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Abstract 
The efficient planning of contact tasks for intelligent 

robotic systems requires a thorough understanding of 
the kinematic constraints im on the system by 

C l J -  form analytic eolutionrr for the poeition and ori- 
entation of a pamive polygon moving in contact with 
two or three active polygonrr whoee itions and ori- 
entations are independently c o n t r o l E  This is done 
by applying elimination techniquea to solve the eys  
tem of appropriate contact constraint equations. We 
prove that the syeterrm of contact constraint equations 
are smooth lrubmsnifolda of configuration space. 

rollin and sliding contacts. P- thls paper, we derive 

1 Introduction 
Consider a planar system of rigid polygonal bodies 

in contact (see Fiyre 1 and amme that the p i -  

are actively controlled. The polygon that is not ac- 
tively controlled, but ratber is "grssped," is referred 
to as the workpiece or the pamive polygon, and thoee 
that are actively eontfoued through joint actuation 
are colleztively r e f e r r e d  to M the manipulator or the 
active poly OM. The workpiece and the manipulator 
taken togetter are r d ~ r r e d  to as the manipulation eye- 
tem, or just the system. The procese of reorienting the 
workpiece by controlling the manipulator is known as 
dexterous manipulation. 

When the level of uncertainty is a significant factor 
in the planning and execution of a dexteroua manip  
ulation task, we refer to it as a fine motion or fine 
manipulation task. In contrast to the classical iano 
movers' problem [9] in which contact is avoidel, ev- 
ery possible solution to any dexterous manipulation 
planning problem must include periods of contact. 

Automatic fine manipulation planning is one of 
the most important unsolved problems in the field of 

tions and orientatiom a all but one of the  polygon^ 

Figure 1: A System of Bodies in Contact. 

robotics. Tasks in this class include mechanical a% 
sembly/disaesembly and grasping operations. The de- 
velopment of a practical, reliable planner for this class 
of tasks would facilitate the automation of lar e por- 
tione of various manufacturing and aervice industries 
and would expand our ability to work in Space and 
other hazardous environments. 

The major problem preventing the development of 
practical fine manipulation planners is that the best 
general-purpose planning algorithms have wombcase 
running times that are exponential in the dimension 
of the system's confi ation space (Gspace)[S). An 
additional source of G c u l t y  peculiar to fine manip  
ulation plannin is that a multibody contact model 
allowing for m d i p l e  sliding and rolling contacts must 
be used to predict the motion of the system. 

Despite the difficulties, there are good reawns to 
believe that practical fine manipulation planning al- 
gorithms can be developed: first, to find a plan, the 
entire Gspace need not be decomposed (for example, 
see[lO]; second, quasistatic rigid body models of me- 
chanics often capture enou h of the relevant physical 
phenomena to derive reliabke manipulation plans (for 
example, see [8, lo]) ; third, compliant control can fa- 
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cilitate the maintenance of large numbera of contacts, 
thereby helping to reduce the h e m i o n  of Gspace; 
and fourth, cell decompoeition techniquea lend them- 
selves to parallel and distributed computation. 

A h a l  practical h e  b that  a h e  manipulation 
planner requires the representation of portions of G 
space. Since C-space will typically have a farily high 
dimensionality, a representation that places minimal 
demands on computer memory fesou~ces is needed. 

Our contribution to fine manipulation planning re- 
latea most directly to thia find issue. In this paper, 
we present the geometric characterisation and analytic 
representation of eight commonly occuting types of 
lower-dimensional subaets of Gspace (called “contact 
formation cells” [ll]. Using simple techniques from 
algebraic geometry, we derive analytic representations 
of the CF-cells which yield the following benefits: they 
provide an efficient means to repreaent large relevant 
portions of Gspace (entire cells) by just the coeffi- 
cients of the mlutions; they obnate  the need for the 
iterative solution of the nonlinear systems of contact 
constraints to determine the poeition and orientation 
of the workpiece given the configuration of manipula- 
tor; and they reveal configurations in which the mcr 
tion of the system (under a quseistatic model of me- 
chanics) can get stuck or become uncontrollable. 

A contact formation cell (CF-cells) cormponds to 
a dietinct combination of the contact constraint equa- 
tions associated with slidin and/or rolling, type A 
and or type B contacts (see definitions below). 

while each rolling contact yields two. Under pure pcr 
sition control, the number of contact constraints is 
generally three, because all of the degrees of freedom 
of the system except for the three aseoeiated with the 
workpiece are directly controlled. 

Even though we do not study three-dimensional 
systems, our analysia will be immediately useful in 
planning the manipulation of solid objects with con- 
stant crosksectional geometry. 

E a d  sliding contact yiel L!f one constraint equation, 

2 Problem Statement 
We define type A and B elemental contacts as fol- 

lows: 
Type A Contact: an edge of the workpiece is in con- 
tact with a vertex of the manipulator. 
Type B Contact: a vertex of the workpiece is in 
contact with an edge of the manipulator. 

Figure 1 shows a workpiece and a manipulator with 
three elemental contacts: edge 1 of the workpiece con- 
tacts vertex 1 of the first manipulator polygon (a 
type A contact), vertex 2 of the workpiece contacts 
edge 2 of the second manipulator polygon (a type B 
contact), and edge 3 of the workpiece contacts vertex 
3 of the third manipulator polygon (a type A contact). 

A set of elemental contacts constitutes a contact 
formation, CF, [3]. Based on the numbers of type A 
and B contacts, we classify CF’s into various types. 

For example, the CF shown in Figure 1 is of 
A CF of this type can be maintained only tj 

contacts slide as the manipulator polygons move. The 
same is true for every CF of type 2BA, 3A, or 3B; 
all of which involve three elemental contacts. We will 
be studying the type 3A in this paper. The other CF 
types of interest will be denoted by: ARA, ARB, BRA, 
and BRB. Every CF of each of these typee has only two 
elemental contacts, one of which rolls as indicated by 
the subscript “R.” Note that these CF types have, in 
addition to the constraints specifyin the two elemen- 
tal contacts, a third constraint specifying the location 
of the rolling contact point. 

In what follows, we will assume that as many as 
three rigid manipulator polygons are in contact with a 
rigid workpiece polygon; that the positions and orien- 
tations of the manipulator polygons can be controlled 
directly and independently; and that the position and 
orientation of the workpiece is controlled purely as 
a byproduct of maintaining (if possible) the specified 
CF. 

3 The 3A CF-Cell 
Referring again to Figure 1, let zi,  Y I ,  and Or denote 

the position and orientation of a frame PI, attached to 
the I t h  manipulator polygon, measured with respect to 
the world frame, U .  Similarly, let 2, y, and 8, without 
any subscripts, denote the position and orientation of 
a workpiecefixed frame W with respect to 0. Next 
define the workpiece configuration vector q, the ma- 
nipulator configuration vector r, and the system con- 
figuration vector p as follows: 

q = [~,Y,ClSI (1) 
(2) r =  

P = [z# Yici  siz1r 22,z3,ylifi2, ?hi e23e31 (3) 
[zl, z2, 231 Y l ,  B, m, el, e2, e31 

where c and s “represent” cos(0) and sin(B), respec- 
tively. The variables c and s are to be thought of as 
independent variables and are used to represent the 
orientation of the workpiece in place of 0, so that the 
contact constraints may be written as algebraic, rather 
than trigonometric, equations. This, however, will re- 
quire the introduction of an additional algebraic con- 
straint, namely, 2 + 2 - 1 = 0. 

In this spirit, we define the system’s modified C- 
space, 2, to be the set of all poesible vectors p, and 
denote the three contact constraints by Cr(p) = 0 for 
1 = 1,2,3. We then define the resulting CF-cell, CF, 
as follows: 

C3 = {p E 2 IC’ + s2 - 1 = 0 and G(p) = 0 (4) 

Consider Figure 2. Let 91 denote the angle between 
the outward normal to edge 1 and the positive z-axis 
of W .  The signed distance between vertex 1 and the 
line supporting edge I, the so called Gfunction [6], is 
given by: 

(.j) C i ( p )  = V I  . (ai - bl) 
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be rewritten M: 

Di(r, C, 8 )  + El(r, C, 8) t  + 4(r,  c, 8)y = 0 ; (8) 
1 = 1,2,3 

c'+s'- 1 = 0 (9) 

The first two of the three equations represented by 
equation (9) can be solved for t and y yielding: 

Figure 2: Definitions for A-type Contacts. 

where the vectors .r , bi, and VI are @ran in [4]. Here 
4 ie the jxasition of vertex I ,  br L the position of the 
selected point on edge I ,  aad VI U the outward unit 
normal of edge I ;  all d there quan t i tk  u e  expressed 
with tespect to the f r u ~  U. 

Notice that we haw labeled the deea of the work- 
piece and the p o l y g o ~  10 that contact 1 is between 
polygon 1 of the manipulator and the line supporting 
edge 1 of the workpiece. Note .Is0 that we handle the 
awes in which an edge of the workpiece is to be con- 
tacted by more than one verkx of the manipulator by 
labeling the edge more than once. 

The Gfunction correaponding to the l r ~  ty e A con- 
tact can be written M a function of the con&uration 
of the workpiece to yield the following system of con- 
tact constraint equations: 

where 1 = 1,2,3. The coefficients 01, )I, dr, er, and f i ,  
illustrated in Figure 2, are functions of the geometry 
of the bodiee in the aystem (including the workpiece) 
and the configuration of the manipulator and are given 
in [4]. 

Ea& Gfunction, Cr(p), M well aa the unit circle 
equation (equation 7)), dehee  a quadric hypemur- 

per surfaces defines the set of eomeiricully admissible 
3A codgurationa of the woripiece as a function of 

face in Gspaw. d e intersection of these four hy- 

meane that contact is maintained along the line sup 
porting the edge, not the actual physical edge of the 
workpiece. 
To obtain an analytic solution which describes the 

3A CF-cell, notice that each equation in (6) is linear 
in t and y 80 that the system of equations (6-7) can 

where the denominator E1F2 - FIE' simplifies to 
elA-ezf1 = sin(&-&). Note that ifsin(&-41) is 
zero, a different pair of equations in (9) must be used. 

Proposition 1: For the 9A CF, eliminaiion fails, 

is lesa ihan iwo, if and 

only if ihe lines sup orting ihe edges designaied for 
coniaci a n  parallel [This includes the possibility ihat 
iwo o r  ihree of fhe lines are coincideni.). 

Proof: The proof is given in [4]. . . . . . . . . . . . . . . . . . U  

When elimination fails, we wil l  say that the particu- 
lar manipulator configuration vector r, is nongeneric. 
Brost identified this nongeneric situation with three 
contacts on parallel edges and noted that either there 
is zero or an infinite number of -metrically admis- 
sible workpiece configurations [lf When the number 
is infinite, the workpiece can be translated along the 
contacted edges while maintaining the specified CF. 
Brost also stated that the situation with three con- 
tacts on parallel ed es was the only situation in which 
the workpiece couldattain the specified CF in an infi- 
nite number of configurations. However, we will show 
later that nongeneric situations as0 exist when the 
edges are not parallel. First, we need to make clear 
precisely what we mean by "nongeneric." 

Our use of the term "nongeneric" is similar to 
Brost's [l]: the system of contact constraint equations 
doea not satis@ "general poeition." h l y  speaking, 
a lose of general position implies that  either a system 
of n equation in m unknowns m > n) has more than 

tions occur with multiplicities, or that the equations 
are inconsistent. In the context of this work, a sys- 
tem of three contact constraint equations for a fixed 
r usually constrains the workpiece to a finite number 
of configurations. However, if general position is lost, 
then the contact constraints could allow an infinite 
number of workpiece configurations. 

By contrast. a genenc situation is the txpical sit- 
uation in which each constraint equation reduces the 

the expected m - n degrees o I freedom or that solu- 
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number of degrees of freedom of the system in ques- 
tion by one and no solution hss multiplicity greater 
than one. A characteristic of genericity is that for 
every (suitably small) perturbation of the coefficients 
of the system of polynomials, the number of distinct 
solutions wil l  not change. 

In the 3A case, we will find that the generic mtu- 
ations are thoee in which there ate two distinct real 
geometrically admieaible workpiece configurations or 
two dietinct complex solutions leading to no geomet- 
rically admissible work iece configurations. The non- 
generic situations are tEaw for which there is an infi- 
nite number of solutions or just one eolution (of mul- 
tiplicity two), or inconsistent equations leading to no 
solutions. In these nongeneric cases there will be in- 
finitesimal perturbations of r that change the number 
of solutions. The one exception to this definition oc- 
curs in the case when elimination fails and there are 
no solutions. Strictly speaking such a case is eneric, 
i.e., small perturbations of r will not yield sofutions. 
However, the geometry itself is nongeneric and for that 
reason we do not consider this case as generic. 

A art from the nongeneric caae with all contacts on 
p a r d e l  edges, the contacts can always be relabeled 80 
thai  sin(d2 - dl is not zero and equations 10) and 

equation of the system (9) gives a polynomial in c and 
s of the form: 

(11) are valid. & ubstituting t and y into t 1, e third 

C(r)c + H(r)s + I(r)  = 0 (12) 
s ’ + c ’ - l  = 0 (13) 

where G, H ,  and I are given in [4]. 
To determine the geometrically admissible work- 

piece configurations q, given a specific 3A CF and the 
manipulator configuration r, we determine the inter- 
section of the line (12) and the unit circle (13). When 
G # 0, we solve equation (12) for c and substitute into 
equation (13) to get a quadratic equation for s: 

(H’ + G’)s’ + 2HZs + (1’ - G’) = 0 when G # 0. 

When H # 0, we solve for s in equation (12) to find: 

(E’ + G’)’ + 2GIc+ (I’ - H’) = 0 when H # 0. 

The discriminants of these equations are -4G2( -Cz - 
H1+Z1) when G # 0 and -4H’(-G2-Ha+Z’) when 
H # 0. For geometrically admissible workpiece config- 
urations to exist (:.e., for the system of equations, (12) 
and 13) to have real solutions) when G2 + H a  # 0, 

quire, that the following inequality be satisfied: 

(14) 

(15) 

the d iscriminant must be nonnegative. Thus we re- 

When G = 0 and H = 0, we get real solutions only if 
Z = 0. In that case, there will be an infinite number 
of solutions, because any pair (c,s satisfying equa- 
tion (13) also satifiea equation (121 which is identi- 
cally zero, and z and y can be found by back substi- 
tution into equations (10) and (11). When G = 0 and 

H = 0, but I # 0, the equation will be inconsistent 
and there will be no solutions. Note that even though 
inequality (16 is satisfied when elimination fails (be- 

sufficient condition for solutions to exist when elimi- 
nation fails (see Proposition 2 below). 

cause G = I) = Z = 0), it is not a necessary and 

Proposition 2: If elimination fails, then G = H = 
I = 0 and for a fized r, if then is any workpacce con- 
figuretion which attains the $A CF, ihen then will be 
an infinite number. 

Proof: This result was proved by Brost in [l]. . . . 0 

The functions G r), H(r), and Z(r) turn out to be 
closely related to t 6 e “wrench matrix’’ which arises 
in the analysis of multi-fingered grasps. This matrix 
is particularly useful in determinin the stability and 
mobility of the grasped workpieceq5]. If the system 
under consideration is planar with n, contacts, then 
the wrench matrix W, can be partitioned into normal 
and tangential components W, and Wt, which have 
size (3 x nc). 

The wrench matrices have the following form: 

where nl is the inward pointing unit normal vector 
to edge l , - t l  is the tangential unit vector defined so 
that ni x tr points out of the page, pr is the position 
of the contact point, and pI A n r  is given by p1=nr, - 
pI,,nr=. Here PI, and P I ,  are the components of PI. 
The components of nl are defined analogously. 

Given the geometric definitions of the coefficients 
shown in Figure 2, the wrench matrices can be rewrit- 
ten as explicit functions of the system configuration 

In [4] it is shown that G and H are related to the 
determinants of W, and Wt,vcrt, by the following 
simple formulas: 

Det(OW,) = C H - S G  

where the superscript indicates that the matrices 
are expressed with respect to frame U. Note that this 
definition of oW;,verfr.uses for the pi, the positions of 
the vertices of the manipulator polygons designated to 
contact the workpiece even though contact may be im- 
possible for the manipulator configuration under con- 
siderat ion. 

Therefore, the important quantity, G2 + H’, that 
arose in the discriminant of equations (14) and (15), 
is equal to the sum of the squares of the determinants 
of the normal and tangential wrench matrices. 

[41. 

D&‘Wt,”crt,) = - ( s H + ~ ) .  
(19) 
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Similarly, I = Dcf(WWtrdlr,) ,  where the s u b  
k p t  "edge8" i.dicatea that the contach are assumed 
to be on the daignated edges of the workpiece. 

The v d u a  dC,  H, and I give ua information about 
the existe~ce a d  the number of geometrically ad& 
sible workpiecc mnfigurationa for a 'ven 3A CF and 
manipulator d g u r a t i o n  r. Clea$y, the existence 
of geometrically admissible workpiece configurations 
(and the number of configurational if any exist) is 
mdependent d t h e  specific choices of the coordinate 
frames. This motivata the following result. 

Proof: the proof is given in [4]. .................. 0 

The tangential wrench matrices, W t c d  e, and 
Wt,o.+t,, each represent three linea pardlef to the 
edges of the workpiece specified by the 3A CF. The 
lines e0 r~pond ing  to w t e d g e .  are th- support- 
ing the actud edges of the workpiece, while the 
limes correa onding to W : , a e r t ,  contain the designated 
vertices, wLch do not n d l y  lie on the edges 
speciiied by tk 3A CF. Again the condition that 
Dct(oW:,ucrg.) = 0 or Def(oWt,edpe,)  = 0 is that 
the three lines involved intersect at a point (possibly 
infinity). 

Figure 3 shows a workpiece in several geometrically 
admissible condyations for a single configuration of 
the manipulator. Note that every poeeible orientation 
of the workpiecc corresponds to a point on the unit 
circle, equatim 512), 80 that for every orientation, 
there ie a wortpiece position, (z,~), which achieves 
the specified CF. This poeition can be found by back 
substituting inb equations (10) and (11). 

Generic sitmatione are thoee for which G2 + H2 is 
poeitive and not equal to p .  In theee C(LBCB, regard- 
leee of the articular values of C, H, and I, there 
will always two distinct eolutiona to the system of 
equations, (12) and (13). If the solutions are real, then 
there wil l  be tm pometrically admissible configura- 
tions of the workpiece; if they are complex there wil l  
be none. 

Nongeneric situations are those which satisfy G = 0 
and H = 0, or which satisfy inequality (16) by strict 
equality. Thus we can view the equation C' + H2 - 
P = 0 aa a hypersurface in the manipulator configura- 
tion apace w k  non enericity occurs. Two instances 
of nongenericty ahoAd be noted. The first occurs 
when two manipulator vertices are to contact a com- 
mon edge of the workpiece and those vertices coincide. 
In this situation, since the two edges corresponding to 
the coinciding vertices are identical, all three edges in- 
tersect the other edge at a point (possibly at infinity) 
regardless of t t e  orientation of the third edge. Essen- 
tially, one of the coincident vertices may be discarded 

A 

Figure 3: A Nongeneric Situation for which Elimink 
tion Succeeds 

as redundant, and the 3A CF degenerates to a 2A 
CF. The second occurs when three manipulator ver- 
tices are to contact three mutually nonparallel edges 
which intersect a t  a point and the verticee coincide at  
that point of intersection. In thia case, the workpiece 
may rotate freely about the intersection point while 
maintaining the 3A CF. However, m in the last case, 
one of the vertices may be discarded without chan ing 
the set of geometrically admissible workpiece confgu- 
rations. 

Proposition 4: If elimination succeeds, fhcn for a 
f i c d  r, wc will baoc an infinifc number of sol& 
tiow on fbc 9A CF-cell if  and only if Def(W,) = 
DeZ(W: veri,) = Def(Wt,ege,)  = 0, or cquioalcnily, 
G = H & I = O .  

Proof: the proof is given in [4]. .................. 0 

Theorem 1: For a generic positioning, r, of the ma- 
nipulaior, we have eiiher zero or iwo geomefn'cally ad- 
missi ble workp iece co nfigum i ions. 

We now turn to the CF-cell as a whole. 

Theorem 2: The .9A CF-cell is a nine-dimensional 
manifold. 
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Proof: the proof is given in [4]. .................. 0 

Theorem 3: For ihe $A CF, a configuration of ihe 
workpiece associated to  a point r in manipulafor con- 
jigumiion space, will be a branch point of muliipliciig 
two if and only if G' + H' # 0 and W, is singular. 
In  that cam the configuration toill be ihe only geomei- 
ricallg admissible configrmtion. (This is equiualeni i o  
G'+ H a  # 0 and G2+ H2- I'= 0.) 

Proof: the proof is given in [4]. ................. . U  

Situations that satisfy Theorem 3 are those for 
which the contact normals intersect at  a point, but 
the edges designated for contact do not. 

Corollary 1 The branch locw ofa $A CF-cell under 
projection io  the space of manipulaior configurations 
is precisely the locus where G' + H' # 0 and W, 
is singular. By conirasi, when W, is nonsingular ai 
p E C3, we are forced io  have G2 + HZ # 0, and the 
projection will be a local diffeomorphism. 

Proof: the proof is given in [4]. ................. .n 

4 Conclusion 
In summary, the 3A CF-cell, CF, is a smooth "sur- 

face" sitting over the space of manipulator configura- 
tions. For most values of r, there are zero or two points 
on the CF-cell (These correspond to the geometrically 
admissible workpiece configurations.). However, there 
are a "few" manipulator configurations for which there 
is 1 or an infinite number of points. Nonetheless, the 
CF-cell is smooth everywhere. In the regions of ma- 
nipulator confi ation space where there is a finite 
number of wor &" piece confi ations, the CF-cell can 
be viewed as two sheets WE occasionally come b 
gether smoothly (without discontinuity between their 
normals). 
Analogous results apply to the other 7 C F  types. 
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