant for small devices with more
limited and well-defined tasks.

A number of architectures have been developed for robots,
many of them described in [28]. Our architecture has some sim-

726 IEEE TRANSACTIONS ON ROBOTICS AND AUTOMATION, VOL. 18, NO. 5, OCTOBER 2002

ilarities with CAMPOUT [29], a distributed hybrid architecture
based on behaviors. The major difference is that we focus on re-
source allocation and dynamic scheduling, while CAMPOUT is
mostly designed for behavior fusion. We rely on CORBA [30]
as the underlying technology for distributed processing, while in
CAMPOUT each robot runs an instance of the architecture and
uses sockets for communications with other robots. Our archi-
tecture has some similarities with ALLIANCE [31], which pro-
vides distributed control for teams of homogeneous robots. Our
system has been designed for teams of heterogeneous robots,
and does not impose any restrictions on the methods used for
robot control (deliberative or reactive).

Resource allocation and dynamic scheduling are essential to
ensure robust execution. Our work focuses on dynamic alloca-
tion of resources at execution time, as opposed to analyzing re-
source requests offline, as in [32] and [33], and modifying the
plans when requests cannot be satisfied. Our approach is spe-
cially suited to unpredictable environments, where resources are
allocated in a dynamic way that cannot be predicted in advance.
We rely on the wide body of algorithms that exists in the area of
real-time scheduling [34] and load balancing [35].

VIII. SUMMARY AND FUTURE WORK

Visual behaviors for simple autonomous operations of a
group of Scout robots have been presented. Experimental
results illustrating the ability of the Scout to position itself in
a location ideal for detecting motion and the ability to detect
motion have also been shown. Future work is planned to allow
the Scouts to use additional sensor interpretation algorithms for
more complex environmental navigation. Ultimately, we hope
to have the Scouts construct a rudimentary topological map of
their surroundings, allowing other robots or humans to benefit
from their explorations.

We have also presented some important system issues related
to the control of multiple robots over a low-bandwidth com-
munications channel. We have described a distributed software
control architecture designed to address these issues. An es-
sential feature of the architecture is the ability to dynamically
schedule access to physical resources, such as communications
channels, radios, etc. that have to be shared by multiple robots.

We have demonstrated how the communications bottleneck
affects the overall performance of the robots. We have shown
initial results of how our system degrades under increased load.
The next step is to add more intelligence into the behaviors
which will allow them to dynamically adjust their requested
runtimes to react to the situation. Additionally, we are exam-
ining other kinds of RF communications hardware to increase
the number of video channels. The difficulty lies in the Scout’s
extremely small size and power supply. We believe that a com-
bination of intelligent scheduling and more flexible hardware
will allow a larger number of Scout robots to operate simulta-
neously in an effective manner.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their ex-
tremely thoughtful and valuable comments. By following their

suggestions we were able to strengthen the presentation and im-
prove the technical content of this paper.

REFERENCES

[1] P. E. Rybski, N. Papanikolopoulos, S. A. Stoeter, D. G. Krantz, K. B.
Yesin, M. Gini, R. Voyles, D. F. Hougen, B. Nelson, and M. D. Er-
ickson, “Enlisting rangers and scouts for reconnaissance and surveil-
lance,”IEEE Robot. Automat. Mag., vol. 7, pp. 14–24, Dec. 2000.

[2] S. A. Stoeter, P. E. Rybski, K. N. Stubbs, C. P. McMillen, M. Gini, D.
F. Hougen, and N. Papanikolopoulos, “A robot team for surveillance
tasks: Design and architecture,”Robot. Auton. Syst., vol. 40, no. 2–3,
pp. 173–183, Sept. 2002.

[3] C. P. McMillen, K. N. Stubbs, P. E. Rybski, S. A. Stoeter, M. Gini,
and N. Papanikolopoulos, “Resource scheduling and load balancing in
distributed robotic control systems,” inProc. Int. Conf. Intelligent Au-
tonomous Systems, Mar. 2002, pp. 223–230.

[4] C. L. Liu and J. W. Layland, “On the complexity of fixed-priority sched-
uling of periodic, real-time tasks,”J. Assoc. Comput. Mach., vol. 20, no.
1, pp. 46–61, 1973.

[5] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. K. Baruah, J. E. Gehrke, and C.
G. Plaxton, “A proportional share resource allocation algorithm for real-
time, time-shared systems,” inProc. IEEE Real-Time Systems Symp.,
1996, pp. 288–299.

[6] S. K. Baruah, J. E. Gehrke, C. G. Plaxton, I. Stoica, H. Abdel-Wahab,
and K. Jeffay, “Fair on-line scheduling of a dynamic set of tasks on a
single resource,”Inf. Process. Let., vol. 64, no. 1, pp. 43–51, Oct. 1997.

[7] P. E. Rybski, S. A. Stoeter, M. D. Erickson, M. Gini, D. F. Hougen, and
N. Papanikolopoulos, “A team of robotic agents for surveillance,” in
Proc. Int. Conf. Autonomous Agents, Barcelona, Spain, June 2000, pp.
9–16.

[8] Pioneer Operation Manual v2, ActivMedia, Inc, Peterborough, NH,
1998.

[9] J. O’Rourke,Art Gallery Theorems and Algorithms. London, U.K.:
Oxford Univ. Press, 1987.

[10] V. Chvátal, “A combinatorial theorem in plane geometry,”J. Combin.
Theory, vol. 18, pp. 39–41, 1975.

[11] H. González-Baños and J. Latombe, “A randomized art-gallery algo-
rithm for sensor placement,” inProc. ACM Symp. Computational Ge-
ometry, 2001, pp. 232–240.

[12] S. LaValle, H. González-Baños, C. Becker, and J. Latombe, “Motion
strategies for maintaining visibility of a moving target,” inProc. IEEE
Int. Conf. Robotics and Automation, 1997, pp. 731–736.

[13] L. J. Guibas, J. Latombe, S. M. LaValle, D. Lin, and R. Motwani, “A
visibility-based pursuit-evasion problem,”Int. J. Computat. Geometry
Applicat., vol. 9, no. 5, pp. 471–494, 1999.

[14] J. Porteous, “Intelligent buildings and their effect on the security in-
dustry,” inIEEE Int. Carnahan Conf. Security Technology, L. D. Sanson,
Ed., Sanderstead, U.K., Oct. 1995, pp. 186–188.

[15] D. Estrin, D. Culler, K. Pister, and G. Sukhatme, “Instrumenting the
physical world with pervasive networks,”IEEE Pervasive Comput., vol.
1, pp. 59–69, Jan. 2002.

[16] B. Horling, R. Vincent, R. Mailler, J. Shen, R. Becker, K. Rawlins, and
V. Lesser, “Distributed sensor network for real time tracking,” inProc.
Int. Conf. Autonomous Agents, June 2001, pp. 417–424.

[17] V. Raghunathan, C. Schurgers, S. Park, and M. B. Srivastava, “Energy-
aware wireless microsensor networks,”IEEE Signal Processing Mag.,
vol. 19, no. 2, pp. 40–50, Mar. 2002.

[18] D. Pritchard, R. White, D. Adams, E. Krause, E. Fox, M. Ladd, R.
Heintzleman, P. Sprauer, and J. MacEachin, “Test and evaluation of
panoramic imaging security sensor for force protection and facility se-
curity,” in IEEE Int. Carnahan Conf. Security Technology, L. D. Sanson,
Ed., Alexandria, VA, Oct. 1998, pp. 190–195.

[19] T. Kajiwara, J. Yamaguchi, Y. Kanayama, S. Yuta, and J. Iijima, “Devel-
opment of a mobile robot for security guard,” inProc. 15th Int. Symp.
Industrial Robots, vol. 1, Tokyo, Japan, 1985, pp. 271–278.

[20] A. Kochan, “Helpmate to ease hospital delivery and collection tasks and
assist with security,”Industrial Robot, vol. 24, no. 3, pp. 226–228, 1997.

[21] H. R. Everett and D. W. Gage, “From laboratory to warehouse: Security
robots meet the real world,”Int’l Journal of Robotics Research, vol. 18,
no. 7, pp. 760–768, July 1999.

[22] D. Gage, “Minimum-resource distributed navigation and mapping,” in
SPIE Mobile Robots XV, vol. 4195, SPIE Proc., November 2000.

RYBSKI et al.: PERFORMANCE OF A DISTRIBUTED ROBOTIC SYSTEM USING SHARED COMMUNICATIONS CHANNELS 727

[23] G. Caprari, P. Balmer, R. Piguet, and R. Siegwart, “The autonomous
micro robot alice: A platform for scientific and commercial applica-
tions,” in Proc. of 1998 Int’l Symp. on Micromechatronics and Human
Science (MHS’98), November 1998.

[24] R. Grabowski, L. E. Navarro-Serment, C. J. J. Paredis, and P. Khosla,
“Heterogeneous teams of modular robots for mapping and exploration,”
Auton. Robots, vol. 8, no. 3, pp. 293–308, 2000.

[25] B. Chemel, E. Mutschler, and H. Schempf, “Cyclops: Miniature robotic
reconnaissance system,” inProc. IEEE Int. Conf. Robotics and Automa-
tion, 1999, pp. 2298–2303.

[26] M. Inaba, S. Kagami, F. Kanechiro, K. Takeda, O. Tetsushi, and H.
Inoue, “Vision-based adaptive and interactive behaviors in mechanical
animals using the remote-brained approach,”Robot. Auton. Syst., vol.
17, pp. 35–52, 1996.

[27] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister,
“System architecture directions for networked sensors,” inProc. AS-
PLOS, 2000, pp. 93–104.

[28] D. Kortenkamp, R. P. Bonasso, and R. Murphy,Artificial Intelligence
and Mobile Robots. Cambridge, MA: AAAI/MIT Press, 1998.

[29] P. Pirjanian, T. Huntsberger, A. Trebi-Ollennu, H. Aghazarian, H. Das, S.
Joshi, and P. Schenker, “Campout: A control architecture for multirobot
planetary outposts,” inProc. SPIE Conf. Sensor Fusion, Decentralized
Control in Robotic Systems III, Nov. 2000, pp. 221–230.

[30] The Common Object Request Broker: Architecture and Specification:
Object Management Group, 1998.

[31] L. E. Parker, “Alliance: An architecture for fault tolerant multi-robot
cooperation,”IEEE Trans. Robot. Automat., vol. 14, pp. 220–240, Apr.
1998.

[32] E. M. Atkins, T. F. Abdelzaher, K. G. Shin, and E. H. Durfee, “Planning
and resource allocation for hard real-time, fault-tolerant plan execution,”
Auton. Agents Multiagent Syst., vol. 4, no. 1/2, pp. 57–78, Mar. 2001.

[33] E. H. Durfee, “Distributed continual planning for unmanned ground ve-
hicle teams,”AI Mag., vol. 20, no. 4, pp. 55–61, 1999.

[34] J. Stankovic, M. Spuri, K. Ramamritham, and G. Buttazzo,Dead-
line Scheduling For Real-Time Systems: EDF and Related Algo-
rithms. Norwell, MA: Kluwer, 1998.

[35] G. Cybenko, “Dynamic load balancing for distributed memory multi-
processors,”J. Parallel Distributed Comput., vol. 7, no. 2, pp. 279–301,
1989.

Paul E. Rybski (S’98) received the B.A. degree in
math/computer science with an emphasis in cognitive
science in 1995 from Lawrence University, Appleton,
WI, received the M.S. degree in computer and infor-
mation sciences in 2000 from the University of Min-
nesota, Minneapolis, and is currently working toward
the Ph.D. degree in computer science with a minor in
cognitive science at the same institution.

His research interests include behavior-based con-
trol, distributed robotic teams, and robotic naviga-
tion/localization.

Mr. Rybski is a member of the ACM and AAAI.

Sascha A. Stoeterreceived the M.S. degree in
computer and information sciences in 1997 from the
University of Minnesota, Minneapolis, where he is
working toward the Ph.D. degree.

Previous to his Ph.D. work, he was a Research As-
sistant at the Institute for Robotics and Process Con-
trol in Braunschweig, Germany.

Mr. Stoeter is a member of the Computer Profes-
sionals for Social Responsibility.

Maria Gini is a Professor at the Department of Com-
puter Science and Engineering of the University of
Minnesota, Minneapolis.

She has received the Continuing Education and
Extension Distinguished Teaching Award (1995), the
Morse-Alumni Distinguished Teaching Professor of
Computer Science (1987), the Outstanding Professor
Award (1986 and 1993), the Fullbright-Hays Fellow-
ship (1979), and the NATO Fellowship (1976). She
was the Editorial Program Co-Chair, International
Conference on Autonomous Agents (Agents’ 2000),

Barcelona Spain, May 2000. She was also a member of the Advisory Board of
IJCAI-99. She is on the editorial board ofAutonomous RobotsandIntegrated
Computer-Aided Engineering. She is member of the Executive Council of the
AAAI Special Interest Group on Manufacturing.

Dean F. Hougen(M’96) received the B.S. degree in
computer science from Iowa State University, Ames,
in 1988 with minors in mathematics and philosophy,
and the Ph.D. degree from the University of Min-
nesota, Minneapolis, in 1998, in computer science
with a graduate minor in cognitive science.

After serving as an Assistant Professor in the
Department of Computer Science and Engineering
and Associate Director of the Center for Distributed
Robotics, both at the University of Minnesota,

he joined the School of Computer Science at the University of Oklahoma,
Norman, where he has founded the Robotic Intelligence and Machine Learning
Laboratory. His research includes distributed heterogeneous robotic systems,
learning (reinforcement, connectionist, and memetic) in real robots and
evolutionary computation.

Nikolaos P. Papanikolopoulos(S’88-M’92-SM’01)
was born in Piraeus, Greece, in 1964. He received
the Diploma degree in electrical and computer en-
gineering from the National Technical University of
Athens, Athens, Greece, in 1987, the M.S.E.E. de-
gree in electrical engineering and the Ph.D. degree in
electrical and computer engineering from Carnegie
Mellon University, Pittsburgh, PA, in 1988 and 1992,
respectively.

Currently, he is a Professor in the Department of
Computer Science and Engineering at the University

of Minnesota, Minneapolis, and Director for the Center for Distributed
Robotics. His research interests include robotics, computer vision, sensors for
transportation applications, and control. He has authored or coauthored more
than 140 journal and conference papers in the above areas (35 refereed journal
papers).

Dr. Papanikolopoulos received the Best Video Award at the 2000 IEEE Inter-
national Conference on Robotics and Automation. He was a McKnight Land-
Grant Professor at the University of Minnesota, 1995–1997, and has received the
NSF Research Initiation and Early Career Development Awards. He was also
awarded the Faculty Creativity Award from the University of Minnesota. Fi-
nally, he has received grants from DARPA, Sandia National Laboratories, NSF,
INEEL, Microsoft, USDOT, MN/DOT, Honeywell and 3M.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

