(1) Construct \tilde{J}, \tilde{G}, J, and G for the system shown.
(a) Do this first in 3D with hard finger contacts and

(b) then with soft finger contacts
(2) Then reduce the result to the planar case.
(3) Then specialize to the case where $\dot{q}_{4}=\dot{q}_{5}$

Solution Sketch
Consider one hard contact.
First consider the block.

$$
\begin{aligned}
& \tilde{G}_{1}^{\top}=\bar{R}_{1}^{\top} P^{\top}\left(r_{1}\right) \\
& r_{1}=(-1,1,1)
\end{aligned}
$$

$$
\begin{aligned}
r_{1}^{c_{1}} & =(-1,1,1) \\
R_{1} & =\left[\begin{array}{lll}
\hat{n}^{N} & \hat{t}^{N} & \hat{\theta}^{N}
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\tilde{G}_{1}^{\top}=P^{\top}\left(r_{1}\right)=\left[\begin{array}{cc}
I & S^{\top}\left(r_{1}\right) \\
0 & I
\end{array}\right]
$$

z
Moment arm effect

$$
\tilde{G}_{1}^{\top}=\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 1 & -1 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 1 & 1 & 0 \\
\hdashline 0 & f_{1} & 0 & 0 \\
0 & 10 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
v_{x} \\
v_{y} \\
v_{z} \\
w_{x} \\
w_{y} \\
w_{z}
\end{array}\right]
$$

$$
\begin{aligned}
& \text { body } \\
& \text { twist }
\end{aligned}
$$

$$
\operatorname{in}\{N\}
$$

Check

$$
\tilde{G}_{1}^{\top} \nu=\nu_{1}^{c}
$$

What is G_{1}^{T} for S.F. contact?
The first four rows of \tilde{G}_{1}^{\top}.
What is G_{1}^{\top} for H.F. contact?
The first three rows.
What changes for contact 2

What changes for contact L

$$
\begin{aligned}
r_{2} & =(1,1,1) \\
R_{2} & =\left[\begin{array}{ccc}
-1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\underset{r_{2}=(1,1,1)}{\substack{v}} \mid
$$

Dimensional analysis
$\tilde{G}^{\top} \nu=\nu_{c e}$ If we model each rectangular contact patch with 4 H.F. contacts, then we have 8 contacts.

$$
\begin{array}{llll}
& \therefore & \tilde{G}^{\top} & (48 \times 6) \\
8 & \text { H.F. } & G^{\top} & (24 \times 6) \\
2 & \text { SF. } & G^{\top} & (8 \times 6) \\
1 \text { SF, } 1 \text { HF } & (7 \times 6) & & \nu_{C C}(48 \times 1) \\
1 \times 1) \\
& & (8 \times 1) \\
& & &
\end{array}
$$

1 SF and 1 HF gives just enough constraint to grasp the object and prevent motion relative to the palm.

Now for the Jacolians: $\tilde{J} \dot{q}=\nu_{c c}$

Now for the Jacolians: $J \dot{q}=\nu_{c c}$ \tilde{J} and J

Consider just contact 1 first.

$$
\begin{gathered}
\tilde{J}_{p}\left\{\begin{array}{c:c:c:c:c}
z_{0}^{c_{1}} & & z_{3}^{c_{1}} & z_{4}^{c_{1}} \\
\tilde{J}_{\phi}\{ & 2 & 1 & -1 & 1 \\
0 & 1 & -1 / 2 & 0 \\
0 & 0 & 0 & 0 & 0 \\
\hdashline 0 \\
\hdashline 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0
\end{array}\right] . \\
\underbrace{0}_{z_{1}^{c_{1}}} \tilde{J}_{1} \\
\tilde{J}_{z_{2}^{c}}
\end{gathered}
$$

$$
\begin{aligned}
& r_{11}^{N}=(1,-2,1) \\
& r_{12}^{N}=\left(-\frac{1}{2},-1,1\right)
\end{aligned}
$$

What changes if we consider contact 2?

$$
r_{21}^{N}=(3,2,1) \quad r_{22}^{N}=(3 / 2,-1,1)
$$

Everything else stays the same.

Lets get rid of the \sim.
HF contact

$$
J_{1} \dot{q}=\left[\begin{array}{l}
v_{n} \\
v_{t} \\
v_{0}
\end{array}\right]^{c_{1}}
$$

$$
J=\tilde{J}_{\phi}
$$

Dimensional analysis

Dimensional analysis

$$
\begin{aligned}
\tilde{J} \dot{q}=\nu_{c c} & \tilde{J}(48 \times 5) \\
\text { 8HF contacts } & \Rightarrow J J(24 \times 5) \\
2 \text { SF contacts } & \Rightarrow J J(8 \times 5) \\
\text { SF, HF } & \Rightarrow J(7 \times 5)
\end{aligned}
$$

Specialize to planar case.
What is not a plariar motion? $\omega_{n} \& v_{o}$
Look at case of 2 SF contacts

$$
\dot{G} \nu=J \dot{q}=\left[\begin{array}{l}
{\left[\begin{array}{l}
v_{1 n} \\
v_{1 t} \\
v_{12} \\
\omega_{1 n} \\
\hdashline v_{2 n} \\
v_{2 t} \\
v_{2 \sigma} \\
\omega_{2 n}
\end{array}\right.}
\end{array}\right\} \text { Eliminate } 4
$$

$$
G^{T}\left[\begin{array}{l}
v_{x} \\
v_{y} \\
v_{z} \\
\frac{v_{x}}{\omega_{y}} \\
\omega_{z}
\end{array}\right]=\left[\begin{array}{l}
v_{1 n} \\
v_{1 t} \\
v_{2 n} \\
v_{2 t}
\end{array}\right]
$$

Also eliminate 3 columns of $G^{\top} \quad 1$

$$
\begin{aligned}
G^{\top} \nu & =J \dot{q} \\
(4 \times 3)(3 \times 1) & =(4 \times 5)(5 \times 1)
\end{aligned}
$$

