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Abstract

The efficient planning of contact tasks for intelligent
robotic systems requires a thorough understanding of
the kinematic constraints im on the system by
rolling and sliding contacts. this paper, we derive
closed-form analytic solutions for the position and ori-
entation of a passive polygon moving in contact with
two or three active polygons whose positions and ori-
entations are independently controlled. This is done
by applying elimination techniques to solve the sys-
tems of appropriate contact constraint equations. We
prove that the systems of contact constraint equations
are smooth submanifolds of configuration space.

1 Introduction

Consider a planar system of rigid polygonal bodies
in contact (see Figure 1) and assume that the posi-
tions and orientations of all but one of the polygons
are actively controlled. The polygon that is not ac-
tively controlled, but rather is “grasped,” is referred
to as the workpiece or the passive polygon, and those
that are actively controlled through joint actuation
are collectively referred to as the manipulator or the
active polyiom. The workpiece and the manipulator
taken together are referred to as the manipulation sys-
tem, or just the system. The process of reorienting the
workpiece by controlling the manipulator is known as
dexterous manipulation.

When the level of uncertainty is a significant factor
in the planning and execution of a dexterous manip-
ulation task, we refer to it as a fine motion or fine
manipulation task. In contrast to the classical piano
movers’ problem [9] in which contact is avoided, ev-
ery possible solution to any dexterous manipulation
planning problem must include periods of contact.

Automatic fine manipulation planning is one of
the most important unsolved problems in the field of
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Figure 1: A System of Bodies in Contact.

robotics. Tasks in this class include mechanical as-
sembly/disassembly and grasping operations. The de-
velopment of a practical, reliable planner for this class
of tasks would facilitate the automation of large por-
tions of various manufacturing and service industries
and would expand our ability to work in Space and
other hazardous environments.

The major problem preventing the development of
practical fine manipulation planners is that the best
general-purpose planning algorithms have worst-case
running times that are exponential in the dimension
of the system’s configuration space (C-space)[2]. An
additional source of culty peculiar to fine manip-
ulation planning is that a multibody contact model
allowing for multiple sliding and rolling contacts must
be used to predict the motion of the system.

Despite the difficulties, there are good reasons to
believe that practical fine manipulation planning al-
gorithms can be developed: first, to find a plan, the
entire C-space need not be decomposed (for example,
see[10]; second, quasistatic rigid body models of me-
chanics often capture enough of the relevant physical
phenomena to derive reliable manipulation plans (for
example, see [8, 10]) ; third, compliant control can fa-
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cilitate the maintenance of large numbers of contacts,
thereby helping to reduce the dimension of C-space;
and fourth, cell decomposition techniques lend them-
selves to parallel and distributed computation.

A final practical issue is that a fine manipulation
planner requires the representation of portions of C-
space. Since C-space will typically have a farily high
dimensionality, a representation that places minimal
demands on computer memory resources is needed.

Our contribution to fine manipulation planning re-
lates most directly to this final 1ssue. In this paper,
we present the geometric characterization and analytic
representation of eight commonly occuring types of
lower-dimensional subsets of C-space (called “contact
formation cells” {11]. Using simple techniques from
algebraic geometry, we derive analytic representations
of the CF-cells which yield the following benefits: they
provide an efficient means to represent large relevant
portions of C-space (entire cells) by just the coefli-
cients of the solutions; they obviate the need for the
iterative solution of the nonlinear systems of contact
constraints to determine the position and orientation
of the workpiece given the configuration of manipula-
tor; and they reveal configurations in which the mo-
tion of the system (under a quasistatic model of me-
chanics) can get stuck or become uncontrollable.

A contact formation cell (CF-cells) corresponds to
a distinct combination of the contact constraint equa-
tions associated with sliding and/or rolling, type A
and/or type B contacts (L (see definitions below).
Each sliding contact yields one constraint equation,
while each rolling contact yields two. Under pure po-
sition control, the number of contact constraints is
generally three, because all of the degrees of freedom
of the system except for the three associated with the
workpiece are directly controlled.

Even though we do not study three-dimensional
systems, our analysis will be immediately useful in
planning the manipulation of solid objects with con-
stant cross-sectional geometry.

2 Problem Statement

. We define type A and B elemental contacts as fol-
ows:
Type A Contact: an edge of the workpiece is in con-
tact with a vertex of the manipulator.

e B Contact: a vertex of the workpiece is in
contact with an edge of the manipulator.

Figure 1 shows a workpiece and a manipulator with
three elemental contacts: edge 1 of the workpiece con-
tacts vertex 1 of the first manipulator polygon (a
type A contact), vertex 2 of the workpiece contacts
edge 2 of the second manipulator polygon (a type B
contact), and edge 3 of the workpiece contacts vertex
3 of the third manipulator polygon (a type A contact).

A set of elemental contacts constitutes a contact
formation, CF, [3]. Based on the numbers of type A
and B contacts, we classify CF’s into various types.
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For example, the CF shown in Figure 1 is of -

A CF of this type can be maintained only 3 «_
contacts slide as the manipulator polygons move. The
same is true for every CF of type 2BA, 3A, or 3B;
all of which involve three elemental contacts. We will
be studying the type 3A in this paper. The other CF
types of interest will be denoted by: ARA, ArB, BrA,
and BrB. Every CF of each of these types has only two
elemental contacts, one of which rolls as indicated by
the subscript “R.” Note that these CF types have, in
addition to the constraints specifying the two elemen-
tal contacts, a third constraint specifying the location
of the rolling contact point.

In what follows, we will assume that as many as
three rigid manipulator polygons are in contact with a
rigid workpiece polygon; that the positions and orien-
tations of the manipulator polygons can be controlled
directly and independently; and that the position and
orientation of the workpiece is controlled purely as
é I.lgyproduct of maintaining (if possibie) the specified

3 The 3A CF-Cell

Referring again to Figure 1, let z;, y1, and 6, denote
the position and orientation of a frame P, attached to
the I** manipulator polygon, measured with respect to
the world frame, @. Similarly, let z, y, and 6, without
any subscripts, denote the position and orientation of
a workpiece-fixed frame W with respect to 0. Next
define the workpiece configuration vector q, the ma-
nipulator configuration vector r, and the system con-
figuration vector p as follows:

q = lz,y,cw"] (1)
r = [‘:lxz?:z3yylvy21y3iols02;03] (2)
P = [Z.y»c;8,21,1‘2,23,91»92,1/3»01,92,03] (3)

where ¢ and s “represent” cos(f) and sin(f), respec-
tively. The variables ¢ and s are to be thought of as
independent variables and are used to represent the
orientation of the workpiece in place of 8, so that the
contact constraints may be written as algebraic, rather
than trigonometric, equations. This, however, will re-
quire the introduction of an additional algebraic con-
straint, namely, ¢ + 52 - 1 = 0.

In this spirit, we define the system’s modified C-
space, Z, to be the set of all possible vectors p, and
denote the three contact constraints by Cj(p) = 0 for
1 =1,2,3. We then define the resulting CF-cell, CF,
as follows:

CF={pecZl®+s -1=0and Ci(p)=0 (4)

Consider Figure 2. Let ¢; denote the angle between
the outward normal to edge [ and the positive z-axis
of W. The signed distance between vertex I and the
line supporting edge /, the so called C-function [6], is
given by:

Ci(p) = vi - (ar = by) ()



Figure 2: Definitions for A-type Contacts.

where the vectors a, by, and v; are given in [4]. Here
ay is the position of vertex !, b; is the position of the
selected point on edge [, and v; is the outward unit
normal of edge I; all of these quantities are expressed
with respect to the frame O.

Notice that we have labeled the edges of the work-
piece and the polygons so that contact I is between
polygon [ of the manipulator and the line supporting
edge | of the workpiece. Note also that we handle the
cases in which an edge of the workpiece is to be con-
tacted by more than one vertex of the manipulator by
labeling the edge more than once.

The C-function corresponding to the Iy, tyge A con-
tact can be written as a function of the configuration
of the workpiece to yield the following system of con-
tact constraint equations:

Ci(p)=a1+ bc+dis— eqzc +
fizs — fiye — eiys
A+ -1

0
0

(6)
M

where [ = 1,2, 3. The coefficients a;, 4;, d;, ¢;, and f;,
illustrated in Figure 2, are functions of the geometr
of the bodies in the system (including the workpieceg
a.m[i ihe configuration of the manipulator and are given
in [4].

Each C-function, Ci(p), as well as the unit circle
equation (equatiogl{l)), defines a quadric hypersur-
face in C-space. e intersection of these four hy-
per surfaces defines the set of geometrically admissible
3A configurations of the workpiece as a function of
the manipulator configuration vector, ‘}i. e., the inter-

section defines the CF-cell, CF, in Z). The reader
should be cautioned that “geometrically admissible”
means that contact is maintained along the line sup-
porting the edge, not the actual physical edge of the
workpiece.

To obtain an analytic solution which describes the
3A CF-cell, notice that each equation in (6) is linear
in z and y so that the system of equations (6-7) can
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be rewritten as:

Di(r,c,8)+ Ei(x,c,8)z + Fi(r,c,8)y = 0; (8)
=123
E+82-1 = 0 (9

The first two of the three equations represented by
equation (9) can be solved for z and y yielding:

e (F1Dy — 3 Dy)

E\Fy — F1E, (10)
_ (E3D, — E\D,)
T E\F-FRE; (11)

where the denominator E\F; — F\E, simplifies to
elfz—egfl = siﬂ(¢.2 —¢1). Note tbat if 8in(¢2 —¢1) is
zero, a different pair of equations in (9) must be used.

Proposition 1: For the SA CF, elimination fails,

a fi
i.e., the rank of | ez {'7 ] is less than two, if and
3

€3
only if the lines supporting the edges designated for
contact are parallel (This includes the possibility that
two or three of the lines are coincident. ).

Proof: The proof is givenin [4]. ................. 0

When elimination fails, we will say that the particu-
lar manipulator configuration vector r, is nongeneric.
Brost identified this nongeneric situation with three
contacts on parallel edges and noted that either there
is zero or an infinite number of geometrically admis-
sible workpiece configurations [1]. When the number
is infinite, the workpiece can be translated along the
contacted edges while maintaining the specified CF.
Brost also stated that the situation with three con-
tacts on parallel edges was the only situation in which
the workpiece could attain the specified CF in an infi-
nite number of configurations. However, we will show
later that nongeneric situations also exist when the
edges are not parallel. First, we need to make clear
precisely what we mean by “nongeneric.”

Our use of the term “nongeneric” is similar to
Brost’s [1]: the system of contact constraint equations
does not satisfy “general position.” Loosely speaking,
a loss of general position implies that either a system
of n equation in m unknowns (m > n) has more than
the expected m — n degrees of freedom or that solu-
tions occur with multiplicities, or that the equations
are inconsistent. In the context of this work, a sys-
tem of three contact constraint equations for a fixed
r usually constrains the workpiece to a finite number
of configurations. However, if general position is lost,
then the contact constraints could allow an infinite
number of workpiece configurations.

By contrast, a generic situation is the typical sit-
uation in which each constraint equation reduces the



number of degrees of freedom of the system in ques-
tion by one and no solution has multiplicity greater
than one. A characteristic of genericity is that for
every (suitably small) perturbation of the coefficients
of the system of polynomials, the number of distinct
solutions will not change.

In the 3A case, we will find that the generic situ-
ations are those in which there are two distinct real
geometrically admissible workpiece configurations or
two distinct complex solutions leading to no geomet-
rically admissible workEiece configurations. The non-
generic situations are those for which there is an infi-
nite number of solutions or just one solution (of mul-
tiplicity two), or inconsistent equations leading to no
solutions. In these nongeneric cases there will be in-
finitesimal perturbations of r that change the number
of solutions. The one exception to this definition oc-
curs in the case when elimination fails and there are
no solutions. Strictly speaking such a case is generic,
i.e., small perturbations of r will not yield solutions.
However, the geometry itself is nongeneric and for that
reason we do not consider this case as generic.

A:ﬁart from the nongeneric case with all contacts on
parallel edges, the contacts can always be relabeled so
that sin(¢2 — ¢1) is not zero and equations (10) and
(11) are valid. Substituting z and y into the third
equation of the system (9) gives a polynomial in ¢ and
s of the form:

G(r)e+ H(r)s + I(r)
s+ -1

0
0

(12)
(13)
where G, H, and I are given in [4].

To determine the geometrically admissible work-
piece configurations q, given a specific 3A CF and the
manipulator configuration r, we determine the inter-
section of the line (12) and the unit circle (13). When
G # 0, we solve equation (12) for ¢ and substitute into
equation (13) to get a quadratic equation for s:

(H*+G*)s? +2HIs + (I’ -G?) =0 when G #0.
14)
When H # 0, we solve for s in equation (12) to ﬁgd:

(B*+G*)*+2GIc+(I* -~ H*)=0 when H f 0).

15
The discriminants of these equations are —~4G*(~G? -
H241%) when G # 0 and —4H?(~G? - H? 4+ I?) when
H # 0. For geometrically admissible workpiece config-
urations to exist (i.e., for the system of equations, (12)
and (13) to have real solutions) when G2 + H? £ 0,
the discriminant must be nonnegative. Thus we re-
quire.that the following inequality be satisfied:

G’+H’> I (16)

When G = 0 and H = 0, we get real solutions only if
I = 0. In that case, there will be an infinite number
of solutions, because any pair (c, s) satisfying equa-
tion (13) also satifies equation (12) which is identi-
cally zero, and z and y can be found by back substi-
tution into equations (10) and (11). When G = 0 and
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H = 0, but I # 0, the equation will be inconsistent
and there will be no solutions. Note that even though
inequality (16) is satisfied when elimination fails (be-
cause I = 0), it is not a necessary and
sufficient condition for solutions to exist when elimi-
nation fails (see Proposition 2 below).

Proposition 2: If elimination fails, then G = H =
I =0 and for a fized r, if there is any workpiece con-
figuration which attains the SA CF, then there will be
an infinite number.

Proof: This result was proved by Brost in [1]. ... D

The functions G(r), H(r), and I(r) turn out to be
closely related to the “wrench matrix” which arises
in the analysis of multi-fingered grasps. This matrix
is particularly useful in determining the stability and
mobility of the grasped workpiece ﬁS] If the system
under consideration is planar with n. contacts, then
the wrench matrix W, can be partitioned into normal
and tangential components W,, and W;, which have
size (3 x n.).

The wrench matrices have the following form:

= n; 0y o3
Wn = [ PiAn; p2An; p3An; ] (a7
t ta ts
W, = N ~ ~ 18
¢ [PlAtl pg/\tz pgAta} ( )

where 0; is the inward pointing unit normal vector
to edge I, t; is the tangential unit vector defined so
that fi; x & points out of the page, p; is the position
of the contact point, and p; A1y is given by p; n;, —
pi,ni,. Here p; and p;, are the components of p;.
The components of 1; are defined analogously.

Given the geometric definitions of the coeflicients
shown in Figure 2, the wrench matrices can be rewrit-
E,e]n as explicit functions of the system configuration
4).

In [4] it is shown that G and H are related to the
determinants of ©W,, and OW,,“,.,, by the following
simple formulas:

Det(°W,) = cH-sG

where the superscript © indicates that the matrices
are expressed with respect to frame Q. Note that this
definition ofoW,,,,",, uses for the p;, the positions of
the vertices of the manipulator polygons designated to
contact the workpiece even though contact may be im-
possible for the manipulator configuration under con-
sideration.

Therefore, the important quantity, G + H>, that
arose in the discriminant of equations (14) and (15),
is equal to the sum of the squares of the determinants
of the normal and tangential wrench matrices.

Det(®° Wi yerts) = —(sH+¢G).
(19)



Similarly, I = Det(™W, edges), Where the sub-
script “edges” indicates that the contacts are assumed
to be on the designated edges of the workpiece.

The values of G, H, and I give us information about
the existence and the number of geometrically admis-
sible workpiece configurations for a given 3A CF and
manipulator configuration r. Clearly, the existence
of geometrically admissible workpiece configurations
(and the number of configurations, if any exist) is
independent of the specific choices of the coordinate
frames. This motivates the following result.

Proposition 3: The guantities I? and G2 + H? and
Det(Wy), Det(Wy odges), and Det(We yeris) are in-
dependent of the choice of all coordinate frames.

Proof: the proof is givenin [4]. .................. a]

The tangential wrench matrices, W, .4, and
Wi verts, each represent three lines parallef to the
edges of the workpiece specified by the 3A CF. The
lines corresponding to Wi .4p., are those support-
ing the actual edges of the workpiece, while the
lines corresponding to W 4.r¢, contain the designated
vertices, which do not necessarily lie on the edges
specified by the 3A CF. Again the condition that
Det(® Wy yerss) = 0 or Det(OWy o45.,) = 0 is that
the three lines involved intersect at a point (possibly
infinity).

Figure 3 shows a workpiece in several geometrically
admissible configurations for a single configuration of
the manipulator. Note that every possible orientation
of the workpiece corresponds to a point on the unit
circle, equation (12), so that for every orientation,
there is a workpiece position, (z,y), which achieves
the specified CF. This position can be found by back
substituting into equations (10) and (11).

Generic situations are those for which G2 + H? is
positive and pot equal to 2. In these cases, regard-
less of the particular values of G, H, and I, there
will always be two distinct solutions to the system of
equations, (12) and (13). If the solutions are real, then
there will be two geometrically admissible configura-
;i:m of the workpiece; if they are complex there will

none.

Nongeneric situations are those which satisfy G = 0
and H = 0, or which satisfy inequality (16) by strict
equality. Thus we can view the equation G? + H? —
I? = 0 as a hypersurface in the manipulator configura-
tion space where nongenericity occurs. Two instances
of nongenericty should be noted. The first occurs
when two manipulator vertices are to contact a com-
mon edge of the workpiece and those vertices coincide.
In this situation, since the two edges corresponding to
the coinciding vertices are identical, all three edges in-
tersect the other edge at a point (possibly at infinity)
regardless of tte orientation of the third edge. Essen-
tially, one of tke coincident vertices may be discarded
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Figure 3: A Nongeneric Situation for which Elimina-
tion Succeeds

as redundant, and the 3A CF degenerates to a 2A
CF. The second occurs when three manipulator ver-
tices are to contact three mutually nonparallel edges
which intersect at a point and the vertices coincide at
that point of intersection. In this case, the workpiece
may rotate freely about the intersection point while
maintaining the 3JA CF. However, as in the last case,
one of the vertices may be discarded without changing
th:_ set of geometrically admissible workpiece configu-
rations.

Proposition 4: If elimination succeeds, then for a
fized v, we will have an infinite number of solu-
tions on the SA CF-cell if and only if Det(W,) =
IG)ct(W;,,m.)oz Det(W; cdges) = 0, or equivalently,

Proof: the proof is given in [4]. ........ e, a

Theorem 1: For a generic positioning, r, of the ma-
nipulator, we have either zero or two geometrically ad-
massible workpiece configurations.

We now turn to the CF-cell as a whole.

Theorem 2: The 3A CF-cell is a nine-dimensional
manifold.



Proof: the proof is givenin [4]. .................. 0

Theorem 3: For the SA CF, a configuration of the
workpiece associated o a point r in manipulator con-
figuration space, will be a branch point of multiplicity
two if and only if G> + H? # 0 and W,, is singular.
In that case the configuration will be the only geomet-
rically admissible configuration. (This is equivalent to
G?+H?>#0and G*+H*-1’=0.)

Proof: the proof is givenin [4]. .................. o

Situations that satisfy Theorem 3 are those for
which the contact normals intersect at a point, but
the edges designated for contact do not.

Corollary 1 The branch locus of a SA CF-cell under
projection to the space of manipulator configurations
is precisely the locus where G* + H? # 0 and W,
is singular. By contrast, when W, is nonsingular at
p € CF, we are forced to have G? + H? # 0, and the
projection will be a local diffeomorphism.

Proof: the proof is given in [4]. .................. a}

4 Conclusion

In summary, the 3A CF-cell, CF, is a smooth “sur-
face” sitting over the space of manipulator configura-
tions. For most values of r, there are zero or two points
on the CF-cell (These correspond to the geometrically
admissible workpiece configurations.). However, there
are a “few” manipulator configurations for which there
is 1 or an infinite number of points. Nonetheless, the
CF-cell is smooth everywhere. In the regions of ma-
nipulator configuration space where there is a finite
number of workpiece configurations, the CF-cell can
be viewed as two sheets which occasionally come to-
gether smoothly (without discontinuity between their
normals).

Analogous results apply to the other 7 CF types.
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