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Abstract—Many physical simulators linearize contact con- based simulation. Furthermore, the novel techniques presented
straints such that each contact constraint defines a half-space in this paper immediately corrected simulation inaccuracies

in the configuration space of the effected objects. By modeling 5,564 py the implicit assumption of local convexity, as can
contact constraints as infinitely extending half spaces it is only be seen in Fig. 1 ’

possible to approximate regions in configuration space that
are locally convex. This implicit assumption of local convexity

introduces artifacts in the results of the simulation. We present a
new method for modeling regions of configuration space that are
locally nonconvex using a linear complementarity formulation. [ [

From this we show that we can now accurately represent any .
general polytope using linear complementarity. convex constraints

I. INTRODUCTION

The linear complementarity problem, or LCP, was first used
by Lotstedt [1] to formulate multi-body unilateral contact [ [
problems. Further work on linear and non-linear comple- nonconvex constraints
mentarity methods for multi-body contact were developed by
Baraff [2] and Pfeiffer [3]. Both of these methods compute thigg. 1. The above screenshots were taken from a matlab program simulating
instantaneous acceleration and velociy for a system of objeGBcck sAno svr = Mok i bolh examples there e ptert contc
in contact. Most formulations linearize the contact constrainigde of the hole. If the C-space of the block can only use convex constraints
treating all contact surfaces as planar, although some ndren the diagonal edge on the right side of the hole is incorrectly modeled
“n?ar me_thods have worked Wlth curved surfgces [4]. Wh%gsﬁthe;(iyg‘éﬁrever. Using nonconvex constraints the block correctly slides
using an instantaneous analysis, interpenetration between bod-
ies may occur after the velocities are integrated forward by a
finite time step. Il. DYNAMIC MODEL

The linear time-stepping method introduced by Stewart andA |inear complementarity problem (LCP) is defined as
Trinkle [5] integrates velocities and positions forward in timgollows [6]: Given a constant matriB € R™*™ and constant
in such a manner that the linearized contact constraints getorb ¢ R™, find vectorsz € R™ andy € R™ satisfying
satisfied at the end of each time step. In the Stewart-Trinkige following conditions:
time stepping approach each contact surface is linearized to
reduce the interpenetration constraint to a half-space constraint y=DBz+b, @)
in configuration space, (also called C-space). This leads to 0<ylz2=>0, 2

erroneous or incorrect collisions occurring when objects mov . . . .
9 ) weherey 1 z is the perpendicularity constraimgt’ z = 0.

towards sharp corners. Because the LCP formulation requireﬁ.he time-stepping method formulates the linearized dynam-
that each and every contact constraint is satisfied, the valid . .
problem as the following [5]:

region for a single object is defined as the intersection oF
some number of half-spaces in C-space. The intersection of M@ —v') = W, pi*' + Wp™ +pl,,,  (3)
many convex sets is itself a convex set, therefore the straight g+ — g = hG(ql)l/Hl‘ (4)
forward LCP formulation treats all contact constraints as
convex regions in C-space. In this paper we show ways Te unknown vectorv!*! represents generalized velocity
modify the Stewart-Trinkle LCP formulation of the dynamiat the end of the current time stéfy,¢;41]. Similarly the
model to include nonconvex constraints. unknown vectorg'*! represents generalized position at time
We have found that the new techniques presented in thjs:. The time step duration is representedibylhe unknown

paper were fairly easy to incorporate into our existing LCRectorsp’t! and pic“ represent the magnitude of impulses



applied during the current time step in the normal and tan-

. . . . valid region valid region
gential direction respectively. The vectpf,, represents the & _ eg . object
magnitude of all external impulses. The matrié&s, andW ; \ /. object
are Jacobian or “wrench” matrices that map contact forces N\ \
to wrenches in the body-fixed frame. The matG¥q) is a invalid region ° invalid region
Jacobian matrix that maps the object veloaityo the rate of
change for object configuratiog. (a) Convex (b) Nonconvex
The Complemema”ty formulation becomes the fOIIOWHg 2. The convex feature on the left allows the intersection of the valid
lng [5] regions for the two planes. The nonconvex feature on the right allows the
union of the valid regions for the two planes.
WT l+1+,f /h pl+1
n
0<y= WT Ly BEs't L P}H =z2>0. Problem 1: Model the valid region in C-space as the union
U p“rl E™p l“ st of two half-spaces, instead of the intersection of two half-

(5) spaces. All other physical properties should remain unchanged
from the convex formulation.

The penetration gap at the end of the current time step

ivided by h is calculated in the left side of Eqns. (8) and

). We temporarily ignore friction and external forces and

define this value for each plane as anda,:

The first and third rows in Eqn. (5) contain vectors that repre-
sentn constraints form contacts. The second row represent
kn constraints wheré is the number of spanning vectors use
to approximate the friction cone [5]. The matdx ¢ R*"*" is

block diagonal with nonzero blocks given iy, 1,...,1]T €

R*. The diagonal matrixJ stores friction coefficients. The

vector f' contains distances to each current and potentialy) — wT (! + M~ (W,p5tt + Wo,pbth) + fL/h,
contact. Thef'/h term is a constraint stabilization term. The (10)

unknown vectors'™! is a scaling factor for the tangential
impulses in the unknown vectcplf“. By solving Egn. (3)
for 'L in terms ofplt!, p4t! and s'*! we can obtain the
following values forB andb introduced in Eqgn. (1): An object will lie in the union of two contact constraint
half-spaces if eithett; > 0 or a; > 0. Modeling this “or” re-
lationship is not straightforward because the LCP formulation

2 = Wgn(’/l + Mﬁl(Wlnpll—:Ll + W2npl2—:z,1)) + fé/h
(11)

r Tar—1 Tar—1
B_ x%%%g" x%%*lgf g ©) requi_res that eagh and every constrajnt is_satisfied. It is not
f n U I ’ possible to specify a logical “or” relationship such that only
L U -k 0 one of two constraints must be satisfied. Therefore, we propose
[ WX+ M p,,,) + /R two new LCP formulations to solve this problem. The “max”
b= W?(ul + M 'p_.,) . (7) formulation maintains more physical accuracy but requires
i 0 more constraints, whereas the “summation” formulation is

less physically accurate but can be expressed using fewer
Equations (6) and (7) give the complete LCP formulatiopysiraints.

when using convex constraints. We can now solvezfarhich
containsp’ti, p?rl and s'*t1. We then use these values to IV. MAX FORMULATION

I+1 I+1
computer™* andg . The first “max” formulation depends on the following

logical relation (we express logical or as logical and as

A, and logical equivalence as=>):
In this section we focus on the non-penetration constraint

for the case of a point mass approaching with two potential
contacts. For a point mass, C-space and physical space are (a; >0) V (a3 > 0) <= max{ay, a2} > 0. (12)
identical.

IIl. NON-PENETRATION CONSTRAINT

Proposition 1: The following LCP based on the max for-
0 < WLt 4 fln 1 pitt > 0, (8 mulation assures that the valid region is the union of two half-
0 < WLy fln 1 pz+1 > (9) Spaces. It also assures that contact force is generated only for
planes in contact.

This formulation can accurately model convex features in Based on Eqgn. (12), we enforce constraints on the expres-
C-space such as in Fig. 2(a) where we see a point maisnsa; andas. For now we will ignore friction and external
approaching a corner with convex constraints. In Fig. 2(lidrces, so that the; anda, expressions are each linear in
we see a point mass approaching a corner with nonconube unknowns;o“rl andpgjgl, as seen in Egns. (10) and (11).
constraints. Simulations that use the convex formulation wilrtificial variablescy, ¢2, d, g1, g2, h1, ho andp are created.
mistakenly model all corners as having convex constraints.Additionally, a large positive constantis used. The following



equations are meant to replace Eqgns. (8) and (9) when itsieph is set to 2. The only difference in the two examples is
necessary to model a nonconvex feature in C-space: the current velocity/’. In the first example/! = [-2,0]7, and
in the second example' = [-2, —1]7. In these examples we

set plfjbl to represent the contact impulse along the vertical

0 < ata-1 1 « > 0 (13) plane z = 0, and p5"! to represent the contact impulse
0 < cotax—1 1L ¢ > 0 (14) along the horizontal plang = 0. This setsa; and as to
0 < G+g—1 1 d > 0 (15) represent penetration distance divided by time step in x and y
P - respectively. Since each constraint is aligned with an axis and
< - > .
0 = atd—y L g z 0 (16) e have a time step of @11 = [2a;, 2as]”
0 < co+d—v L ¢ > 0 a7)
0 < hi+a1 L hy > 0 (18)
0 < hy+az L he = 0 (9 yalid region =(L,1
0 < d—v+1 L p > 0 (20 ¢ Q'=(LD) valid region (,6)
— — .‘—. 1+1 =729 L7
0 < h+d—v+1 L i1 > 0 (1) ¢"=(3D a L
0 <  hatd—~+1 L p5' > 0. (22 ©0.0) . E:3 o ©.0
, . invalid region ’
Eqns. (13) and (14) constraiy = |min{a;,1} — 1] and invalid region
¢y = |min{aq, 1} — 1]. Egns. (18) and (19) constraity, =
|min{aq,0}| andhe = |min{as, 0}|. Eqns. (15), (16) and (17) (a) No Contact (b) Contact

are designed to find the maximum value«afandas.

As long asy > max{cy, co} we will haved > 0 from EQns. Fig. 3. In the left example no contact occurs, in the right example contact
(13), (14), (16) and (17). In generdl> max{y — 1,y = ca}. ﬁoneos é)ocrfstjt:é:gt;h\f/errightrZégmplt?uth;nigrgo\gtoalgtd isren?gzjlez ([jgfzr;nlt]?nust be
Becaused > 0 the third equation forceg; + g2 = 1, and i ived. P ’
thereforeg; > 0 or go > 0. To makeg; or g, greater than
0 eitherd +c¢; —v =0 0or d+ ¢c; — v = 0. This fixesd to
eithery — ¢y or v — ¢o, Which in turn implies a strict equality
d = max{y — ¢1,7 — c2}. We have manipulated to select
the smaller of thec; and ¢y values, and therefore select the
maximum (least negative) af, anday. Relatingd to a; and
as, we can sayd = min{max{ay,a2},1} + v — 1. Finally
we haved — v+ 1 = min{max{a1, a2}, 1}. In the degenerate
case where; = c; bothg; andg, may be greater than 0, but
this does not change the relationship betwden, andas.

Notice thatd — v + 1 is equivalent to the right side of
Eqgn. (12) except for an extrain term. Themin term is not
important for our purposes sinaein{max{a;,az},1} > 0
implies thatmax{a;, a2} > 0, which is what we are really o
interested in. Ifd — v + 1 > 0 we have no contact, and if In the example seen in Fig. 3(a) no contact occurs and the
d—~+1=0 we do have contact. solution z, dictates that the point mass has veloaityt! =

In Eqn. (20) we havel — v 4+ 1 > 0 which enforces the [~2,0]", positiong*! = (=3, 1]", anda; = ~1.5, a = 0.5
non-penetration constraint. Note thain Eqn. (20) is not used at the end of the current time step.
in any other equation, and has no effect on the formulation. InFor z,,, the first solution to the example in Fig. 3(b), contact
Eqgns. (21) and (22), the normal force magnitude for individu@ made with both planes and contact impulpﬁ# =1.5and
planes of the nonconvex constraint are calculated pEor to pht1 = 0.5 are applied. In this solution the point mass has

We used an LCP solver to compute the unique frictionless
solution z, for the example in Fig. 3(a). There are three
solutions for the example shown in 3(b): contact with both
planes £,1), contact with the vertical plane:{;), and contact
with the horizontal planez,3). We obtainedz;; from an LCP
solver and found the other two solutions by hand. The example
in Fig. 3(a) usedB, andb,, and the example in Fig. 3(b) uses
B, andb,. For all solutionsy = 100.

be greater than 0, bothh — v + 1 and 2; must be 0. This velocity v'*! = [-0.5,—-0.5]7 and positiong'** = [0,0]”
enforces the rule that a contact force can only come froma@the end of the current time step. The penetration distance
plane that is in contact. divided by time step for both planes;, as, is 0 since there

To make the formulation work, the constant vatumust be is contact with both planes. Far,,, the second solution to
greater thanmin{as, az,0}| to forced to be positive in Egns. the example in Fig. 3(b), contact only occurs with the vertical
(16) and (17). To be conservativecan be set to the diameterplane. In this solution we have, = 0, a; = —0.5, plf;l =
of the scene, or the twice the distance the fastest point can, plzfll = 0, v'*! = [-0.5,—1]7 and positiong' ! =
travel in the next time step. [0, —1]T. For 23, the third solution to the example in Fig.

Let us create two simple examples, one without contact 3f), contact only occurs with the horizontal plane. In this
pictured in Fig. 3(a), and one with contact as pictured in Figolution we haver; = —1.5, az = 0, pF! = 0, phit = 0.5,

3(b). For both examples the point has mass 1, and the timg! = [-2, —0.5]7 and positiong'** = [-3,0]7.



We divide e by the time steph so thate is proportional to

r1 0 0 0 0 0 0 0 1 07 distance instead of distance multiplied by time. Efié value
610000 0O0O01 will create a small space that is mistakenly classified as in the
(1) 8 (1) (1] (1) 8 8 8 8 8 valid region. In 2D the corner is “capped” by a plane that is
0110000000 perpendicular to the bisection of the two contact planes (see
Ba=Bv=109 000010010 Fig. 4).
000 0O0O0OT1O0OO0 1 )
001 0000O00TO0O0O valid region ) mistaken
001 0O0T1U0O0O0O0 . valid region
L0 01 0 0 0 1 0 0 04 el o
€
r —2.5 7 r—257 Ml IN\--
_Oi5 —115 invalid region
—100 —100 Fig. 4. The summation constraint mistakenly identifies a region with area
b, = | —100 by = | —100 proportional toe? as valid.
-1.5 -1.5
0.5 —0.5 . . .
—99 —99 Proposition 2: The following LCP based on the summation
| —99 | L —99 | formulation assures that the valid region is the union of two
planes unioned with a “small” isoceles triangle at the corner
e [ 25 7 of the invalid region. It also assures that no contact force is
22 0.5 generated if there is no contact.
i 9%'5 Based on Eqn. (24) we enforce constraints on expressions
9 1 andas. As noted before both; anda, represent expressions
ha Za=1 15 that use unknowng’ ! andpi'!. Artificial variablesc; and
ha 0 ¢ are created. The summation formulation is given as follows:
p 0
iy 0
L pbit L o0 ] 0 < ea-a—¢h L ¢ > 0 (25
-1 -1 A -9k 0 < ca—ag—€e/h L ¢ > 0 (26)
1 15 1 0 < a4e—¢h L pt >0 (@7
99 99 99
0 1 0 0 < c1+cg—e/h L phtl > 0 (28)
2y = (1] Zpo = 8 Zp3 = 1%5 Based on the the nonnegative and perpendicularity con-
0 0.5 0 straints in Eqns. (25) and (26) we have= max{—¢/h, a; }+
0 0 0 ¢/h. The inequalityc; 4+ c2 — e/h > 0 in Eqns. (27) and (28)
1.5 1.5 0 will enforce the constraints in Eqn. (24) exactly.
L 0.5 ] L 0 L 0.5 ] We used an LCP solver to compute the unique frictionless
V. SUMMATION FORMULATION solution z, for the examples in Fig. 3(a). Many solutions are

Our second nonconvex formulation is not as accurate, B@!id for the example shown in Fig. 3(b) and we present three
is creates a smaller more efficient LCP. For the “summatioff the many possible solutions. In both solutians= 0.02,

formulation we would like to use something close to thande/h = 0.01. o ) )
following logical relation: In the example seen in Fig. 3(a) the solutiep dictates

that the point mass has velociy** = [—3,1]7 and position
g1 = [-2,0]T at the end of the current time step. If no
(a1 >0) V (a2 > 0) <= max{0, a1} + max{0,a2} > 0.  contact occurs there is a unique solution that will match the
(23)  solution given by the max formulation.

Unfortunately, the logical relationship in Egn. (23) does not We used an LCP solver to computg,, the first solution to
hold true if the strict inequality> 0 is replaced by> 0. For the example in Fig. 3(b). In this solution the point mass makes
this reason we introduce a small positive constaiito the contact with the horizontal plane but both planes contribute
summation formulation for the non-penetration constraint. contact force. In this solution we have velocity ™! =

[-1.5,—0.5]7 and positiong!** = [-2,0] at the end of the
((ax > —€/h) A (az > —€¢/h) A (a1 4 az > —e/h)) V current time step. To illustrate _the capped corner we produced
(a1 > 0) V (a5 > 0)) zp2 by hand, the second solution to the example in Fig. 3(b).
L= 2= In this solution we have! ! = 1.495, pbt! = 0.495, vi+1! =
= max{—¢/h, a1} + max{—e/h,as} + ¢/h > 0. [—0.505, —0.505]T and positiong!*! = [—0.001, —0.001]7 .
(24)  Here we see a case where the point mass makes contact



with the capped corner and penetrates both the vertical and
horizontal planes by half of. For z;3, the third solution to
the example in Fig. 3(b), contact only occurs with the vertical

plane but both planes contribute contact force. In this solution
pitt =15, pbtt = 0.13, v+ = [-0.5, —1.87]T and position planar
g1 = [0, —2.7400]”. We manually produced this solution to constraint
. . 1 _
show that the Sma“, but arb_ltrary contact mpu}éﬁ =0.13 Fig. 5. In the vertex-to-face case the face of the upper object will define the
does produce a valid solution. contact plane and a simple convex planar constraint can be used.
10 -1 0 - _ .
01 0 -1 Proposition 3: Both the summation and max formulations
B, =B>= . . o
11 0 0 can be generalized to an arbitrary set of planes. Once this is
110 0 done friction calculations can be added easily.
Using either the max or summation formulations, friction
1.49 1.49 can be trivially added, since we have not changed the seman-
A R R tics of pi+1. In our method, each elemeplt"! represents th
—0.01 —0.01 magnitude of the normal contact impulse just as in the usual
convex formulation. For this reason the friction impulse vector
c1 0 pl{fr1 can friction scaling vectos'*! can be calculated using
il 2, = | 951 v!*1 which depends op!!. The definition for both of these
p}lﬁ ¢ 0 vectors does not need to be changed from the Stewart-Trinkle
P2n 0 formulation (Eqn. (5).
When dealing with many constraints, we refer to a set of
0% 1 8'882 0'81 nonconvex constraints as group. Furthermore, we refer to
zZu = | 5 Zv2 = | 1495 Zu3= | 15 the planes with@n one group as tisedesof the group. Two
0.5 0.495 0.13 examples are given in Figs. 6(a) and 6(b).
As can be seen from example 1, this formulation does not
constrain contact forces to only come from individual sides  valid _ valid ]
that are in contact. Rather, if any contact occurs then any region /. object region /. object
normal force may be greater than 0, but if no contact occurs o
. LRI
then no normal force may be greater than 0. This is not as ERIRLLLLEN

. . retatetetetetetetete
accurate as the max formulation, and also leads to the existence — SXSEEAssEs,

of many possible solutions. When using the summation for-
mulation for the first example, the point mass can lie anywhere

invalid region

on the horizontal plane betwegi™! = [-3,0]7 andg!*! = (@ 1 nonconvex  (b) 2 nonconvex groups with 2
T . _ group with 4 sides sides each, and 1 convex planar
[—0.02,0]", anywhere along the capped corner (diagonal y=- constraint on the right
x) betweeng!™! = [-0.02,0]7 and ¢'*! = [0, -0.02]T, or _ ‘
. 1 T Fig. 6. Two examples of geometry that use nonconvex constraints.

anywhere along the vertical plane betwegh! = [0, —0.02]

I+1 _ _11T i ibiliti . .
and ¢! = [0,~1]". This corresponds to all possibilities |, our previous examples, we showed the formulation for

where contact is made with at least one plane, penetration d8e§ingle nonconvex group with two sides. Both of these
not occur, and any combination of positive contact forces Cgfimulations can be extended to many groups each with many

beTL;]setd. de of or effic be ustified f sides. For the max constraint we have:
e trade of accuracy for efficiency can be justified for cer- (@ >0V (@0 V... (> 0)

tain classes of simulations. A nonconvex constraint is usually
only necessary if a vertex-to-vertex collision is possible. If the <= max{ay, az,...,a,} = 0.

vertex of a nonconvex constraint is close to a nearby face, thafhen using many sides the capped corner symptom of the
an intelligent physical simulation will not make a nonconvesummation formulation can be further exacerbated if the sides
constraint, but rather a single convex constraint that is paralige very short (see Fig. 7). If extremely sharp corners and
to the face (see Fig. 5). When a nonconvex constraint is trudxtremely short sides are avoided no nasty cases will be
necessary in the vertex-to-vertex case, contact from eithergésent and the capped corners will act exactly as they did
the planes will most likely appear plausible. for a nonconvex group with two sides. For the summation
constraint we use the following relationship:

(29)

VI. FRICTION AND MANY CONSTRAINTS

Problem 2: Model the valid region in C-space as an ar-
bitrary combination of unions and intersections for multiple
planes and accurately calculate normal and friction forces.

max{—e/h,a1} + max{—e/h,as} + ...+

max{—e/h,an} + (n —1)e/h > 0. (30)



velid region small tolerances the most accurate solution can be obtained.

i - - gl i - Assuring that there are no collinear normal vectors may also
mistaken — \FS be important for finding a feasible solution [5].
valid region m Proximity detection is necessary to find which sides may
invalid come into contact in the upcoming time step. However, when
region using nonconvex constraints it may be necessary to include a

side not because of potential contact, but rather because one
Fig. 7. The mistaken valid region can become larger when multiple clogghnconvex side effects another. In Fig. 8 the bottom side of
sides are grouped together using the summation formulation. . . .

the nonconvex corner will probably not come into contact with

Variables from our earlier max and summation formulatiori§€ object. However, if we do not include the bottom side the
that have a 1 or 2 subscript are specific to a side, and variate9er side will extend forever: Including the bottom side will,
that do not have a subscript are specific to a group. The fiteffect, shorten the upper side.
matrix form for the LCP is given in the appendix at the end
of this paper.

The number of linear constraints needed for modeling both valid region f object
convex and nonconvex constraints in C-space with friction is e
given below. The variables, y and g represent the number invalidregi07 T
of convex constraints, the number of nonconvex sides, and additional valid region

he number of nonconvex gr r ively. The vari

the number of nonconve 9 °9p§ espectively . € va abll% 8. The bottom side of the nonconvex group must be included in the
k represents the number of friction cone spanning Vecto{gp for the nonconvex constraint to be modeled properly.

The Stewart-Trinkle method can only model locally convex

constraints in C-space.
VIII. CONCLUSION

] form \ number of constraints \ Using nonconvex constraints it is now possible to represent
max dy+29+x+ (k+1)(z+vy) any 2D polygonal object using the LCP formulation. All
summation 2y +z+ (k+1)(z +vy) 2D polygons can be triangulated and every triangle can be
stewart z+ (k+1)(x) represented by 3 nonconvex constraints, (the interior of any

triangle is convex, but the exterior is nonconvex). Not all

Multiple groups of nonconvex constraints, as well as convéleneral polytopes can be triangulated, but all polytopes can
planar constraints can all be included in the same LCpe decomposed into simplices. A simplex is always internally
However, it is important to note that it is only desirable t§onvex, and its exterior can be represented as a combination
insert those constraints that may be active during the next tiffenonconvex hyper-plane constraints. Using our method it is
step. From the table above it is clear that modeling surfac@@w possible to represent any simple polytope using linear
as convex half-planes requires less constraints. If geometrye@nplementarity.
locally convex in terms of the upcoming time step then it is While the nonconvex constraints proposed here follow most

more efficient to model the geometry using convex constrainlysical properties maintained by the convex constraints, there
is an element of nondeterminism in the nonconvex formu-

VII. | MPLEMENTATION lation. Since the interpenetration constraint for a nonconvex

If either the max or summation formulations are used, caféouD can be satisfied by any one or.more of the_ many s@es,
must be taken when choosing the valuey@nde respectively. he LCP sollve( hha}s a fair am'ount O.f leeway Ik? Ch°°s'r19
o L s d ot syl e (e st e o G
but rather numeric equivalence within some small toleranc

If an extremely large value of or an extremely small value rom planes that are in contact. This means that when using
of ¢ is used infeasible results may occur. This is becau

g}ee summation formulation the final normal force may lie
floating point operations on modern processors can lose la

%gywhere within the cone constructed by the normals at each
amounts of precision if the operands are of vastly differe n

convex side. These issues are shown in Fig. 9(a) and 9(b).
scale. This loss of precision can lead to non-physical results ACKNOWLEDGMENTS

or an unsolvable LCP. . . .
Y v The authors wish to thank Jong-Shi Pang and Liu Guanfeng
To make sure that roundoff error does not create an uTn

. . or their technical guidance and suggestions. The authors were
solvable LCP some LCP solvers will let you specify that theartially supported by NSF grant #0139701,

solution z may have elements that are slightly below 0. Thig
is equivalent to allowing a small amount of interpenetration. REFERENCES
Another option is to add small constants to the LCP so ) o _ _ .

. []6 P. Lotstedt, “Coulomb friction in two-dimensional rigid-body systems,”
that COhtTdC_t forces_ may occur _When objects _are SeParated YZeitschrift fir Angewandte Mathematik und Mechanikol. 61, pp. 605—
only a miniscule distance. By incrementally increasing these 615, 1981.



valid region valid region

L 4 [
-~ object - object
/-
invalid region invalid region
(a) Max (b) Summation

Fig. 9. Without an applied normal force the point mass will penetrate the
corner. Bold dots and bold lines indicate possible final positions for the point
mass. There are three possible solutions when using the max formulation,
and a range of solutions when using the summation formulation. The pictures
depict the frictionless case.

[2] D. Baraff, “Issues in computing contact forces for non-penetrating rigid
bodies,” Algorithmica pp. 292-352, Oct. 1993.

[3] F. Pfeiffer and C. GlockeMultibody Dynamics with Unilateral Contacts
Wiley, 1996.

[4] D. Baraff, “Curved surfaces and coherence for non-penetrating rigid
body simulation,”"Computer Graphicsvol. 24, no. 4, pp. 19-28, 1990.
[Online]. Available: citeseer.nj.nec.com/baraff90curved.html

[5] D. Stewart and J. Trinkle, “An implicit time-stepping scheme for rigid
body dynamics with inelastic collisions and coulomb frictiomterna-
tional Journal of Numerical Methods in Engineeringpl. 39, pp. 2673—
2691, 1996.

[6] R. W. Cottle, J. Pang, and R. E. StornEhe Linear Complementarity
Problem Academic Press, 1992.



APPENDIX

In this appendix we detail the final form of the LCP fori contains nonconvex sidg, and 0 otherwise. The value
nonconvex constraints using the max and summation formul®’ D is a square matrix such thald;; is 1 if side¢ and
tions. Both formulations can represent convex and nonconvarle j are in the same group, and O otherwise. The value
constraints, and both formulations use a frictional contaﬂTDey is a vector such thalde; is equal to the size of the
model. We assume here that the constraints are sorted so gatip containing sidé. The unknowrp!;"! and the vectorf’
the firsty constraints are nonconvex, and the nexbnstraints are both split in two components, where one component has
are convex. The number of nonconvex groups is representhd firsty rows (denoted with a subscripf), and the other
asg. The vectore,, is defined as,, = [1,1,...,1]T7 € R*. component has the last rows (denoted with a subscrip.

The matrix E retains the same definition from our originalThe matricesW,, andU, are also split into two components,
dynamics formulation in Eqn. (5). The matri, € R"*™ is where one component has the figstolumns and the other
defined as the square identity matrix of sizeThe selection component has the last columns. These new components
matrix D € R9*Y identifies whether a nonconvex side is @.*!, p;“, f f;, W, W,, U, andU, are all listed in
member of a specific nonconvex group. Each elemgntat Eqn. (31).

row ¢ and columnj in D has value 1 if nonconvex group

I+1 [ Pl+1 l fl
Pt = M f=[ff] W.=[W, W.] v-[U, U.] @Y
(1, 0 0 0 0 W,M'W, W/ MW, W/ MW, 0 |
0 0 D 0 0 0 0 0 0
I, D" 0 0 0 0 0 0 0
o 0 0 I, 0 W,M'W, WM 'W, WM 'W; 0
Bpaxr=| 0 I, 0 0 0 0 0 0 0 (32)
o D" o0 I, 0 0 0 0 0
o 0 0 0 0 WM'w, WIM'wW, WIM'W,; 0
0o 0 0 0 0 WiM'W, WM 'W, W;M 'W; E
0 0 0 0 0 U, U, ~-E" 0 |
[ WL+ M pe,) + fy/h—ey ] e ]
—ey d
—ey l g
Wg(VZ+M71peLt)+fy/h h
bmacc = (_’Y + l)eg Zmax = p (33)
(=7 + e, Py
Wi+ M 'p,,,) + £i/h .
T T ezf x 11
Wf (Vl + M~ pewt) p
+1
L 0 i L s
1, -W.M'w, -W,M'W, -W._M 'W; 0
D™D 0 0 0 0
Baum = 0 wivM—w, wIimM'w, wimMm'w; o0 (34)
0 wiM'w, WiM'wW, WM 'W; E
L 0 U, U, —E7 0
[ —Wz(yl +M_1pext) _f'lg/h_ (e/h)eu c
—(e/h)(DTDey —ey) plfl
bsum = W_,LT(VI + Mﬁlpemt) + fi/h Zsum — pz:ri (35)
W?(Vl + Mﬁlpext) pler
0 sttt




