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Abstract

The efficient planning of contact tasks for intelligent robotic systems requires a
thorough understanding of the kinematic constraints imposed on the system by the
contacts. In this paper, we derive closed-form analytic solutions for the position and
orientation of a passive polygon moving in sliding and rolling contact with two or three
active polygons whose positions and orientations are independently controlled. This
is accomplished by applying a simple elimination procedure to solve the appropriate
system of contact constraint equations. The benefits of having analytic solutions are
numerous. For example, they eliminate the need for iterative nonlinear equation solv-
ing algorithms to determine the position and orientation of the passive polygon given
the positions and orientations of the active ones. Also, because they contain the config-
uration variables of the active polygons and the relevant geometric parameters, models
of geometric and control uncertainty can be readily incorporated into the solutions.
This will facilitate the analysis of the effects of these uncertainties on the kinematic
constraints.

We also prove that the set of solutions to the contact constraint equations is a
smooth submanifold of the system’s configuration space and we study its projection

*This research was supported in part by the National Science Foundation, grant no. TRI-9304734, the
Texas Advanced Research Program, grant no. 999903-078, the Texas Advanced Technology Program, grant
no. 999903-095, and NASA Johnson Space Center through the Universities’ Space Automation and Robotics
Consortium, contract no. 28920-32525. Any findings, conclusions, or recommendations expressed herein are
those of the authors and do not necessarily reflect the views of the granting agencies.



onto the configuration space of the active polygons (1.e., the lower-dimensional con-
figuration space of controllable parameters). By relating these results to the wrench
matrices commonly used in grasp analysis, we discover a previously unknown and highly
nonintuitive class of nongeneric contact situations. In these situations, for a specific
fixed configuration of the active polygons, the passive polygon can maintain three con-
tacts on three mutually nonparallel edges while retaining one degree of freedom of
motion.

1 Introduction

Consider a planar system of rigid polygonal bodies in contact (see Figure 1) and assume that
the positions and orientations of all but one of the polygons are actively controlled. The
polygon that is not actively controlled, but rather is “grasped,” is referred to as the workpiece
or the passive polygon, and those that are actively controlled through joint actuation are
collectively referred to as the manipulator or the active polygons. The workpiece and the
manipulator taken together are referred to as the manipulation system, or just the system.
The process of reorienting the workpiece by controlling the manipulator is known as dexterous
manipulation. In contrast to the classical piano movers’ problem [23] in which contact is
avoided, every solution to a dexterous manipulation planning problem must include contact.

Figure 1: A workpiece and a three-polygon manipulator in contact.

When the level of uncertainty is a significant factor in the planning and execution of a
dexterous manipulation task, then we refer to it as a fine motion or fine manipulation task.
Automatic fine manipulation planning is one of the most important unsolved problems in the
field of robotics. Tasks in this class include mechanical assembly/disassembly and grasping



operations. The development of a practical, reliable planner for this class of tasks would
facilitate the automation of large portions of various manufacturing and service industries
and would expand our ability to work in Space and other hazardous environments.

The worst case running times of general motion planning algorithms increase expo-
nentially with the dimension of the system’s configuration space (C-space). Nonetheless,
nonpathological planning problems have been solved in several minutes indicating that the
exponential worst-case complexity should not deter the future development of planning al-
gorithms [7]. Since fine manipulation requires contacts, algorithms for fine motion planning
can be more efficient, because the kinematic constraint equation associated with each contact
effectively reduces the dimension of C-space by one. However, fine manipulation planning
algorithms can only fully benefit from this reduction if the relevant systems of kinematic
constraints are thoroughly understood.

Besides the effective reduction in the dimension of C-space due to the contacts, there are
two other good reasons to believe that practical fine manipulation planning algorithms can
be developed: first, to find a plan, the entire C-space need not be decomposed (for example,
see [27, 10, 7]); and second, cell decomposition techniques lend themselves to parallel and
distributed computation.

In this paper, we present the geometric characterization and analytic representation
of eight fundamental types of kinematic constraint “surfaces” in C-space (called “contact
formation cells” [30] [29]). These constraint “surfaces” are the most important ones that arise
during the planar manipulation of a passive polygonal workpiece by a manipulator composed
of up to three active polygons whose positions and orientations are independently controlled.
Using simple techniques from algebraic geometry, we derive analytic representations of these
CF-cells which yield a number of benefits. For example, they provide us with an in-depth
understanding of the geometry of the cells and their projections onto the space of controllable
variables. Also, they obviate the need for an iterative solution procedure to determine the
position and orientation of the workpiece given the configuration of manipulator. Finally,
they reveal configurations (analogous to the singular configurations of typical serial-link
manipulators) in which controlling the motion of the system requires more careful planning.
Kinematic constraints among the polygons due to linkage connections are not considered
(see “Future Work” below). If present, those constraints would further restrict the subset of
C-space, potentially making planning even more efficient.

Each of the eight types of contact formation cells (CF-cells) that we will be studying,
corresponds to a distinct combination of the contact constraint equations associated with
sliding and/or rolling, type A and/or type B contacts [17] (see definitions below). Each slid-
ing contact yields one constraint equation, while each rolling contact yields two. Under our
assumption of pure position control of the manipulator, the number of contact constraints
is generally three, because all degrees of freedom of the system except for the three asso-
ciated with the workpiece are directly controlled. Contact combinations with four or more
contact constraints could be maintained through compliant control, but those combinations
are beyond the scope of this paper.



Even though we do not study three-dimensional systems, our analysis will be useful in
planning the manipulation of solid objects with constant cross-sectional geometry, also it
will be possible to apply our results to manipulating an extended solid which does not have
constant cross-sectional geometry. For example, imagine a long slender object with a slightly
varying polygonal cross-section and suppose that due to its length, one would prefer to pick
it up at two locations distributed along its length (with two nominally identical dexterous
manipulators). Next, suppose that a manipulation plan is generated for the nominal cross-
section. Applying techniques from deformation theory and differential topology, it will be
possible to identify an envelope of geometric uncertainty and control error within which the
system must remain for successful task execution. If both dexterous manipulators execute
the plan “simultaneously” and remain in the envelope, then the task will succeed.

1.1 Previous Work

Much previous research has been motivated by the desire to automatically generate robot
programs that can reliably accomplish tasks specified at a high level. As a result many
task-level robot programming languages have been developed, (e.g., RAPT [20], LAMA
[16], AUTOPASS [15], AML [25], and LM [13]). Our work is especially relevant to RAPT
and a geometric constraint propagation system developed by Taylor (that influenced the
development of AML) [24]. Both RAPT and Taylor’s system dealt with geometric constraint
relationships between the bodies in an assembly. Given the geometric models of the set of
bodies and a set of spatial constraint relationships among them (e.g., “Face A of Body 1
against Face B of Body 2,” these systems were able to produce parameterized equations
describing all the configurations of the bodies satisfying the constraint relationships. These
relationships were simplified through the application of certain rules. For example, RAPT
was able to solve systems of equations linear in a subset of the configuration variables to
eliminate those variables.

There is, however, an important difference between Taylor’s system and RAPT. RAPT
focused on simplifying the system of geometric constraint equations. In Taylor’s system,
such simplification was just the first step. The goal was to produce systems of constraint in-
equalities representing geometric uncertainties, sensing errors, disturbance forces, and other
variations [24]. This was accomplished by including error parameters in the constraint in-
equalities, expanding them, and retaining only the terms which were constant or linear in
the error parameters. The result was a high-dimensional polytope in the space of error pa-
rameters which could be used to identify the most important uncertain parameters for the
given task.

Because the “bags” of solution “tricks” used by RAPT and Taylor’s system were not com-
plete, they were not able to fully simplify all systems of equations. An alternative system was
developed by Corner, Ambler, and Popplestone [4]. This system was able to recognize stan-
dard combinations of relationships among the bodies and apply the corresponding standard
solutions. The result was a more efficient system. The closed-form solutions given in this pa-



per for eight common feature relationships (which we call contact formations) represent new
solution “tricks” that could be added to any symbolic constraint solving system to improve
efficiency further. Note also, that because these solutions are closed-form, their incorporation
into Taylor’s system would not prevent the generation of the uncertainty polytope.

Another concern in fine manipulation planning is the smoothness of the C-surfaces cor-
responding to the contacts. In many problems, such as parts mating, a manipulation plan
will begin with the part in freespace, move it along some path until a contact occurs, then
move it along the corresponding C-surface until another contact occurs, and so on, until
the part achieves a goal configuration. In order to plan paths of this sort, the C-surfaces
and their intersections must be smooth. Otherwise the tangent space will be ill-defined
making it difficult to employ any numerical technique which uses a move along a tangent
as a first approximation to a move along the “surface.” In her dissertation, Koutsou noted
that C-surfaces corresponding to single type A, type B, and type C contacts are manifolds
(and thus have a well-defined tangent space at each point), but that one cannot assume
that the same is true for intersections of these manifolds [11]. In this paper, we show that
the eight CF-cells studied are smooth manifolds. However, we note that the same cannot
be said when one or more of the contacting surfaces are curved. We also note that RAPT,
Koutsou’s extension of RAPT, and Taylor’s system dealt with spatial relationships and that
our results are applicable only to planar motions, smoothness results for polyhedral bodies
moving in three-space can be found in [14].

The results presented in this paper can also be viewed as an extension of Brost’s work
[2]. In his terminology, Brost developed techniques for computing and representing the
configuration obstacle (C-obstacle) of two polygons in the plane. The C-obstacle is the
three-dimensional subset of C-space (also three-dimensional) whose boundary is composed
of curved surface patches, curved edges, and vertices corresponding to one, two, and three
elemental contacts. ' The C-obstacle is a complete description of all possible relative con-
figurations of the two polygons. Points on the surface of the C-obstacle correspond to
configurations in which the polygons are in contact (at one or more points). Integrating
the equations of motion of the system on the surface allowed Brost to plan the controlled
motion of one polygon, the “pusher,” to achieve a desired final relative configuration of the
two polygons.

The ultimate goal of our work (automatic fine manipulation planning) is the same as
Brost’s except for one crucial complicating factor — our “pusher” is to be a manipulator of
any desired kinematic structure. Thus, in the context of Brost’s work, we are interested in
the extended problem in which the geometry of the “pusher” is a function of a number of
control parameters, in particular, the positions and orientations of the polygons composing
the manipulator (i.e., the active polygons) in contact with the workpiece (i.e., the passive
or “pushed” polygon). In this paper, we limit our discussion to manipulator composed of
three independent polygons, so the manipulator has nine control parameters.

!The term “elemental contact” [5] refers to either a type A or a type B contact.



Brost represented the patches and edges of the C-obstacle in parametric form and found
the vertices by numerical solution. In the dexterous manipulation planning problem that
we have been pursuing [27, 28, 30, 29], the vertices are extremely important, because during
manipulation, the workpiece configuration commonly resides at a vertex or (when rolling is
involved) at a fixed point on an edge of the deforming C-obstacle. Actual manipulation of
the workpiece corresponds to the deliberate deformation of the C-obstacle (caused by varying
the configuration of the manipulator) to cause desired motions of the vertex or edge point.
Controlling two vertex or edge points of the C-obstacle so as to come together and then
separate corresponds to a discrete change in the contact topology of the actual system. Such
changes typically take place during dexterous manipulation to effect significant reorientations
of the workpiece.

In this paper, we derive closed-form, analytic solutions for nine-dimensional “surfaces” of
the C-space of the system. These submanifolds correspond to the vertices and the individual
edge points of deformable C-obstacles in Brost’s three-dimensional configuration space. Our
solutions are written as functions of the nine configuration variables of the manipulator,
thereby facilitating future studies of the possible motions of the workpiece over finite, as
opposed to infinitesimal, manipulation trajectories. We also show that the set of all possible
workpiece configurations, the CF-cell, forms a submanifold of the system’s C-space (the space
of all possible configurations of the manipulator and the workpiece) and that the CF-cell
forms a generically finite branched covering® (with up to four sheets) of the nine-dimensional
C-space of the manipulator. By relating the results obtained through our algebro-geometric
analysis to the existing research results on grasp analysis, we also discover a new nonintuitive,
nongeneric contact situation that otherwise might not have been revealed.

1.2 Layout of Paper

This paper is organized as follows. In Section 2, we define the class of systems that will be
considered and state our assumptions. In Section 3, we derive the sets of contact constraints
for the four relevant combinations of three sliding contacts and give a noniterative solution
procedure for obtaining the workpiece’s possible configurations given the configuration of
the manipulator. This is done in detail mainly for the case of three type A contacts (in
Section 3.1), because the other three combinations of contact constraints can be analyzed in
the same way. We also derive expressions for the relevant wrench matrices (commonly used
in the analysis of grasps) as functions of the manipulator configuration and relate them to
the multiplicity of the solution obtained. In Section 4, we discuss the four combinations of

2A branched covering of a space can be thought of as several sheets “above” the space. For example,
the graph of the curve y> = z in the plane forms a finite branched cover of the z-axis (under orthogonal
projection onto the z-axis), because every point on the z-axis is “covered” by two, one, or zero points on the
curve y? = z. Locally the sheets are diffeomorphic to the z-axis except at the branch point (0,0) where the
sheets come together smoothly, but with infinite slope. Note that in higher dimensions, removing a branch
point does not necessarily disconnect the sheets (e.g., 2 — z? mapping the complex plane to itself, which
branches as z = 0.).



contact constraints relevant to situations with one rolling and one sliding contact and show
that they are special cases of the four contact combinations with three sliding contacts.
Finally, in Section 5, we conclude and recommend avenues for further research.

2 System Model and Problem Statement

In studies of polygonal mobile robots operating in a plane among polygonal obstacles, two
types of elemental contacts have been defined: type A, which is a contact between an edge
of the robot and a vertex of an obstacle; and type B, which is a contact between a vertex of
the robot and an edge of an obstacle [12]. In the work presented here, we view the workpiece
as a mobile robot and the manipulator as a deformable obstacle. Thus we are led to define
type A and B elemental contacts as follows:

Type A Contact: an edge of the workpiece is in contact with a vertex of the manipulator.
Type B Contact: a vertex of the workpiece is in contact with an edge of the manipulator.

Figure 1 shows a workpiece and a three-polygon manipulator with three elemental con-
tacts: edge 1 of the workpiece contacts vertex 1 of the first manipulator polygon (a type A
contact), vertex 2 of the workpiece contacts edge 2 of the second manipulator polygon (a
type B contact), and edge 3 of the workpiece contacts vertex 3 of the third manipulator
polygon (a type A contact).

A set of elemental contacts constitutes a contact formation, CF [5]. Based on the num-
bers of type A and B contacts, we classifty CF’s into various types. For example, the CF
shown in Figure 1 is of type 2AB. When the configurations of the manipulator polygons are
independently controlled, a CF of this type can be maintained only if all three contacts slide
as the manipulator moves. The same is true for every CF of type 2BA, 3A, or 3B; all of
which involve three elemental contacts. We will be studying all four of these types in this
paper. The other CF types of interest will be denoted by: AgA, AgB, BgrA, and BgB. Every
CF of each of these types has only two elemental contacts, one of which rolls as indicated by
the subscript “R.” Note that these CF types have, in addition to the constraints specifying
the two elemental contacts, a third constraint specifying the location of the rolling contact
point.

In what follows, we will assume that as many as three rigid manipulator polygons are in
contact with a rigid workpiece polygon; that the positions and orientations of the manipulator
polygons can be controlled directly and independently; and that the position and orientation
of the workpiece is controlled purely as a byproduct of maintaining (if possible) the specified
CF. For each of the eight types of CF’s identified above, we will, among other things, answer
the following questions:

1. Does the CF-cell (defined below) form a submanifold of the system’s C-space (the
configuration space of the manipulator and workpiece taken together)?



2. For a given configuration of the manipulator, how many configurations of the workpiece
achieve the specified CF and what are the conditions under which there is exactly one
such configuration, or perhaps an infinite number of such configurations?

3. How does the CF-cell project to the C-space of the manipulator? In particular, how
does the CF-cell branch over the C-space of the manipulator and when does it fail to
be a finite covering? These are the places where controlling the manipulator requires
special care.

3 CF-Cells with Three Contacts

In this section, we begin our study of CF’s with three elemental contacts. Such CF’s fall
into four basic types: 3A, 3B, 2AB, and 2BA. It turns out that the 3A and 3B cases and
the 2AB and 2BA cases are dual in a sense that will be clarified later. For that reason, we
will give complete derivations only for the 3A and 2AB cases and simply state our results
for the other two.

3.1 3A CF-Cells

Referring again to Figure 1, let x;, y;, and 6; denote the position and orientation of a frame
P, attached to the [ manipulator polygon, measured with respect to the world frame, O.
Similarly, let z, y, and 6, without any subscripts, denote the position and orientation of a
workpiece-fixed frame W with respect to . Next define the workpiece configuration vector
q, the manipulator configuration vector r, and the system configuration vector p as follows:

q = [x,'y,C, 3] (1)
r = [z1,29,%3,Y1, Y2, Y3, bh, 02, 03] (2)
P = [$,’y,C,S,fL’l,$2,$3,y1,y2,y3,01,92,93] (3)

where ¢ and s “represent” cos(6) and sin(f), respectively. The variables ¢ and s are to
be thought of as independent variables and are used to represent the orientation of the
workpiece in place of 6, so that the contact constraints may be written as algebraic, rather
than trigonometric equations. This, however, will require the introduction of an additional
algebraic constraint, namely, ¢* + s* — 1 = 0.

In this spirit, we define the system’s modified C-space, Z, to be the set of all possible
vectors p, and denote the three contact constraints by C)(p) = 0 for [ = 1,2,3. We then
define the resulting CF-cell, CF, as follows:

CF={p €Z|F+s*—1=0and C(p)=0 forevery [=1,2,3}. (4)

Z is topologically the product space R x T, where R'° is ten-dimensional Euclidean space
and T° is the three-torus (the product of three circles parametrized by the variables 6, 84, 65).
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Note that Z is a manifold [12]. The usual C-space X for our four-polygon system would be
the submanifold of Z cut out by the equation ¢? 4+ s* — 1 = 0. It would be 12-dimensional,
while Z is 13-dimensional.

Consider Figure 2. Let the pair (u;, v;) denote the position of vertex [, on polygon [ of

Figure 2: Illustration of parameters relevant to type A contacts.

the manipulator, which is intended to contact edge [ of the workpiece. Here u; and v; are
measured with respect to the frame P;. Let the pair (wy, z;) denote the coordinates of an
arbitrarily selected point on edge [ of the workpiece measured with respect to W. Also let ¢;
denote the angle between the outward normal to edge [ and the positive z-axis of W. The
signed distance between vertex [ and the line supporting edge [, the so called C-function
[12], is given by:

Ci(p) = vi- (g — ) (5)

where the vectors g;, h;, and v, are defined as follows:

g = (x4 cos(0)u; — sen(0)vr, yi + sin(6)u; + cos(6;)vr) (6)
h, = (x4 cos(0)w; — sin(8)z, y+ sin(0)w; + cos(0)z) (7)
vi = (cos(0+ ¢p), sin(0+ ¢1)). (8)

Here g; is the position of vertex [, h; is the position of the selected point on edge [, and v; is
the outward unit normal of edge [; all of these quantities are expressed with respect to the
frame O.

Notice that we have labeled the edges of the workpiece and the polygons so that contact [
is between polygon [ of the manipulator and the line supporting edge [ of the workpiece.



Note also that we handle cases in which an edge of the workpiece is to be contacted by more
than one vertex of the manipulator by labeling that edge more than once.

The C-function corresponding to each type A contact can be written as a function of the
configuration of the workpiece to yield the following system of contact constraint equations:

Ci(p) =ar+ bic+ dis — eixe + fies — fiye—eys = 05 [=1,2,3 (9)
A4+st—1 =0 (10)

where the coefficients a;, b;, d;, e, and f;, illustrated in Figure 2, are functions of the
geometry of the bodies in the system (including the workpiece) and the configuration of the
manipulator:

ap = —cos(¢)w — sin(¢r)z (11)
b = cos(¢r— O)up + sin(¢r — 01)vr + sin(dr)y + cos(dr)x (12)
di = —sin(¢r— 0)ur + cos(¢r — 0)vr + cos(¢)yr — sin(¢r)a (13)
e = cos(¢r) (14)
fi = sin(e). (15)

Note that the derivation of the equations in (9) uses equation (10) to eliminate terms in-
volving ¢? and s* in Cy(p).

Each C-function, Ci(p), as well as the unit circle equation (equation (10)), defines a
quadric hypersurface in C-space. The intersection of these four hypersurfaces defines the set
of geometrically admissible 3A configurations of the workpiece as a function of the manipu-
lator configuration vector, (i.e., the intersection defines the CF-cell, CF, in Z). The reader
should be cautioned that “geometrically admissible” means that contact is maintained along
the line supporting the edge, not necessarily the actual physical edge of the workpiece. In
addition, we allow the bodies to overlap. Extra constraints to prevent overlap would take
the form of inequalities that would restrict us to a portion of our CF-cell.

To obtain an analytic solution which describes the 3A CF-cell, notice that each equation
in (9) is linear in # and y so that the system of equations (9-10) can be rewritten as:

Di(r,c,s) + Ei(r,e,s)x + Fi(r,e,s)y = 0; [1=1,2,3 (16)
A4+s2—-1 = 0 (17)
where
Dl = aj + b[C + dls El = —¢c + fIS Fl = —flC — €/S. (18)
The first two of the three equations in (16) can be solved for « and y yielding:
Dy — F,D EyDy — Fy D
$:(12 21) 'y=(21 12) (19)
EFy,— FiE, EFy — FiEy

where the denominator Fy1Fy — F1F;y simplifies to e fy — eafi = sin(¢a — ¢1). Note that if
sin(¢pz — ¢1) is zero, a different pair of equations in (16) must be used. Thus solving for

10



) o ) Ly By S —cos(0) —sin(0) | .
and y will fail if and only if the rank of | £y Fy, | = | e2 fo sin(0) —cos(f) is
by Fy €3 f3

less than two. In this event, we shall say that elimination fails.

er fi
Proposition 1: For a 34 CF, elimination fails, i.c., the rank of |: es  fo ] is less than

es f3
two, if and only if the lines supporting the edges designated for contact are parallel. (This
includes the possibility that two or three of the lines are coincident.)

Proof: If the three contacted edges are parallel, then the angle between any two normals
to the contacted edges is 0 or 7 radians. Consequently, sin(¢; — ¢,,) = 0 for any choice of [
and m in the set {1,2,3}. This in turn implies that the determinant of every (2 x 2) minor

€1 f1

of | ea f | is zero and that the rank of this matrix is less than two.

€3 f3

er fi
Conversely, the rank of |: es fo ] can only be less than 2 if the determinants of all

es fs
(2 x 2) minors are zero. Thus elimination fails only if sin(¢s — ¢1) = 0, sin(¢s — ¢2) = 0,
and sin(¢1 — ¢3) = 0, that is, only if the three contacted edges are parallel. ............ a

Apart from the case when elimination fails, the contacts can always be relabeled so that
sin(¢z2 — ¢1) is not zero and equations (19) are valid. Substituting « and y into the third
equation of the system (16) gives a polynomial in ¢ and s of the form:

G(r)e+ H(r)s+ I(r) = 0 (20)
AF+sP—-1 =0 (21)

where G, H, and [ are given by:

G = 6162f3 - blegfg - bgelfg —|— bgegfl —|— bg€1f2 — 6362f1 (22)
H = d1€2f3 — d1€3f2 - d2€1f3 —|— d2€3f1 —|— d3€1f2 - d3€2f1 (23)
I = Cl1€2f3 — Cl1€3f2 — Cl2€1f3 —|— a2€3f1 —|— a3€1f2 — Cl3€2f1. (24)

It is important to note that equation (20) can be rewritten as follows:

D, E, F
Det D2 E2 F2 = 0, (25)
Ds Es Fj

11



which is a necessary and sufficient condition that the three equations (16), when homogenized
(by multiplying each of the coefficients, Di(r,c,s), by a homogenizing variable z) have a

Er K
nontrivial solution. The additional condition, rank | £y F; | = 2, guarantees that the
Es F3

homogenizing variable z will not be zero. Linearly scaling z, y, and z to make z equal to one
gives an ¢ and y satisfying the original system of equations (16).

Expanding the determinant in equation (25) and recalling that F;F; — E; F; = e;f; —¢€; fi,
we arrive at alternate forms for G, H, and [ that are useful in the proofs which will follow:

by e1 fi by cos(¢1) sin(¢y) ]
G = Det| by ex fo | =Det| by cos(¢pz) sin(¢a) (26)
| b3 es f3 bs cos(¢ps) sin(¢s)
di e fi] [ di cos(¢1) sin(¢y) |
H = Det| dy ey fo | =Det| dy cos(¢z) sin(¢z) (27)
| d3 ez f3 ] | ds cos(¢s) sin(¢s) |
(a1 er fi] [ a1 cos(¢1) sin(¢y) |
I = Det| ay ey fo | =Det| az cos(¢z) sin(¢2) | . (28)
| as es f3 | L as ‘305((/53) Sin(%) J

To determine the geometrically admissible workpiece configurations, q, given a specific
3A CF and the manipulator configuration, r, we must determine the intersection of the
line (20) and the unit circle (21). When G # 0, we solve equation (20) for ¢ and substitute
into equation (21) to get a quadratic equation for s:

(H2+G2)52+2H]3—|—(]2—G2):0 when G #0. (29)
When H # 0, we solve for s in equation (20) to find:
(H2+G2)c2+2G]c+(]2—H2):0 when H # 0. (30)

The discriminants of these equations are —4G2(—G2 — H? + ]2) when GG # 0 and
—4H*(—G* — H* + I*) when H # 0. For geometrically admissible workpiece configurations
to exist (i.e., for the system of equations, (20) and (21) to have real, as opposed to complex,

solutions) when G? + H? # 0, the discriminant must be nonnegative. Thus we require that
the following inequality be satisfied:

G2+ H? > I, (31)

When G = 0 and H = 0, we get real solutions only if I = 0. In that case, there will be
an infinite number of solutions, because any pair (¢, s) satisfying equation (21) also satisfies
equation (20) which is identically zero, and  and y can be found by back substitution into
equations (19). When GG = 0 and H = 0, but I # 0, equation (20) will be inconsistent and

12



there will be no solutions. Note that even though inequality (31) is satisfied when elimination
fails (because G = H = I = 0), it is not a necessary and sufficient condition for solutions to
exist in that case (see Proposition 2 below).

Proposition 2: [f elimination fails, then G = H = I = 0 and for a fized v, if there is
any workpiece configuration which attains the specified 3A CF, then there will be an infinite
number.

Proof: This proposition refers to the case of three parallel edges and its truth is obvious
from the discussion above. ... ... a

When elimination fails, we will say that the particular manipulator configuration vector
r, is nongeneric. Brost identified this nongeneric situation and noted that either there
are no geometrically admissible workpiece configurations or an infinite number [2]. In the
latter case, the workpiece can be translated along the contacted edges while maintaining the

specified CF.

By relating the results of the above analysis (especially GG, H, and I) to the wrench
matrices used in grasp analysis, we have found an overlooked nongeneric contact situation
with three contacts on nonparallel edges for which there is an infinite number of admissible
workpiece configurations. This new contact situation is discussed below.

Our use of the term “nongeneric” is similar to Brost’s [2]: the system of contact constraint
equations does not satisfy “general position.” Loosely speaking, a loss of general position
implies that either a system of n equations in m unknowns (m > n) has more than the
expected m — n degrees of freedom, or that solutions occur with multiplicities, or that the
equations are inconsistent. In the context of this work, a system of three contact constraint
equations in general position (i.e., the generic case) for a fixed r constrains the workpiece to
a finite number of configurations.

In practice, nongeneric situations would appear to be rare, because it is impossible to
manufacture the perfect arrangement of geometric features required (e.g., a perfectly straight
edge, or three perfectly parallel and straight edges) or to precisely control the position of the
manipulator. Mathematically, this fact is related to standard results in algebraic geometry
which say that every nongeneric system of polynomial equations can be made generic by
a suitably small perturbation of the coefficients [3]. However, from a computational and
modeling standpoint, nongeneric situations are common, and if they are not understood
completely, they will compromise the robustness of any dexterous manipulation planning al-
gorithm based on geometric models. This is especially true in situations where the initial and
goal configurations happen to be separated by the locus of nongeneric configurations, which
can form co-dimension 1 “barriers” in our CF-cells. One encounters an analogous situation
when the planned trajectory of an industrial robot passes through a singular configuration
in its workspace.
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In the 3A case, we will find that the generic situations are those in which there are two
distinct real solutions to the system of contact constraints (9) and (10) or two distinct com-
plex solutions, implying that there are two or zero real geometrically admissible workpiece
configurations, respectively. The nongeneric situations are those for which there is an infi-
nite number of solutions or just one solution (of multiplicity two), or inconsistent equations
leading to no solutions. The one exception to our definition of genericity (over the eight
CF-cells studied) occurs in the 3A case when elimination fails and there are no solutions.
Strictly speaking, such a case is generic, i.e., small perturbations of r will not produce solu-
tions. However, the geometry itself is nongeneric because the three edges are parallel, and
for that reason we do not consider this case as generic. (In future work when uncertainty is
involved, we will be varying the geometry and the case of three parallel edges will certainly
be nongeneric in that context.)

In contrast to the nongeneric situations, generic situations are those for which G* + H?
is positive and not equal to 2. In these cases, regardless of the particular values of G, H,
and I, there will always be two distinct solutions to the system of equations, (20) and (21).
If the solutions are real, then there will be two geometrically admissible configurations of
the workpiece; if they are complex there will be none. Moreover, small changes in r will not
change the number of solutions.

Theorem 1: For a generic positioning, r, of the manipulator, we will have in the 34 case,
either zero or two geometrically admissible workpiece configurations.

3.2 The Wrench Matrices

The functions G(r), H(r), and I(r) turn out to be closely related to the “wrench matrix”
which arises in the analysis of multi-fingered grasps. This matrix is particularly useful in
determining the stability and mobility of the grasped workpiece [9]. If the system under
consideration is planar with n. contacts, then the wrench matrix W, can be partitioned into
normal and tangential components W,, and Wy, which have size (3 X n.). The partitions
W, and W, appear in the kinematic relationships constraining the normal and tangential
components of the relative velocities of the contact points and in the summations of the
normal and tangential components of the contact forces [28].

The wrench matrices have the following form:

W, = D1A H2A HSA W, = tlA tzA tsA (32)
pi1An;y paAny; pszAns pi Aty pa Aty psAts

where 1y is the inward pointing unit normal vector to edge I, t; is the tangential unit vector
defined so that fi; x t; points out of the page, p; is the position of the I** contact point, and
p: A1y is given by p,ny, — pi,ni,. Here p, and p;, are the components of p; and n;, and n,

are the components of n; relative to some specified frame (usually O).
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Given the geometric definitions of the coefficients shown in Figure 2, the wrench matrices
can be rewritten as explicit functions of the system configuration as follows:

—cos(0 + ¢1) —cos(0 + ¢2) —cos(0 + ¢3)
W, = —sin(f + ¢1) —sin(0 + ¢2) —sin(0 + ¢3) (33)
dlc — 618 dQC — bQS dgc — 638

sin(0 4 ¢1)  sin(0+ ¢2)  sin(f+ ¢3)
OWMMS = | —cos(0+ ¢1) —cos(8 + ¢2) —cos( + ¢3) (34)
—(blc+d18) —(bQC+d28) —(bgc+d35)

where the superscript © indicates that the matrices are expressed with respect to the frame O.
Note that in this definition of OWMWS, p: is the position of the vertex [ of the manipulator
polygon designated to contact the workpiece even though achieving all three contacts may be
impossible for the manipulator configuration under consideration.

Using standard trigonometric identities, one can rewrite the wrench matrices as follows:

c —s 0 —cos(¢1) —cos(¢p2) —cos(¢s)
°W,=1|s ¢ 0 —sin(¢1) —sin(pa) —sin(¢s) (35)
0 0 1 dic —bis dyc— bys dsc— bss

¢c —s 0 sin(¢r) sin(¢z) sin(¢s)
OWMeﬁS =|ls ¢ 0 —cos(¢1) —cos(¢2) —cos(¢3) . (36)
0 0 1 —(bic+dis) —(bac+ dys) —(bsc+ dss)

Finally, comparing these expressions with equations (26) and (27), we find that G and H
are related to the determinants of ©°W,, and OWMe”S by the following simple formulas:

Det(°W,,)) = cH — sG Det(CW i yeris) = —(sH + ¢G). (37)

Therefore, the important quantity, G* + H?, that arose in the discriminant of equations (29)
and (30), is equal to the sum of the squares of the determinants of the normal and tangential
wrench matrices:

G? + H? = Det?’(°W,,) + Det* (OW  yerts)- (38)
Similarly, one can deduce that:

y sin(¢1)  sin(da)  sin(¢s)
Wicdges = | —cos(¢1) —cos(da) —cos(¢s) (39)

aq Gy as

where the subscript “edges” indicates that the contacts are assumed to be on the designated
edges of the workpiece. (The matrix does not depend on the specific edge point chosen.)
Comparing equations (28) and (39), we see that:

I=Det(™W, apes)- (40)
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The values of G, H, and I give us information about the existence and the number
of geometrically admissible workpiece configurations for a given 3A CF and manipulator
configuration r. Clearly, the existence of geometrically admissible workpiece configurations
(and the number of configurations, if any exist) is independent of the specific choices of
coordinate frames. This motivates the following result.

Proposition 3: The quantities I* and G*+H?, and the quantities Det('"WW, c44e5), Det(CW,,),
and Det(owmms) are independent of the choice of all coordinate frames.

Proof: None of the vectors, 1y, t;, and p;, appearing in the wrench matrix definitions
given in equation (32) depend on the choice of frames P;. Also, it is known that a wrench
matrix, expressed in an arbitrary frame A, can be expressed in an arbitrary frame B by
premultiplying it by a force transformation matrix 5T [26]:

W = BT, AW (41)

cos(vp)  sin(v) 0
where in the planar case, 5T is | —sin(¢) cos()) 0 |. Here ¢ is the angle of rotation of
Ay Az 1
frame B with respect to frame A and Az and Ay are the components of the displacement of
the origin of frame B relative to the origin of frame A expressed in terms of frame A. Since
the determinant of in is one, the determinants of the (3 x 3) matrices °W,, WWmdges, and
OWMMS are all invariant under a change of O or W as appropriate. The frame invariance
of I* and G* + H?* now follow from formulas (39) and (40). We emphasize, however, that &,
H, and the wrench matrices are not frame invariant. ......................... ... ... ... a

The invariance of the wrench matrix determinants can also be seen geometrically. Each
column of YW, represents a line perpendicular to an edge of the workpiece and containing the
vertex of the manipulator intended to contact that edge. The condition that Det(°W,) =0
is exactly that these three lines meet at a point (possibly at infinity). Since these lines
depend purely on the geometry of the bodies and their relative arrangement, it is clear that
the determinant of W, is independent of any choice of frames.

The tangential wrench matrices, WWmdges and Othvms, each represent three lines par-
allel to the edges of the workpiece specified by the 3A CF. The lines corresponding to
WWmdg65 are those supporting the actual edges of the workpiece, while the lines corre-
sponding to OWMmS are those that contain the designated vertices and are parallel to the
actual edges. Note that the vertices may or may not lie on the actual edges of the workpiece.
Again, the condition that Det(®W; ,eris) = 0 or Det(™W'W, 45cs) = 0 is that the three lines

involved intersect at a point (possibly at infinity).
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3.3 A New Nongeneric Contact Situation

Recall that nongeneric situations are those which satisfy G = 0 and H = 0, or which satisfy
inequality (31) by strict equality. Thus we can view the equation G*+ H?—I? = 0 as defining
the hypersurface in the manipulator configuration space where nongenericity occurs.

Proposition 4: If elimination succeeds, then for a fized r, we will have an infinite number of
solutions on the 3A CF-cell if and only if Det(W,,) = Det(® W yets) = Det("WWi caes) = 0,
or equivalently, G = H =1=0.

Proof: Our elimination procedure reduced the search for geometrically admissible configu-
rations of the workpiece for a given r to finding the intersections between a line and a circle.
When elimination succeeds and G = H = [ = 0, we are left with only the circle. Given the
relationships between (&, H, and [ and the wrench matrices, it is clear that the determinants
of all three wrench matrices must be zero and conversely. .............................. a

One can easily construct examples meeting the conditions of Proposition 4. First, con-
struct a workpiece polygon that has three edges which intersect at a point. Second, place
two manipulator vertices anywhere on two of those three edges. Third, find the intersection
point of the two contact normals and project it perpendicular to the third edge to locate the
third manipulator vertex. Figure 3 shows a workpiece (light gray) in several geometrically
admissible configurations for a fixed configuration of the manipulator (dark gray). Note that
every orientation of the workpiece corresponds to a point on the unit circle, equation (20),
so that for any orientation, there is a workpiece position, (x,y), which achieves the specified
CF. This position can be found by back substituting into equations (19).

The points, r, in the manipulator configuration space, where Proposition 4 is satisfied
will be referred to as exzceptional points. These points “blow up” [22] to circles on the CF-cell.
Each direction in manipulator configuration space in a neighborhood of an exceptional point
potentially gives rise to a different limit point (in the CF-cell). Thus special care must be
taken when planning a manipulation trajectory which passes near or through exceptional
points to ensure that the workpiece follows its desired trajectory. Physically, the configura-
tion of the workpiece when r is exceptional depends not only on the current r, but on the
direction from which r was reached. For a detailed analysis of the geometry of this particular
“blow-up” see [6].

We now turn to the CF-cell as a whole.

3.4 Global Properties of 3A CF-cells

Theorem 2: FEvery 34 CF-cell is a nine-dimenstonal manifold.

17



4o
X1
X 3

Figure 3: A nongeneric situation for which elimination succeeds.

Proof: Let f = 0 be the vector of constraint equations given by:

f(p) = [Cl(p)7 02(13)7 03(13), Cz + 32 - 1]T' (42)

For CF to be a manifold, it is sufficient that at each point in CF, the rank of the Jacobian
matrix (%) be four [19]. The Jacobian matrix has the following form:

mi1 My MMi13 Mi1a4 Mis 0 0 mig 0 0 mii 0 0

Moy Mo MMy3 M4 0 msye 0 0 my9 0 0 ms12 0

mszy1 M3z 1MM33 M34 0 0 msz 0 0 mso 0 0 ms s
0 0 2¢  2s 0 0 0 0 0 0 0 0 0

(13)
The entries mq 5 and my g are cos(f + ¢1) and sin( + ¢1) respectively. Thus it is clear that
both m; 5 and m; g cannot simultaneously be zero. An identical argument shows that at
least one of my ¢ and my g must be nonzero, as well as one of m3 7 and ms ;9. Therefore, we
can always form a nonsingular (4 x 4) minor as follows:

mlﬁ mlﬁ- 0 0
msy.g 0 msy ; 0
msg 0 0 ms (44)
20 0 0 0
where (o, 3) € {(¢,3),(s,4)}, i€ {5,8},7 € {6,9}, and k€ {7,10}. .................... O
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Asada and By [1] showed that the matrix of partial derivatives of the functions describing
the surface of a part (taken with respect to the position and orientation variables of the
workpiece) is a normal wrench matrix. In this paper, the orientation of the workpiece is
represented by cos(#) and sin(f), which are treated as independent variables. Thus with our
definitions, the four-by-thirteen Jacobian matrix contains a modified normal wrench matrix,
W, which has dimension (4 x4). Its rows are the first four columns of that Jacobian matrix:

miy1 Mg21 M3y 0
mio Ma2 M33 0
mis MMga3 1M33 2c

(45)

mia4 M24 N34 2s

The first two rows of the first three columns of W7 are the same as those in the traditional
normal wrench matrix (expressed in frame O). They represent the z- and y-components of
the three contact normals. The last two rows of the first three columns are the moments
(about the origin of frame W) of the x- and y-components of the normal vectors at the
contact points, respectively.

Using the chain rule relationship, %;il = —%3 + %c, we can derive the following

simple relationship between W and the usual normal wrench matrix W ,:

1 0 0 0 0
01 0 0cn W, 0
0 0 — c W, = 0 (46)
00 —c —s (O O () -2

From this relationship, it is clear that the deficiency in the rank of W,, and W} is the same.

Theorem 3: For a 3A CF, a point p € CF, mapping to a point r in manipulator configura-
tion space, will be a branch point of the mapping of multiplicity two if and only if G*+ H? # 0
and W, is singular. In that case, the configuration will be the only geometrically admissible

configuration. (This is equivalent to G* + H* #0 and G* + H* — I* =0.)

Proof: We have shown that Det(W,,) = ¢cH — sGG. But notice that ¢cH — ¢G = 0 is the
equation of a line through the origin in the ¢-s plane which is perpendicular to the line
defined by G'e + Hs + I = 0. Since the set of C-functions reduces to the following system of
equations:

Ge+Hs+1 = 0 (47)
A4+s2-1 = 0, (48)

the above system will have a unique solution if and only if the line represented by equa-
tion (47) is tangent to the circle represented by the equation (48). In that case, the line
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defined by —G's + He = 0 contains the point of tangency. This implies that the determinant
of the normal wrench matrix is zero.

Conversely, if the determinant of the normal wrench matrix is zero, then the line (47) is
forced to be tangent to the unit circle. ... ... ... . O

Situations that satisty Theorem 3 are those for which the contact normals intersect at
a point, but the edges designated for contact do not. For example, imagine placing three
contacts at the midpoints of the three sides of an equilateral triangle. The contact normals
intersect at the center of the triangle. This situation is nongeneric, because moving any
one of the vertices straight through its edge and into the triangle even slightly results in no
geometrically admissible workpiece configurations. Similarly, moving one vertex out from its
edge results in two admissible configurations.

Corollary 1: The branch locus of a 3A CF-cell under projection to the manipulator con-
figuration space is precisely the locus where G* + H* # 0 and W, is singular. By contrast,
when W, is nonsingular at p € CF, we are forced to have G* + H? # 0, and the projection
will be a local diffeomorphism.

Proof: The singularity of the normal wrench matrix at points where G* + H? # 0 indicates
that the projection from the CF-cell to the manipulator configuration space is not a local
diffeomorphism. Since the CF-cell itself is a smooth manifold, the singularity of the wrench
matrix indicates that the two-sheeted cover branches. ........ ... ... ... ... ... . ... O

In summary, every 3A CF-cell, CF, is a smooth nine-dimensional “surface” sitting over
the space of manipulator configurations, which is also nine-dimensional. For most values of
r, there are zero or two points on the CF-cell corresponding to the geometrically admissible
workpiece configurations. However, there are a “few” special manipulator configurations for
which there is 1 or an infinite number of workpiece configurations. Despite these special
configurations, every 3A CF-cell is smooth everywhere. Over the regions of manipulator
configuration space where there is a finite number of workpiece configurations, the CF-cell can
be viewed as two sheets which occasionally come together smoothly (without discontinuity
between their normals). When generating manipulation plans (i.e., trajectories in r) that
pass near or through these branch points or the points corresponding to an infinite number
of workpiece configurations, extra care must be taken to ensure that the workpiece moves as
desired.

3.5 3B CF-Cells

Suppose we are given a contact formation with three type B contacts. Consider Figure 4.
Let (wy, z;) denote the position, with respect to the frame W, of the vertex on the workpiece
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Figure 4: Illustration of parameters relevant to type B contacts.

which is to be contacted by the designated edge of manipulator polygon [. Select a point
on edge [, and let (u;,v;) denote its position with respect to the frame P;. Let g, h;, and
v; be respectively, the position of vertex [, the position of the selected point (u;,v;) on edge
[, and the unit outward normal of edge [, all expressed with respect to the world frame O.
The C-function for a single B type contact is then given as in equation (5):

Ci(p) = vi- (g — hy). (49)

To make this explicit, let (; denote the angle between v; and the z-axis of frame P;. Then
the C-functions for the three B-type contacts can be expanded to yield:

Ci(p) =ar+ et és+yet+ay = 0; 1=1,23 (50)
A+s2—-1 =0 (51)

where the coefficients are given by:

ar = —cos((+ 0z — sin(G 4 )y — cos(()ur — sin(()o (52)
B = cos((+ 0w + sin(G + 01z (53)
6 = sin(Q+0)w —cos(¢ + 0))z (54)
(0 + Q) (55)
0+ Q). (56)

Y = cos

€ = sin

Proceeding as we did in our study of 3A CF-cells, we again find (assuming elimination
succeeds) that the feasible workpiece configurations correspond to the intersection of a line

21



and the unit circle:

G(r)e+ H(r)s+I(r) = 0 (57)

A+sP—1 =0 (58)
ﬁl 71 G 01 71 & ;. 71 a
where G =det | B2 72 € |, H=det| 63 72 € |,and [ =det | s 72 €
ﬁ:& Y3 €3 03 Y3 €3 a3 Y3 €3

Not surprisingly, results similar to those obtained for 3A CF-cells can be proved for 3B
CF-cells. It will become clear in the propositions and theorems below that the vertices and
edges in the 3B case are simply the duals of the edges and vertices, respectively, in the 3A
case. This duality can be explained in terms of the natural duality between lines and points
in the projective plane [18]. Under this duality, the workpiece (viewed as a set of lines) gets
mapped to a “dual” workpiece (given as a set of vertices) and a manipulator polygon (viewed
as a set of vertices) gets mapped to a “dual” manipulator polygon (given as a set of lines).

Because the proofs for the propositions and theorems below exactly follow the logic of
the proofs offered for the 3A CF-cell, they will not be given explicitly.

N1o&a
Proposition 5: For a 3B CF, elimination fails, i.e., the rank of | 72 €2 | ts less than
Y3 €3

two, if and only if the lines supporting the edges designated for contact are parallel. (This
includes the possibility that two or three of the lines are coincident.)

Proposition 6: If elimination fails, then G = H = I = 0 and for a fized v, if there is any
workpiece configuration which attains the 3B CF, then there will be an infinite number.

Once again, the functions GG, H, and [ are related to the determinants of certain wrench
matrices and G? + H? and I are frame invariant. In effect, Proposition 3 carries over to the

case of a 3B CF-cell:

Proposition 7: The quantities I* and G*+H?, and the quantities Det('"WW, c44e5), Det(CW,,),
and Det(OWtwerm) are independent of the choice of all coordinate frames.

The relationships among G, H, I, and the wrench matrices are:

Det(°W,)) = cH — sG Det(®Wipepss) = sH + G Det(WWi gpes) = =1 (59)
where

7 72 BE]
°W, = € € €3 (60)

b1c — 15+ xer —yy1 03¢ — Pas + xeg — Yy 03¢ — [P35 4+ xEez — Y3

22



—€ —€2 —€3
Owt,verts = 7 Y2 3 (61)
015+ Brc+yer + a1 628+ Pac+ yea + xy2 O35 + PBsc+ yes + a3

—€ —€2 —€3

WWt,edges = 7 72 73 . (62)

—Q1; —Q —03

Proposition 8: If elimination succeeds, then for a fized v, we will have an infinite number of
solutions on the 3B CF-cell if and only if Det(YW,)) = Det(C Wi yerts) = Det(WW, cipes) =
0, or equivalently, G = H =1=0.

In cases when elimination succeeds, the nongeneric situations are dual to those for the 3A
case. To highlight this fact, note that the nongeneric case shown in Figure 3 is nongeneric for
the 3B type CF if one views the (dark) manipulator polygons as rigidly connected to become
the workpiece and one cuts up the (light) workpiece polygon into disconnected pieces, each
containing one of the contact edges, to become three manipulator polygons.

Theorem 4: For a generic positioning, r, of the manipulator, we will have either zero or
two geometrically admissible workpiece configurations.

Theorem 5: FEvery 3B CF-cell is a nine-dimensional manifold.

Theorem 6: For a 3B CF, a point p € CF, mapping to a point r in manipulator configura-
tion space, will be a branch point (necessarily of multiplicity two) of the mapping if and only if
G*+H? # 0 and W, is singular. In that case, the configuration will be the only geometrically
admissible configuration. (This is equivalent to G* + H* #0 and G* + H* —[*=0.)

A nongeneric situation satisfying Theorem 6 is as follows. Let the workpiece be an
equilateral triangle and let the edges of three manipulator polygons touch the three vertices
such that the contact normals bisect the angles of the triangle.

Corollary 2: The branch locus of the 3B CF-cell under projection to the mantpulator con-
figuration space is precisely the locus where G* + H* # 0 and W, is singular.

3.6 2AB CF-Cells
2AB CF-cells are characteristically different from 3A and 3B CF-cells, because finding the

geometrically admissible configurations of the workpiece boils down to determining the in-
tersections between a circle and a general quadric in ¢ and s. Nonetheless, most of the steps
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followed in analyzing the 3A case apply directly to the 2AB case. Thus in this section, we
will only include the steps that are different.

Building on the results of our analysis of the 3A and 3B CF-cells given above, the C-
functions in the 2AB case are given by:

a;+ bic+ dis — exe+ fras — fiyce—eys = 0; (=1,2 (63)
az + fBac+ 635 + Y3 + €3y = (64)
A+s2—-1 = 0. (65)

Eliminating = and y yields:

Je+ Ks+ L+ Ms*+ Nes = 0 (66)
A4+s2—1 =0 (67)

where (using equations (67)):

J = Heseray; —yzazfi — esareq + 3 faar — Bseafi + Bsfaeq (68)
K = +9se3a1 — esfra; — yzazer + ezay fo — O3eaf1 + 03 faeq (69)
L = +73f2by — esbreg + eserby — y3ba f1 — asea fi + aser fo (70)
M = —nsdyer + e3dy fo + y3eadi — e3frdy — azexfi + azer fo (71)
N = —ysbyer + y3fady + €3b1 fo — esdiea — €3f1by — y3dafi + eserdy + ysezby.  (72)
Equation (66) can be rewritten as:
a1+ bic+dis —ejc+ frs —fic—egs
Det | ay+byc+dys —egc+ fos —fac—e3s | =0 (73)
as + Bsc + O3s Y3 €3
—eic+ fis —fic—es
and elimination will fail if and only if the rank of | —eyc+ fos —fac—e3s | is less than

73 €3
two. Note that the rows of this (2 x 3) matrix are unit normals to the edges written with
respect to the frame O.

Proposition 9: For a 2AB CF, elimination fails if and only if the three designated edges
are mutually parallel.

Proposition 10: If elimination fails for a fived v, then if there is any workpiece configura-
tion which attains the 2AB CF, there will be an infinite number of workpiece configurations

which attain the 2AB CF.
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Proposition 11: If elimination succeeds, then we will have an infinite number of solutions
for the 2AB CF if the two designated vertices of the manipulator contact a single edge of the
workptiece at the same point. The designated edge of the manipulator can contact any vertex
of the workpiece.

Proof: If the two vertices of the manipulator are designated to coincide and contact the
same edge, then one is redundant and may be removed. Thus we are left with two contacts.
Using the two C-functions, we can solve for  and y as functions of ¢ and s. Therefore, any
¢ and s on the unit circle correspond to a valid (z,y) pair. ....... ... o i a

The above proposition represents a sufficient condition for the existence of an infinite
number of geometrically admissible configurations, but it may not be necessary. One might
think that when considering all three contacts, the necessary and sufficient condition would
be as before; the determinants of the normal and tangential wrench matrices are zero. This
is not true. The 2AB configuration on the left side of Figure 5 has zero normal and tan-
gential wrench matrix determinants, but this example has only two geometrically admissible
workpiece configurations. One of the admissible configurations is the one shown on the left.
The other can be obtained from the first by rotating the square = radians about its lower
left corner. Clearly, when the square is in the orientation shown on the right, it cannot be

translated to achieve the desired 2AB CF.

>

' A

Figure 5: Counter-Example that Det(W,,) = Det(Wi cages) = Det(Wicgges) = 0 is a suffi-

cient condition for an infinite number of geometrically admissible workpiece configurations.

Theorem 7: For a generic positioning r of the manipulator, we will have zero, two, or four
geometrically admissible workpiece configurations.

Proof: A valid configuration must satisfy equations (66) and (67) each of which has degree
2. By Bezout’s Theorem [8], the number of intersections is 4 counting points at infinity,
complex intersections, and multiplicities. For the case where all intersections are real, finite
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and of multiplicity one, the number of configurations is precisely 4. This is the maximum
possible number of geometrically admissible configurations. The other cases occur when
pairs of distinct solutions are complex. ........ ... i i a

Theorem 8: FEvery 2AB CF-cell is a nine-dimensional manifold.

Proof: The proof is analogous to the proof of Theorem 2. ....... ... ... ... .. ........ a

Theorem 9: For a 2AB CF, a point p € CF, mapping to a point r in manipulator configu-
ration space, will be a branch point of multiplicity greater than one if and only if the normal
wrench matriz, W, is singular.

Proof: The condition that the normal wrench matrix is singular is given by:
—JS—I—KC—N32+N02—|—2(M—L)c5:0. (74)
We assume that elimination does not fail and that equation (66) is non-trivial.

Recall that the valid solutions are given by the intersection of the conic (66) and the unit
circle (67). A point of intersection of these two conics will have multiplicity greater than one
if and only if they are tangent at that point. Let U denote the equation for the unit circle
and V denote the equation of the general conic, then the condition for tangency is given by:

U av
. (75)
Os Os
which expands to yield:
J+2Lc+ Ns _ 2c (76)

K +2Ms+ Ne 25
Equation (76) which can be manipulated to give equation (74), is precisely the condition
that the wrench matrix is singular. ........ .. . O

Singularity of the normal wrench matrix does not indicate that we have a unique solution.
However, it does indicate that we don’t have four distinct solutions. Singularity is indicative
of the fact that two or more of the sheets of the 2AB CF-cell over the manipulator con-
figuration space come together (branch) and hence, that the projection to the manipulator
configuration space is not a local diffeomorphism.

3.7 2BA CF-Cells

The 2BA CF-cell is dual to the 2AB CF-cell with results carrying over in the obvious manner.
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4 CF-Cells with Two Contacts

So far we have only discussed the cases involving three sliding contacts. In this section, we
will consider the cases in which one contact rolls and one slides. Since our analysis is limited
to polygonal bodies, rolling reduces to pivoting about a vertex and the associated kinematic
constraints are holonomic.

Each of the four rolling cases can be thought of as a special case of one with three sliding
contacts. For example, an AR A case can be viewed as a 3A CF by imposing two additional
fictitious constraints. First, add a fictitious edge to the workpiece which transversally inter-
sects the edge on which rolling is to occur at the designated rolling point. Now assign one
manipulator vertex to each of the three edges in question: the rolling edge, the sliding edge,
and the fictitious edge. The second fictitious constraint is to fuse the two polygons whose
vertices are to contact the rolling and fictitious edges such that the designated vertices coin-
cide. The fused polygons become one rigid body. Requiring that the fused polygons contact
their respective edges generates the desired rolling constraint. In a similar way, the AgB ,
BrA , and BgB cases can be generated as special cases of the 2AB, 2BA, and 3B cases.

Despite the fact that the AgB and BrA cases are special cases of the 2AB and 2BA
cases, for a fixed r, they never admit more than two geometrically admissible workpiece
configurations. This is because determining the admissible configurations in the rolling
cases always reduces to determining the intersections between either a rotating edge with
a vertex or a rotating vertex (a circle) with an edge. The results relating to the wrench
matrices carry over to the rolling cases, however, one must be sure to include the contact on
the fictitious edge when defining the wrench matrices.

Even though the rolling cases are special cases of the sliding cases, in the following
subsection, we derive the results for the BgB case to highlight one special feature common
to all rolling cases; elimination never fails.

4.1 BB CF-Cells

Since there are only two active polygons, the system configuration vector p is:
p= [l’,’y,C,8,$1,$2,y1,y2,01,02]. (77)

Let (ug, v;) be the coordinates of the vertex of the workpiece that is maintaining the “Bgr”
contact with respect to a frame W fixed to the workpiece. Let (wy, z) be the coordinates
(with respect to P) of the point on the edge of the manipulator that is maintaining rolling
contact with the workpiece. Let Cg,,Cg, denote the two C-functions which describe the
constraints imposed by the rolling contact, which we label as contact L

For the designated vertex of the workpiece to maintain a rolling contact with the pre-
scribed point on edge [ of manipulator polygon [, (u;, v;) must coincide with the point (wy, z).
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The constraints Cr, and Cp, can be written as:

Cr,=Jj—wec+vys—z = 0 (78)
Cpo,=k—vic—ws—y = 0 (79)
where
J = a1+ cos()w; — sin(0))z (80)
k = yi+ cos(0))z + sin(6))w;. (81)

We label the sliding contact by m, and let C,, denote the constraint imposed by this contact.
This C-function is given by equation (50):

O + B+ 68 + Y + €,y =0 (82)

where &, Bmy Ymy Om, and €, are given by equations (52-56). The vector f of C-functions

defining the BB CF is given by:
f= [CRl,CRQ,Cm,CQ—I-SQ—l]. (83)

Proceeding in the now familiar way we find that the geometrically admissible workpiece
configurations correspond to the intersections between a line and the unit circle in ¢ and s:

(ﬂm — Ym Ul — ﬁm'Ul)C + (5m + YmUl — Gmu[)S + (Ov/m + ’Ym.] + 6mk) =0 (84)
A+s2—-1 = 0. (85)

Proposition 12: For a BgB CF, elimination always succeeds.

Proof: Equation (84) is precisely the condition that the system (78,79,82) has a nontrivial
solution. This condition is equivalent to

J —uic+ vs -1 0
Det k — uis —vc 0 —-11|=0. (86)
U+ B+ 058 Ym  €m

-1 0

For the elimination to succeed, the rank of | 0 —1 | must be two, which is clearly the

This result that elimination always succeeds can be deduced from the fact that elimination
only fails when the three contacted edges are parallel. Since the rolling constraint can be
viewed as two sliding contacts on two distinct intersecting lines, elimination will always
succeed.
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Proposition 13: For a fized r, we will have an infinite number of geometrically admissible
workpiece configurations if and only if the sliding and rolling contact points coincide. (In
this case Equation (84), as a linear equation is ¢ and s, will be identically zero.)

Proof: For a fixed r, when one contact point is rolling, the other contact point moves on
a circle whose radius is the distance between the contact points. There will be an infinite
number of geometrically admissible workpiece configurations, if and only if every point of
the circle is contained in the line supporting the edge on which the second contact is to take
place. Clearly this is the case, if and only if the circle degenerates to a point on the line,
indicating that contact points coincide. ..... ... . . . . . O

Note that using the fictitious edge in defining the relevant wrench matrices, there will
be an infinite number of workpiece configurations if and only if Det(W,,) = Det(Wi perts) =
Det(W cqges) = 0. Given that two polygons have been fused so their two contact points will
always coincide, the determinants of all of the wrench matrices will be zero if and only if all
three contact points coincide.

Proposition 14: For a fized r, we will have a unique solution on the BRB CF-cell if and
only if the normal at the sliding contact passes through the rolling contact point and the
contact points do not coincide.

Proof: For a fixed r, when one contact point is rolling, the other contact point moves on
a circle whose radius is the distance between the contact points. There will be only one
geometrically admissible workpiece configuration if and only if the circle is tangent to the
line supporting the edge on which the second contact is to take place. In this case, the
contact normal on that edge must pass through the rolling contact point (at the center of
the circle) and the radius of the circle must be nonzero. ............... ... ... ... . ... O

Again, using the fictitious edge and the rolling and sliding edges to define the relevant
wrench matrices, there will be a unique workpiece configuration if and only if Det(W,) =0
and Det(Wi yerts) = Det(Wy cqges) # 0. Given that two polygons have been fused so their
two contact points coincide, it is clear that Det(W,,) will be zero if and only if the normal
at the sliding contact passes through the rolling contact. The other two wrench matrices are
equal if and only if the designated contacts are achieved, and they will be nonzero if and
only if the sliding edge does not contain the rolling point.

Theorem 10: For a generic positioning, r, of the manipulator, we will have zero or two
geometrically admissible workpiece configurations.

Theorem 11: Fvery BgB CF-cell is a siz-dimenstonal manifold.
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Finally, we note that the analysis of the rolling constraints was carried out in a system
C-space of dimension ten for which the corresponding manipulator configuration space has
dimension six. However, one can show that in the nine-dimensional manipulator configura-
tion space used to analyze the CF’s for three sliding contacts, the equations effecting the
fusing of the two polygons, as described at the beginning of this section, define a submanifold
of dimension six. This manifold is diffeomorphic to the six-dimensional manipulator config-
uration space for a rolling contact. Moreover, in Z, the thirteen-dimensional system con-
figuration space for the 3B case, the polygon-fusing equations will define a ten-dimensional
submanifold which intersects the 3B CF-cell transversally in a six-dimensional submanifold.
This intersection is diffeomorphic to the BgB CF-cell as described above.

The proofs of all these facts come down to showing that the seven-by-thirteen Jacobian
matrix of our seven constraints (the usual 3B constraints plus the three polygon-fusing
constraints) always has rank 7. This can be done in a way similar to the four-by-thirteen
case considered in Theorem 2.

4.2 AgrB BrA and ArA CF-Cells

The remaining rolling cases can be analyzed in the same way that the By B case was and the
results obtained will be analogous.

5 Conclusion

The results of this paper provide an in-depth understanding of the kinematic constraints
imposed on a dexterous manipulation system by eight fundamental systems of contact con-
straint equations. The CF-cells described by these constraint systems are relevant to the
dexterous manipulation of a single passive workpiece by two or three position-controlled ma-
nipulator polygons. The CF-cells have been found to be manifolds in the system’s C-space.
This result implies that one can predict the motion of the workpiece using well-established
techniques for the integration of differential algebraic systems [21]. Either a dynamic or
quasistatic rigid body model can be used.

The planning of dexterous manipulation tasks utilizing pure position control entails the
generation of trajectories in the space of controllable variables of the system (i.e., the posi-
tions and orientations of the manipulator polygons in contact with the workpiece) that cause
the workpiece to follow a desired trajectory. Thus the relationship between the manipulator
configuration space and the space of workpiece configurations must be well understood. The
results of this paper include analytic formulas which will permit the efficient computation
of the workpiece configuration(s) given the manipulator configuration. They also identify
the points where a given manipulator configuration “blows-up” to an infinite number of
workpiece configurations. While further study of these “blow-up” points is needed, it is
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clear that special care must be taken when generating manipulation trajectories that pass
near or through them. Another important benefit of our analytical formulas is that they
contain the relevant geometric model parameters and control settings of the manipulator
polygons. Thus, models of geometric uncertainty and control error can be incorporated into
the solutions to study the effects of uncertainty on the kinematic constraints.

Through our algebro-geometric analysis of the eight CF-cells, we have discovered a pre-
viously unknown nonintuitive, nongeneric class of contact situations. In these situations, for
a fixed configuration of the manipulator, (the lines of support of) three nonparallel edges
of the workpiece can maintain contact with three distinct vertices of the manipulator while
retaining one degree of freedom of motion. In fact, there is a unique position of the workpiece
that achieves the three specified contacts for every orientation of the workpiece.

5.1 Future Work

Our results position us to study the connectivity of collections of CF-cells and the proper-
ties of their intersections, so that we can plan dexterous manipulation actions that utilize
several different CF’s. We plan to apply techniques from deformation theory and differen-
tial topology to determine regions in the space of uncertain parameters for which transverse
intersections and connectivity are maintained. Such results will allow us to modify nominal
manipulation plans generated from a deterministic nominal model of the system to make
them robust to variations in the uncertain parameters.

Finally, notice that if our manipulator is a linkage of prismatic and revolute joints, the
forward kinematic map will go from the usual joint space to our manipulator configuration
space. The usual workspace, which projects onto joint space, will be the fiber product (in
the sense of algebraic geometry) of the forward kinematic map and the projection of the
CF-cell to our manipulator configuration space. We plan to study this construction making
use of the known behavior of the forward kinematic map. The results of this study will be
expected to further enhance the efficiency of dexterous manipulation planning.
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