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Abstract 
This paper investigates the problem of " formclosure" for 

three-fingered grasps of polygonal objects under various 
combinations of contact models at the contact points. We 
show that equilibrium can be maintained even when some 
of the contacts between the fingers and the grasped object 
are frictionless and tangential contact forces do not exist. 
Feasible regions to place the fingers on and to safely 
manipulate the object under various combination of 
contact models are identified through our analysis. 

1. Introduction 
Recently, interest toward multi-fingered grasping has 

been rapidly increased. A particular problem studied by 
many researchers is the contact configurations for form- 
closure  grasp^^.^*'",^. For such grasps, fingers at the contact 
points are capable of generating any forces and moments 
to balance disturbances from the environment*. Previous 
studies on contact configurations assume that the contact 
models at the contacts are either all frictional' or all 
frictionless9 contacts but not the combinations of both. 
Friction makes thing easier since the exislence of the 
tangential contact force increase the range of finger force 
direction and thus help the generation of desired force 
and moment. However, the frictional constraint increase 
the computational complexity for the search of feasible 
contact force. On the other hand, under frictionless contact 
model, the contact force is restricted to the direction of 
contact inward normal and the complexity for the search 
of contact force is reduced. However, the domain of 
feasible contact forces for form-closure is restrictive for 
frictionless contact model and thus this model is over- 
conservative. The current analysis investigates the contact 
configurations of polygonal object under various 
combinations of these contact models. We show that form- 
closure can be achieved under proper combinations of 
frictional and frictionless contact models. 

The structure of this paper is as follows. In section 2, we 
introduce the decomposition of contact forces and 
formulate the relationship between the desired 
force/moment and the contact forces. We start our analysis 
for three-fingered grasps of planar objects a1 points with 
non-parallel normals in section 3. Methods for blending 
frictionless and frictional contacts and the concept of 
normal force focus are introduced in this section. In 
sections 4 and 5, we extend our methods to special contact 
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configurations with two or three parallel contact normals. 
Geometrical constraints for choosing contact points on the 
contact edges are investigated based on the principle that 
the fingers need to be in contact with the object and 
frictional constraints need to be satisfied for frictional 
contacts. In this analysis, we focus on the contact 
configurations problem for the object and the fingers are 
assumed to be able to reach any spot on the object. 

2.  Decompositions of Contact Forces 
Generally, for grasps of planar objects, each contact 

force can be decomposed into components in the contact 
normal and tangential directions as : 

x=fm,+fti = ain,+d,f, i=1,2J (1) 

where n, and ti are the unit vectors in the inward normal 
and the tangential directions of the iIh contact point and 
thus n,=[nL , nJT,  t,=[n, , -nJT (see Figure 1). The 
variables ai and di are the normal and tangential contact 
force components to be found for a given set of desired 
force and moment. The squeezing and frictional 
constraints in our formulation can be expressed in terms 
of the magnitudes of the normal and tangential contact 
force components at each finger as follows: 

ui>O and Idilqai i=1,2,3 (2) 

Since frictional constraints can only be satisfied if the 
fingers are squeezing (or in contact with) the object, the 
first inequality in equation (2) is a prior condition for the 
satisfaction of the second inequality in equation (2). 
Hence, we use luil=ai in equation (2). 

i :normal force focus 
Figure 1. Grasps at non-parallel contact normals 

3. Grasp at Non-Parallel Edges 
For the grasp of planar object, we assume that the 
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contact forces are planar forces and thus these contact 
forces will generate a resultant force in the same plane of 
the object and a moment perpendicular to it. The 
relationship between the desired force and moment 
(F'x,F'y,M'J at the mass center and the magnitudes of the 
normal and tangential contact forces at the contact points 
can be described as follows (for three fingers) : 

dm a~ dh2 

au 

The vector ti' is the iIh contact position measured from the 
mass center and the scalars m, and m, are the moments 
induced at the mass center by unit forces in the i'h inward 
normal and tangential directions. The symbol C3 is an 
operator for two planar vectors that gives the magnitude 
of their cross product, i.e., ji@nl= r'&- r';p&. The 
matrices [W,] and [WJ, each of dimension 3x3, are 
termed the normal contact matrix and tangential contact 
matrix respectively. For contact points whose normal 
(tangential) vectors do not intersect at a point, [W,,] and 
([ W,]) are non-singular. 

A general form for the magnitudes of the tangential and 
normal contact forces can be expressed as follows: -(w4w5) w6 0 0 -  

(w4xw5)yj 

='I (w6w3 0 0 w1 { (w6xw5) 0 WZ ;f'5)w6 (W6 m& w3 (5) 

(w4m4 wI (w4xwd wz (w4wd w3 

W 5 w J  ~1 (w5xwJwZ Cw5 wJ ~3 

where the subscripts p and h stand for the particular and 
homogeneous solutions of equation (3.a). Form closure 
requires that there exist a solution to equation (4) for any 
possible applied force and moment (Fs',F,', M,'). 
Sufficient conditions for form-closure are ahl>O and 
phi>ldhJ ; i=1,2,3. If these conditions are satisfied, then 
the inequalities (2) can be satisfied by appropriately 
scaling the homogeneous components in equation (4). 

Lemma: Form-closure can be achieved under frictional 
contact model if ahl>O , b o  and pak,>ldh) , i=1,2,3 . 

Proof : 
A set of d,. and upi for any (Fx',Fy', Mz') can be found by 
setting three of di and ai to zero and solve for equation 
(3.a). The homogeneous solution (dki and ahi) of equation 
(3.a) can be used to adjust the a; and d; to satisfy the 
frictional constraint in equation (2) as shown : 

Since a,>O and puk>ldk,l, we define the following: 

6,= p h ; - u h )  > 6;>0 
From Cauchy-Schwarz inequality (bo), we have 

If the variable k is chosen to satisfy the condition 
b( Id& -pupJ/6,., then we have 

From equations (Pl) and (P2), we reach (W) : 

Thus, form-closure can be achieved using equation (4) if 
ahi>o, pula,>ldhJ and k satisfies the following inequality : 

k >max( (ldpj-pupi)/6i} i=1,2,3 

Two Frictionless and One Frictional Contacts 
By setting k, and k3 to zero, we achieve the equilibrium 

of the object using two frictionless contacts and one 
frictional contact. To maintain the contacts between 
fingers and the object while still keep the object in 
equilibrium, the squeezing constraints must be satisfied 
(ahi>o). Thus, for all contact forces to be compressive, the 
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following condition must be met : 

sgn ( w6x ws* w,)=sgn( w4x wpw,)=sgn( wsx w,* w,)=sgn(k,) 
(6) 

To ensure that the frictional contact (i.e., contact 1) does 
not slip, we must have: 

I(wsxw6)mw,l* I(w6XwS)*w,l (7)  

Two Frictional and One Frictionless Contacts 
By setting one of (k,,k,k,) in equation (6) to zero, we 
model two frictional contacts (fixed contacts) and one 
frictionless contact. There are three combinations of such 
contact models and we demonstrate the case for k3=0. For 
such grasps, the squeezing constraints, lead to the 
following inequalities: 

(w6XwS)*(k1 w1 + k2w2)>o 

(w,xw,)=(k,w, + kzwz)>O (8) 
(w,xw,)*(k,w, + k2wz)>O 

Three Frictional Contacts 

be found using equation (AS) : 
Another expression of the intemal forces magnitudes can 

&2(wl xw2) w3 l:l I b ( W I X W J W 3  

To maintain the contacts between the objects and the 
fingers, ah, needs to be positive. Thus the following 
relationship must holds : 

( 1 1 ) sgn (k,)=sgn(k2)=sgn(k3)=sgn( ( w,x wz)= w3). 

The frictional constraints (ldhJ*uhJ gives: 

Equations (11) and (12)  bound a feasible region for 
k,,k2,k3 such that the homogeneous solution in equation 
(10) will satisfy the squeezing and frictional constraints. If 
the feasible region of k,,kz,k3 is a null region, the fingers 
at the contact points can not hold the object firmly so the 
contact configuration does not have form-closure. 

The Normal Force Focus 
A special situation occurs when the contact normals 

intersect at a point called the normal force focus (see 
Figure 1). In our work, this is a key concept which will be 
discussed at length and adapted to various geometry. A 
pair of force and moment (Fx', Fi,Mz') at the mass center 
of an object is equivalent to another force and moment 
(Fx, F,,Mz) at the normal force focus and the normal and 
tangential contact forces are related to the equivalent force 
and moment as follows: 

where [o' AT]=[d,,dZ,d3,a,a2,a3]. The zeros in the bottom 
row of [WJ appear due to the fact that the contact normal 
intersect at the normal force focus. A set of intemal 
contact forces can be found as2 : 

where ni@n,=sinO, with 0, the angle between ni and nj 
(see Figure 1). Using the intemal forces given in equation 
(14) in the general solution of contact forces in equation 
(4), we see that any force and moment at the normal 
force focus (and therefore also at the mass center) can be 
generated (form-closure) under squeezing and frictional 
constraints at the contact points if e,, €I2, and e,, are less 
than 1800 and at least one contact is frictional. 

4. Three Contacts with Two Parallel Contact Normals 

the contact normals are parallel or anti-parallel. 
We now discuss the contact configurations where two of 

4.1. Two Contact Normals Parallel 
A special contact configuration occurs when two of the 

contact normals are parallel and the tangential directions 
of these contacts are along the same line (see Figure 2.a). 
The angle between the contact edges equals I$. In this 
case, we define the modified normal force focus at the 
point where the line along the third contact normal 
intersects the line connecting the first two contact points 
(Figure 2.a). Currently, we assume that the modified 
normal force focus falls between the first two contact 
points. We will show this assumption is a necessary 
condition for form-closure in our later discussion. A 
coordinate system is assigned at the modified normal 
force focus and the positions of the contact points can be 
described as : r~=(U,r,y),r~=(~,r2y),r~=(lr~lcosI$,lr~lsinI$). The 
relation between the force and moment at the normal 
force focus and the normal and tangential contact force 
magnitudes can be expressed as : 
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The first (last) three columns of [Wl consist of the unit 
vectors for the tangential (normal) contact forces and the 
moment generated at the modified normal force focus by 
the unit tangential (normal) contact forces. A set of 
internal contact force components can be found as 
(equation (A.4)): 

The following discussions demonstrate the physical 
significance of each homogeneous solution and the 
geometrical restrictions for deciding the contact points. 

Two frictionless confacts and one frictional contact 
In equation (16), each of the homogeneous solution has 

two of its tangential contact forces equalling zero. The 
corresponding contact models at these contact points are 
frictionless contacts. Additionally, the first and second 
components of homogeneous solutions of the contact 
forces have the same normal contact forces and the 
nonzero tangential contact forces are of the same 
magnitude, Thus, we will discuss these two components of 
homogeneous solution in an unified manner. The third 
components of the homogeneous solution of the contact 
forces is quite different from the first two and will be 
discussed separately. 

For the first two components of the internal contact force 
magnitudes to satisfy the squeezing constraint, we need 
ahi>O which leads to the following conditions : 

0"<4~90", ',SO and rzy<O. (17) 

For the first component of the internal force magnitudes 
(d,,,#O, dk2=du=O) to satisfy the frictional constraint,we 
substitute dhl and a,,, given in the first term of equation 
(16) into the frictional constraint (kj&pahl) to reach the 
following necessary conditions : 

r -r 
l y < C L .  (18) 

-rq m 4  
Similarly, for the second component of the internal force 

magnitude to be feasible, we have the following : 

Geometrically, inequality (17) requires that the line along 
the third contact normal intersect the line segment 
connecting the first two contact points,i.e., the modified 
normal force focus must fall between the first two contact 
points. In other words, the third contact point must be 
chosen to lie in the projection of the line segment 
connecting the first and second contact points onto the 
third edge of the triangle (the segment AC in Figure 2.b). 

Inequality (18) can now be visualized as follows. Notice 
that the left-hand side of inequality (18) is the ratio of the 
lengths of two line segments : the segment connecting the 
first two contact points and the length connecting the 
modifwd normal force focus and the second contact 
points. Geometrically (see Figure 2.b), we have the 
following condition for this ratio : 

1< (rly-r2y)/(-rzy). 

Thus, for inequality (18) to be true, we have the 
following condition: 

l<@/tan+) or tanwp. 

Suppose that the above condition is satisfied,i.e.,tan+<p, 
and the third finger is initially placed on the projection of 
the first contact point onto the third edge (point A in 
Figure 2.b). Thus, initially rIy=O and the left-hand side of 
the inequality (18) equal to 1 since the modified normal 
force focus is defined at the same spot as the first contact. 
As the third finger slides downward along the third edge 
(the contact at this point is frictionless), the modified 
normal force focus move downward and the ratio (rIy- 
r2J/(-r2J increases (so does the ratio of the projections of 
these line segments onto the third edge). In the incipient 
condition where the first component of equation (16) is 
about to be invalid, we have IACI/lECI=p/tan+ and the 
distance on which the third contact can safely slide can be 
expressed as follows according to Figure 2.b. : 

pq=(l-W) picl . (20) 
CI 

Similar explanations can be applied for the second 
component of intemal contact force magnitude from 
inequality (19). As the third finger slides upward along the 
third edge from the projection of the second contact onto 
the third edge (point C in Figure 2.b), (rly-rzy)/(rly) 
increases. For the incipient condition, we have 
IACI/lE'CI=p/tan$. The distance on which the third 
contact can safely slide can be expressed as (Figure 2.b): 

- 
IE'CI=(l-*) pq (21) 

cc 
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For the third component of the internal force magnitudes 
to satisfy the squeezing constraint, the following 
conditions must be satisfied. 

(22) 

In this component of intemal forces, the frictional 
constraint needs to be satisfied at the third contact point 
(d,,=d,=O,d&O) and the inequality Id,lyra, gives the 
following inequality : 

tan$ <,U or lq/ tan$. (23) 

0 " < ~ 9 0 " ,  rz,c lrzlsh@r3y c rly. 

Inequality (22) requires the third contact point be chosen 
from the segment of the third edge bounded by the 
parallel strip perpendicular to the first contact edge and 
passing through the first two contact points (B and D in 
Figure 2.c). Inequality (23) requires the angle between the 
first and third edges to be less than tan-lp. The first two 
fingers are allowed to slide along the first edge once 
inequalities (22) and (23) are satisfied. Apparently, the 
third component of intemal contact force is superior than 
the first two components of intemal contact forces since 
constraints (22) and (23) can be easily met. 

t2 B n2 

n3 

(4 (b) (c> 
Figure 2. Feasible regions for placing the third finger 

for two frictionless and one frictional contacts 

Two frictional contacts and one frictionless contact 
Physically, we can have two frictional contacts and one 
frictionless contact by assigning one of (k,,k,k3) in 
equation (16) to zero. Previously, we found that the object 
can be most efficiently held if the third contact is 
frictional while the other two contacts are frictionless. We 
now investigate the complement situation where the third 
contact is frictionless and is allowed to slide on the third 
edge while the first two contact is frictional and need to 
be fixed. Let k ~ = k r z ~ ( ~ z y - r l y ) , k z = - k r ~ ~ ( r ~ y - ~ ~ y )  and k3=0 in 
equation (16) to reach the following expression : 

Notice that the magnitudes of the normal contact 

(24) 

forces 

(the last three elements of equation (24)) remain the same 
as the corresponding elements in the second and third 
terms of equation (16). Thus, the squeezing constraints can 
be described using inequality (17). The frictional 
constraints to be satisfied at the first two contacts gives 
(IdJqa,, , i=1,2): 

tan$uc * 

The above condition is identical to inequality (23). Thus, 
if the angle between the contact edges I$, is smaller than 
tan-lp, then equilibrium can be maintained even when the 
thud finger slides along the portion third edge bounded the 
projection of the first two contact points (A and C in 
Figure 3.a). 

Figure 3. Feasible regions for placing the third finger 
(a) contacts 1 and 2 are frictional and 

(b) Three frictional contacts 
contact 3 is frictionless 

Three Frictional Contacts 
The case for three frictional contacts can be found by 
combining the third term of equations (16) and equation 
(24) as: 

[DT A T l ~  k ~ ~ z ~ ~ ~ $ , - ~ l ~ ~ ~ $ , ~ , - ~ z ~ o ~ ~ , ~ l y c o s ~ , ~ l y - ~ z y l  
+ k3[0,0,(~ly-rzy)sin~, 

lr31sin$-rzy, rly-lr31sin$,(rly-rzy)cos$]T . (25) 

The following conditions guarantee the squeezing effects: 

The feasible region for placing the third contact point will 
be the intersection regions shown in Figure 3.b (segment 
BC). Substituting dhi and uhki given in equation (25) into 
ldh,lqJuhi to reach the following condition : 

Dividing the first, second, and third inequalities shown 
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above by -krzycos+, kr,Fos$, and k3(rly-rz,)cos$ 
respectively (k and k3 are positive) gives 

0 0 cos4 -1 1 -sine$- 
-1 h 4  0 0 COS$ 

Iq ‘Iy 0 0 

The values of yl,yz and y3 are positive since the contact 
points are chosen according to inequality (26). Inequality 
(27) can be summarized as follows : 

(29) 

tan$ < p min(Z+ yJ+ yzJ+ y3}. (28) 

-dN- . - ‘ 1 y W  ’ 0 0 
4 2  0 0 

6 

% rlT-+r1* 

0 

‘Lr- 
=k, 

UN 

-a%. - 

We see that inequality (23) is a conservative bound for 
the case of three frictional contacts since the satisfaction 
of inequality (23) guarantees the satisfaction of (28). 

4.2. Two Oppositely Directed Contact Norma& 
Finally, we discuss the contact configurations with two of 

the contact normals direct oppositely (Figure 4). The 
modified normal force focus is assigned at the 
intersection of lines along the non-parallel contact normals 
(Figure 4). Assigning a coordinate system at the modjfied 
normal force focus with the x- axis parallel to two of 
contact normals (Figure 4). The relation between a desired 
force/moment at the modified normal force focus and the 
contact forces can be described as : 

- case 1 : The first contact is assumed to be frictional while 

the second and third contacts are frictionless (k,=k,=O): 

Geometrically, the first finger must be placed above the 
second fingers (r,@ and rzy=O). Suppose that the second 
finger is placed in a spot such that rl,/rl, = p (Figure 
4.a). As the second finger moves upward the value of 
rl,/rlx decreases and the third inequality of (31) is 
satisfied. 

case 2 : The second contact is frictional while the first and 
third contacts are frictionless (k,=k,=O) : 
- 

$40’. rly<O, rzxcO, ( - r l ~ o s $ ) / ( - r z x c o s ~ r l ~ i n $ ) q .  (32) 

Geometrically, the first finger must be placed below the 
second figers (rlycO and rz,.=O). Thus the first and second 
components of the internal force magnitudes can’t be valid 
at the same time. Assume that the first and third contact 
points are so placed such that the incipient condition 
(-r,~os$)l(-rz,cos$-rl~in$)=~ in equation (32) holds. By 
decreasing -rly or increasing -rz, (both positive number 
from inequality (32)), the inequality (-rlycos$)/(-r2xcos$- 
rl$n$)q can be achieved. Geometrically, these scenarios 
correspond to moving the first finger upward along its 
contact edge or moving the third finger in the up-right 
direction along its contact edge (Figure 4.b). 

case 3 : The third contact is frictional while the first and 
second contacts are frictionless (k,=k,=O): 

$do’, r,sO and l(u<tan$ . (33) 

Again,the first finger must be placed above the second 
fingers (r,sO and rzy=O, see Figure 4.a). Also, the 
occasion to use this set of internal force magnitudes is in 
odd with the occasion to the second set of internal forces. 

I 

- : Feasible sliding rigion 
(a) (b> 

Figure 4. One frictional and two frictionless contacts 
(a) Finger 1 or 3 is frictional 
(b) Finger 2 is friction1 

Two Frictional and one Frictionless contacts 
We learned that the second component of the internal 

force magnitudes can’t be used along with the first and 
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third components of intemal force magnitudes. We 
combine the first and third components of internal force 
magnitudes in equation (30) for the case of two frictional 
and one frictionless contacts. The second finger is allowed 
to slide along its contact edge (frictionless). By letting 
k,=k(rlYcos+tlr3l)/r,, k,=O and k3=-kr,/rIr in equation (30). 
we have the following expression : 

la1 I 0 

[%I -r&4+riy@+pd 

The squeezing constraints lead to the following conditions: 

r,, >O and r,,cosg +k3I > r,, sin$ . (35) 

To satisfy the frictional conslraints at the first and third 
contacts, we have the following conditions : 

rl,cos+tIr3l < p r,, cos$ 
r,, cos0 <p (lr3l+rIycosg- r,, sing ). (36) 

Two-fingered Grasp with Opposite Confact Normals 
Finally, assigning k,=k,=k and k3=0 in equation (30), we 

obtain a special component of intemal force magnitudes as 
follows : 

k[-rlycos~,-rl~os$,O,(r,,-rz$cos$,(r,,-r,$cos$,0l. (37) 
[dkl>dhZ>dk3>ahl lahPah31= 

Physically, this component of intemal forces corresponds 
to a two-fingered grasp with oppositely directed contact 
normals and the third finger is released from its contact 
edge (dM=O, u,=0). The squeezing constraints lead to the 
inequality rl,-rz, > 0 and the frictional constraints lead to 
the inequality I-r,J(r,,-r,,) 9. Using the fact that rzy=O, 
this inequality can be expressed as lrzy-r,~/(r,,-rz,)~p. 
Additionally, we leam from equation (37) that the 
tangential forces are not required in the case of rIy=O 
which implies the alignment of the first and second 
contact normals. Equilibrium can be achieved by simply 
squeezing the object using normal contact forces. 

5. Graso Points with All Parallel Normals 
For three-fingered grasps with all parallel contact 

normals, one of the inward normal must direct oppositely 
to the other two to achieve force equilibrium in the normal 
direction (Figure 5 ) .  The modified normal force focus can 
be defined on any point along the line containing the 

opposite directed inward normal. Assign a coordinate 
system at the mod&kd normal force focus with the 
directions of the x and y axes parallel to the tangential and 
normal directions of the contacts. The normal contact 
forces are capable of generating any force in the y- 
direction and a moment in the directions normal to the 
planar object. For the normal forces to balance, the 
following equation holds 

A set of feasible [A,] can be immediately found as 

To achieve squeezing (a,,>O) for the internal forces 
given inequation (39), we need rz,O and r3,<0. Physically, 
r,,O and r3,<0 imply that the opposite directed inward 
normal to lie between the other two inward normals 
(Figure 5).  A set of the magnitudes of the normal contact 
forces that generate a force F, at the normal force focus 
without producing any moment M, can be verified as 
[A,l=[Fy,O,OIT for F s O  and [A , l=~y[O~3 ,d(~z , - r33 , -~z~(~~ , -  
r3JT for Fy<O. The rest of the desired force and moment 
(F,MZ) can be generated using the tangential contact 
forces 

The homegeneous solution of equation (40) can be found 
using equation (A7) as: 

~ ~ ~ ~ ~ ~ l ~ ~ ~ ~ ~ ~ y ~ ~ ~ y ~ ~ ~ y ~ ~ ~ y ~ ~ ~ ~ ~ ~ ~ y l ~  (4 1) 

We can form a completely set of the intemal contact 
forces by combining equations (39) and (41). Inequalities 
that constraint the geometry of the contact points can be 
found by using this complete set of dki and U,, in the 
inequality Id,Jqake Also, contact points satisfying these 
geometrical constraints will also assure form-closure grasp 
by properly choosing kl and k, in equations (39) and (41). 

T -  

Y 4 
=[o,-ij 

n3 

0:  modified normal force focus 
Figure 5. Grasps at contact points with parallel normals 
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6. Conclusions 
This paper provides an unified approach to the analysis 

of three-fingered form-closure grasps of polygonal objects. 
Equilibrium and form-closure are shown to be achievable 
under various combinations of frictionless and frictional 
contacts models at the fingers. Regions for safely 
manipulating the polygonal object can be easily identified 
using our method. Special contact configurations are taken 
into account. The results of this research will be useful for 
planning the dexterous manipulation of objects since our 
method allows the adjustment of contact positions (or 
regrasping) with the equilibrium of the object maintained. 
We will extend this approach to the case of solid objects. 
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Appendix A. Null Space of a reefangular matrix 
Consider the following algebraic equation 

where v; is a 3x1 column matrix and [v1=[v,,v,v3,v41. The 
solution of [ X I  consists of a particular and homogeneous 
solutions. Since this is a system with only one extra 
variable, the homogeneous solution of [ X I  can be found 
using Laplace's Theorem as : 

[ X l T , , = ~ [ ( ~ 3 x ~ , ) . ~ 4 . ( v , x v , ) . v , , o . v l  (A.2) 

This technique has been applied to find the joint velocities 
of redundant arms with one extra degree of freedom 
(Bailleul 1985). Now, Consider the following equation 

where [ x l T = [ ~ , , X Z ~ ~ , ~ ~ ~ ~ , ~ ~ 1 .  Three sets of [XI , , ,  can be 
found by setting two of ( x I , x ~ J ~ )  to zero and taking out 
the corresponding vi's in equation (A.3) to make [VI a 3x4 
matrix. A general form of [x],,, can be found using 
equation (A.2). 

Similarly, three sets of [x],,, can be found by setting two 
of (x4,r5,x6} to zero 

Equation (A.4) is used in equation (5),(16), (30) of the 
main text. Equation (AS) is used in equation (10). 
Similarly, consider the following equation 

where v,=[viX,vjJT. The homogeneous solution of [ X I  is 
similar to equation (A.2) : 

where v,.@v,=v,v,-vkvjy.Equation (A.7) is used to find the 
homogeneous solutions of the normal and tangential 
contact force magnitudes (equations (38) and (40)) for 
grasps at points with all parallel contact normals. 
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