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Abstract
The efficiency of the automatic execution of com-

plex assembly tasks can be enhanced by the identifica-
tion of the contact state. In this paper we derive a new
method for testing a hypothesized contact state using
force sensing in the presence of sensing and control
uncertainty. The hypothesized contact state is repre-
sented as a collection of elementary contacts. The fea-
sibility of the elementary contacts is tested by solving a
linear program. No knowledge of the contact pressure
distribution or of the contact forces is required, so our
method can be used even when the contact forces are
statically indeterminate. We give a geometric inter-
pretation of the contact identification problem using
the theory of polyhedral convex cones. If more than
one contact state is feasible, we use the geometric in-
terpretation to determine the likelihood of elZch feasible
contact formation.

1 Introd uction
In this paper, we present a linear programming ap-

proach to the force/moment testing of the different
contact topologies. This apf)roach yields two benefits
over the previous techniques: no estimate of the pres-
sure distribution in the contact interface is required,
and the contact formation can be identified even when
the contact forces are statically indeterminate.

The work presented here extends that of Xiao [1],
on contact identification, Desai [21, who introduced the
concept of contact formation and sensor-based recog-
nition of contact formations, Hirai and Asada [3], who
used Monte Carlo techniques to develop contact for-
mation classifiers from a CAD model, and of Taylor [4]
and Brooks [5] on spatial and force uncertainty.

Consider a movable polyhedral object W, which is
held by a robot, contacting polyhedron obstacles 6'.
The forces and moments acting on the movable object
can be measured by a force sensor. The exact contact
formation is not known. The problem to be solved
can be stated as: given a set of measured forces and
moments, a set of hypothetical contact formations, and
an uncertainty model, find the contact formation.

We make the following assumptions:

1. The bodies in the system are rigid polyhedra,

2. Friction forces obey Coloumb's Law,

3. Force/moment sensing errors are bounded,

4. No uncertainty exists in the model of the environ-
ment,

5. The position and orientation of the robot are spec-
ified.

The first four assumptions are commonly made in
analyses of robotic manipulation systems and experi-
mental results support their validity.

The last assumption does not exclude uncertainty in
the location of robot. The uncertainty in the location
of the robot is handled by the first phase of the con-
tact formation identification algorithm: the hypothesis
phase. In the hypothesis phase, we use Xiao's algo-
rithm to obtain a discrete set V.. of possible locations
of the robot and a list of possible contact formations
corresponding to each element of V... Each element
of V, along with the list of possible contact forma-
tions is then passed to the testing phase of the contact
identification algorithm.

2 Contact Models
For simplicity we consider contacts between two

polyhedra. Let W denote the movable object and e
denote the polyhedral environment. The contacts can
be described in terms of three elementary types of con-
tacts [6]

Type A between a face of Wand a vertex of e.

Type B between a vertex of W and a face of e.

Type C between an edge of W and an edge of e.

3 Uncertainty Models
The most important sources of uncertainty are: un-

certainty in the force/moment sensor, uncertainty in
the positions of the contact points with respect to the
force sensing frame, the uncertainty in the direction of
the contact normal with respect to the force sensing
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frame, and the uncertainty in the position and ori-
entation of the force sending frame with respect to a
world frame. All but the first source of uncertainty are
handled by the first phase of the contact identification
algorithm.

Let S be the force sensor internal coordinate frame.
Let C be a coordinate frame attached to the object's
center of gravity and aligned with the world frame W.
For the rest of this paper we use "generalized force"
to imply force and moment. Let gs denote the actual
generalized force applied at frame S, and let t.s denote
the measured value for the generalized force. Also, let
c5g.s be the vector of uncertainty in the force sensing
given by:

where g- = [gz-,g,,-, ]T with g+ defined simi-
larly.

Equation (11) represents a rectangular solid in gen-
eralized force space centered around the nominal gen-
eralized forces at C gC that bounds the actual gener-
alized force gc at C.

4 Model Description
When a frictionless rigid body is in contact with

its environment, the effect of the contact forces and
the external forces must balance. Let <i denote the
velocity of the center of gravity of the object in the
world frame and 8 denote the joint rates of the poly-
hedral obstacles. Let Cn denote the vector of contact
wrench intensities. The following equations represent
the kinematic and equilibrium constraints that must
be satisfied if the object is stationary or moving quasi-
statically while maintaining the contact formation [8]:

og.s = [ 6gSa 6gs. 6gs. 6gso 6gsj! 6gS.,]T
(1)

Thus:
is -6g.s < gs < is + 6g.s. (2)

The above inequality applies element by element. Let
the homogeneous transform from S to C be given by

-Rll R12 R13 Xl-
R21 R22 R23 Yl
R31 R32 R33 Zl

0 0 0 1

T. .
Wn q+JnO = 0 (12)

W nCn = -gob; (13)

cn ~ 0 (14)

where gob; is the external wrench acting on the object
and J n is the Jacobian of the polyhedral obstacles. Let
nj be the unit normal at the contact point j expressed
in frame C, and r; be the vector from the origin of
frame C to contact point j. The wrench matrix W n
[9] is given by :

T= (3)

...ii,

...r,A ii,
ill

rl" ill
n2

r2 1\ n2 (15)Wn =

where t\ is the cross product operator and 1 is the num-
ber of contacts.
In the case that the polyhedral obstacles are not mov-
ing Equation (12) reduces to

WnT q = 0 (16)

The instantaneous velocity of the center of gravity of
the object is related to the manipulator's joint rates
8m by:

q = Jm9~ (17)

where Jm is the manipulator Jacobian matrix. Sub-
stituting equation (17) into equation (16) we get:

T .
W n JmOm = 0 (18)

The null space of W n T J m is the space of manipulator

joint rates O:n for which the current contact formation
is maintained as the robot moves. The null space of
J m correspond to motions of the manipulator for which
the object is motionless. Denote the union of the two
null spaces by O:nv.

A contact formation is force-feasible if it is possible
to find contact forces that satisfy equilibrium, friction,
and other kinematic constraints. To test whether a
contact formation is force-feasible it is sufficient to test
whether Equations (13) & (14) are feasible. This can

Let R denote the 3 x 3 rotational component of T
and P the 3 x 1 translational component of T. The
generalized forces acting at C are given by:

gc =~ T,g.s (4)

where ~ T, is the 6 x 6 force transformation associated
with T [7].

The sensed forces acting at C are given by:

gC =~ T,gs (5)
It should be noted that the force transformation

matrix ~ T, is deterministic since it corresponds to
an element of the discrete set V, of possible locations
given by Xiao's algorithm.

Expanding Equations (4) and (1) we get:

gc. = R11gS. + R12gS. + R13gS. (6)

6gc. = Rl16gs. + R126gs. + R136gs. (7)

where 6gc. is the error in the first component of trans-
formed measurement. 6gc is the transformed measure-
ment error vector.

Using the error bounds on gz,gll' and g: we can
identify the maximum and minimum values of gC~. De-
note those values by gz+ and gz- respectively.

gz- ~ gc. ~ gz + (8)

gz + = IRl16gs.1 + IR126gs. 1+ IR136gs.1 (9)

gz- = -IRl16gs.I-IR126gs.I-IR136gs.[10)

Similar bounds can be obtained for the other com-
ponents of the generalized force vector gc. All the
bounds can be written as:

gC- < gC < gc+ (11)
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be easily tested using the feasibility test of the linear

program:

MinjT}lize 0 (19)
Subject to: W nCn = -gobj (20)

Cn ~ 0 (21)

It should be noted that the LP can be used if the
manipulator's joint rates are either zero or in the range
e:nv. It then follows that for all joint rates in the range
e:nv, the cont~t formation is feasible if and only if the
corresponding linear program is feasible.

In formulating the wrench matrix we use the po-
sition and orientation of the object corresponding to
the element of V. being tested to get r j and lij. This
method of discretizing the location uncertainty of the
object and then testing the elements of the discrete set
V. ensures that the feasibility of the contact formation
always corresponds to the feasibility of a linear modeL
In the absence of such a discretization, the uncertainty
in the wrench will lead to a nonlinear model. A con-
tact formation will be feasible if it is possible to find
Cn and gobj that satisfy the equilibrium condition (13)
and the physical condition (14), such that gobj also
satisfies the error model (11).

In this spirit we modify the linear program (19) to
the following linear program:

by an m -sided inscribed pyramid. The inscribed
pyramid gives a conservative approximation of the fric-
tion cone.

The appro.,cmation of the Coloumb Law may be
written as the following linear constraints [10]:

Bc?; a (28)

If the external load at the center of gravity of the
object is not precisely known, then the linear {>ro-
gram (22) is augmented with the error model (11) to
yield: -

Minimize
C.., gobj

Subject to :
(29)
(30)

(31)
(32)

0
Wc = -gobj

-
< +

g < gobj g

Dc ?; 0

If the linear program (29) is feasible, then it is pos-
sible to find contact forces that satisfy the equilib-
rium conditions and the Coloumb model, and exter-
nal forces that satisfy the equilibrium model and the
sensing model.

5 Contact Formation Likelihood
In this next section we propose a computational

procedure to determine the most likely contact for-
mation. Equations (30) and (32) define a polytope in
wrench space. Let 9, denote the polytope correspond-
ing to contact formation i. The measurement and the
bounds on the measured force equation (31) define a
box 9, of possible wrench vectors. If a contact forma-
tion i is feasible, then the intersection of the polytope
corresponding to that contact and 9, is non empty.
This is illustrated in Figure 1 which shows two feasi-
ble contact formations i and j. The two dark areas
represent the intersection of 9, with 9, and 9j.

Minimize
0 (22)C~.gO.'

Subject to: W nCn = -gobj (23)

Cn ~ 0 (24)

g- .$ gobj .$ g+ (25)

In the case of friction the above analysis must
be modified. Friction will impact our model in two
ways. First, the wrench matrix will also include unit
wrenches due to frictional forces in the contact plane.
Second, the Coloumb friction model will be included
as an extra set of constraints. Let tj and oj, denote a
pair of orthonormal vectors in the contact plane. The
wrench matrix can be written as: W = rw n W tWo]
where W n is given by equation (15). Wt and W 0 can
be obtained by replacing rij in equation (15) with tj
and oj respectively.

The wrench intensity vector c is given by:

CT = [CT CT CT]n t 0 (26)

where Cn is the vertical concatenation of the wrench
intensities in the normal direction. Cc and Co are sim-
ilarly defined. The Coloumb Friction Law is applied
by the nonlinear inequality:

Figure 1: Intersection of 9, and 9o, 9j

5.1 Quadratic Programming Approach
As mentioned above, external wrench vectors gobj

satisfying the linear program (29) corresponding to

Ctj2 + COj2 .$ J1.jCnj2 (27)

Where J1.j is the static coefficient o( friction at the jth
contact point. The nonlinear inequality (27) corre-
sponds to a (riction cone which can be approximated
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contact formation i form a polytope 9if in force space.
In fact this polytope is given by

Proposition 1: Let U = span { Ul ...u/} be a convex
polyhedral cone in Rn. Let W be a linear map from
Rn to Rm. Then

WU = Span{WUl ...Wun}

and WU is a polyhedral convex cone.

(41)
gi/ = gi n g/ (33)

The two dark regions of Figure 1 represent gi/ and
gj/o We define dmin. the minimum distance from gi/
to the sensed force gC by

Proof:
dmin = min{d(x)lx E 9i/} (34) U = {alul+a2u2+"'+anun} (42)

WU = {al WUl +... an WUn} (43)
= span{Wul",WUn} (44)

Since al ...an > 0, it follows that WU is also a poly-
hedral convex cone. 0

Where d(x) is the weighted Euclidian distance of a
vector x from g"c. The minimum distance, dmin, is
the solution to the following positive definite quadratic
program:

Minimize
C..,gohj

Subject to :
(35)

(36)

(37)

(38)

(39)

To determine if an element of:F is a member of 9;1
we propose the following algorithm:

1. Transform the system of inequalities Bc ?; a from
face form to span form (3] :

[gC -gob;]TQ[gC -gob;]
WnCn = gob;

Cn ?:; 0

-+g < gob; < g

Bc ?:; 0 Bc ? 0 =::;. span{ d1 ...dm} (45)

2. Apply the linear transformation W to d1...dn to
get

9i = span{h1.. .hm} (46)

From the previous proposition, 9i is a polyhedral
convex cone.

3. Transform the polyhedral convex cone (46) from
span form to face form [3].

span{h1 ...hm} ==> Gix :5 0 (47)

where Q is a (6 x 6) diagonal matrix.
If contact formation i is feasible as indicated by

the feasibility of the linear program (29) , then 9il
is non empty. In this case the quadratic program has
a unique global minimum. If dmin is zero, then the
sensed force is in 9i. The feasible contact formations
are ranked according to their dmin values.

The above procedure will break down if the sensed
force is in more than one of the 9i. In the next sub-
section we develop a procedure to handle this case.
5.2 Probabilistic approach

If the sensed force is in 9,...9i+. we can compute
the probability that a contact formation i is feasible
by computing the probability that the actual force is
in the 9,. In this subsection we show how to compute
this probability from the sensor error model.

The sensed force gC differs from the actual force gC
by a random error vector ogc. In Section 3 we ob-
tained expressions for the components of ogc in terms
of the components of the vector of sensed force errors
and the homogeneous transform T. The probability
density functions of the components of ogc can be ob-
tained from those expressions and the sensed force er-
ror statistics. For a given sensed force gC we define a
discrete set F of cardinality N by:

4. If a vector x in J:" is in 9i the equation (47) must
be satisfied.

The set F is computed only once and thus the time
required to compute it is independent of the number of
contact formations to be tested. The face form repre-
sentation of the polytope of possible wrench forces 9i is
done only once for contact formation i. Efficient meth-
ods have been developed by Hirai [3] and Hirukawa
f11J for performing this transformation. Once the face
torm is obtained, it is possible to test if an element 9p
of F is a member of 9i by checking the sign of 9i9p.

It is possible to test if gp E J:" is a member of 9i by
testing the feasibility of the linear program:

Minimize
0c..

Subject to: Wc + gp = 0

Bcn ? 0

The procedure outlined in this subsection offers con-
siderable computational savings for a large N. If a
linear program is used, we need to test the feasibility
of N linear programs. Using the procedure outlined
in this section only 2 linear programs and N matrix-
vector multiplications are needed.

(48)
(49)

(50)

:F = {xix = gC + b"gc} (40)

where :F is a set of possible actual forces.
If an element of:F is a member of 9i, then the con-

tact formation i is feasible. If all the elements of :F
are in 9i, then contact formation i is very likely. If
none of the elements of:F are in 9i, then contact for-
mation i is not likely. Let Pi represent the number of
elements of F in 9i. Also define the operator conf()
by : canf(9i) = ~ conf(9i) is a measure of the set
9i n :F.

Next we state and prove a proposition that will be
useful in the computation of the confidence measure:
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6 Results
The contact formation identification technique de-

scribed here was tested in the laboratory. The software
was written in the C programming language running
on an IBM RS6000 workstation. The linear programs
were solved using the IMSL [131 library. The hard-
ware system consisted of a PUMA 560 robot, a JR3
force/moment sensor, and a pneumatic gripper.

Our robot controller is im~lemented
using RCCL [14] running under LynxOS [151 on an
486-based microcomputer. Communication between
our robot controller and the RS6000 is handled by the
TelRlP telerobotics communication package [16].

The workpiece used for our test was a rectangular
aluminum peg and the environment consisted of a solid
plate of aluminum. Figure 2 shows the system used.

If the confidence measure can not be computed us-
ing the above approach due to computational con-
straints then we propose the following linear program-
ming alternative:
Since gC lies in all 9i, i = 1... 3 it follows that Vi =
GigC :$ 0, i = 1 ...3. The value of Vi can be used as a
measure of:F n 9i , i = 1..3. A large negative value of
Vi indicates that the contact formation is likely. The
same approach was used by Trinkle [12] to formulate
a quantitative test for form closure.

It should be noted that the probabilistic approach
gives more accurate results since it uses the actual sen-
sor error statistics.

5.3 Identification Algorithm
We have shown that if the nominal force measure-

ment gc happens to lie in the polyhedral convex cone
9i then the measure of 9i n :F will greater than had
it not. This suggests that we can initially test to see
if gc happens to lie in any of the possible 9il i = 1...k
where k is the number of possible contact formations.
The outcome of this test can be one of the following:
a) gC does not lie in any of polyhedral convex cones.
In this case we have to test whether the polytope :F
intersects any 9i. b) gC lies in more than one of the
polyhedral convex cones. In this case all of the contact
formations corresponding to those polyhedral convex
cones are possible and we have to calculate the confi-
dence measure of each of those cones. c) gC lies in one
of the polyhedral convex cones. The most likely con-
tact formation is the contact formation corresponding
to this cone.

The feasibility of the following linear program may
be used to test whether gC lies inside any of the poly-
hedral convex cones:

Figure 2: The experimental setup.

(51)

(52)

(53)

Minimize
Subject to :

0
Wc = gobj

Bc" 2: 0

where W and B correspond to the contact formation
to be tested. The feasibility of this linear program is
easier to check than the feasibility of the linear pro-
gram (22) for two reasons. First, it does not require
any knowledge of the bounds on gC , so the overhead
involved in computing those bounds is avoided. Sec-
ond, 6 fewer variables are needed.

In light of the the above discussion, we implemented
the following procedure for identifying the contact for-
mation:

If gC lies in only one of the polyhedral convex
cones, return the contact formation corresponding
to that cone.

.If gC lies in none of the polyhedral convex cones,
use the method of Section 5.1. Rank the contact
formations according to the values of dmino

.If gC lies in s polyhedral convex cones with s > 1,
test the measure of F n 9i, i = 1... s using the
method of Section 5.2.

The first contact we tested was a face-face contact.
The measured forces and moments are shown in the
second column of Table 1.

The first contact formation to be hypothesized and
tested was a face-face contact modeled as a 4A con-
tact formation. Initially the feasibility test for the con-
tact formation assumed perfect sensing using the lin-
ear program (51). The feasibility test was performed
in 0.03 CPU seconds. The linear program was not
feasible. Next we tested the feasibility of the linear
program (22). The error bounding box is given in the
second column of Table 2. The feasibility of the linear
program was tested in 0.04 CI;>U seconds. The linear
program was feasible.

Due to the uncertainty in the position of the peg an
edge-face contact is also possible. An edge-face contact
could be obtained by rotating the face-face configura-
tion by the XY Z Euler angles (0, 0{3, 0), where 0{3 is a
small angle that represents the uncertainty in the ori-
entation. The edge-face contact formation was mod-
eled as a 2A contact formation and the corresponding
linear program was formulated. We tested the feasi-
bility of the linear program for 0{3 = 0.001, which took
0.02 CPU seconds. The program was not feasible.

A vertex-face configuration could also be ob-
tained by rotating the face-face configuration by the
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8.1665 Ncm 3.1301 Ncm

Table 1: Measured force and moments.
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Table 2: Force sensing error bounds.
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XYZ Euler angles (0, 6{3, 6,), where 6{3,6, are small
angles that represent the uncertainty in the orienta-
tion. The vertex-face contact formation was modeled
as an A contact formation and the corresponding linear
program was formulated. We tested the feasibility of
the linear program for 6{3 = 0.001, 8, = 0.001, which
took 0.01 CPU seconds, and the linear program was
found to be not feasible.

Next we rotated the configuration of the robot to
obtain the vertex-face contact formation. The mea-
sured forces and moments are given in the third col-
umn of Table 1. The uncertainty in force sensing is
given in the third column of Table 2. To test our ap-
proach we hypothesized a vertex-face contact modeled
by a type A contact. The linear program was feasible
and the run time in this case was 0.01 CPU seconds.

7 Conclusion
We have presented a new method for contact for-

mation identification through force sensing, an er-
ror model that incorporates sensing errors and con-
tact compliance, a linear programming algorithm, and
three different methods for computing the confidence
measure of a contact formation.

We illustrated tho utility of our method by means
of two examples. In both examples, the contacts were
properly identified. The run time of this method was
very satisfactory and indeed can be used in real time
applications.
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