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Abstract 
Three important problems in the study of grasp- 

ing and manipulation by multifingered robotic hands 
are: (a) Given a grasp characterized by a set of con- 
tact points and the associated contact models, deter- 
mine if the grasp has force closure; (b) If the grasp 
does not have force closure, determine if the fingers 
are able to apply a specified resultant wrench on the 
object; and (c) Compute “optimal” contact forces if 
the answer to problem (b) is affirmative. In this pa- 
per, based on an early result by BUSS, Hashimoto and 
Moore, which transforms the nonlinear friction cone 
constraints into positive definiteness of certain sym- 
metric matrices, we further cast the friction cone con- 
straints into linear matrix inequalities (LMIs) and for- 
mulate all three of the problems stated above as a set 
of convex optimization problems involving LMIs. The 
latter problems have been extensively studied in opti- 
mization and control community and highly efficient 
algorithms with polynomial time complexity are now 
available for their solutions. We perform simulation 
studies to show the simplicity and efficiency of the 
LMI formulation to the three problems. 

1 Introduction 
Grasping and manipulation by multifingered 

robotic hands have been active areas of research in 
robotics over the last two decades, see [8, 9, 12, 13, 
14, 17, 18, 19, 20, 211 and references therein for fur- 
ther details. Three important problems in the study 
of grasping and multifingered manipulation are: (a) 
Given a grasp which is characterized by a set of contact 
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points and the associated contact models, determine if 
the grasp has force closure; (b)Zf the grasp does not 
have force closure, determine if the fingers are able to 
apply a specified resultant wrench on the object; and 
(c)Compute “optimal” contact forces if the answer to 
problem (b)  is afirmative. These three problems will 
collectively be referred to as grasp analysis problems. 
One may note that these problems also arise in the 
study of foot-step planning and force distribution by 
multilegged robots [6]. Other applications of these 
problems can be found in hturing, cell manipulation 
by multiple laser probes, and the control of satellites 
with multiple unidirectional thrusters. 

One major difficulty associated with these prob- 
lems has been the nonlinear constraints of the con- 
tact friction models. The most commonly used con- 
tact friction models are: (a) point contact with friction 
(PCWF) and (b) soft-finger contact (SFC). Analytical 
(quadratic) models for these contact types have been 
obtained and experimentally verified [8, 121. Due to 
the difficulty of handling the nonlinear models, the 
problem of analyzing and synthesizing force closure 
grasps was first studied for the simplified frictionless 
models [13]. While simplifying the analysis, ignoring 
friction forces, however, leads to grasps with seven or 
more contacts. Such contacts make control more dif- 
ficult and require a mechanically complex hands. As 
for frictional grasps, the force closure theorems [l?, 201 
have been expressed in geometric terms such as an- 
tipodal positions and specialized for the grasps char- 
acterized by the number of contact points and the as- 
sociated contact models. 

The problem of grasping force optimization [6, 91 
has mainly been studied by linearizing the friction 
cone constraints and then applying linear program- 
ming techniques. The drawbacks of this approach 
are: (1) the friction cone must be approximated con- 
servatively, (2) the orientation of the tangent plane 
directions in the contact frame affect the results of 
grasp analysis (which violates the usual assumption 
of isotropic Coulomb friction), (3) increasing the ac- 
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curacy of the linearized friction model increases the 
running time unacceptably for real-time applications. 
Nonlinear programming approaches[ 151 have also been 
proposed for the grasping force optimization problem. 
However, current computing resources can only allow 
off-line analysis. 

One major progress in the study of grasping force 
optimization was made by BUSS, Hashimoto and 
Moore (BHM) [3]. They made the important obser- 
vation that the nonlinear friction cone constraints are 
equivalent to positive definiteness of certain symmet- 
ric matrices. Consequently, the grasping force op- 
timization problem was formulated as an optimiza- 
tion problem on the Riemannian manifold of linearly 
constrained symmetric positive definite matrices and 
solved by projected gradient flow methods [3, 21. Var- 
ious experimental studies [4, 5,  101 showed the effi- 
ciency of this approach. The optimization algorithm, 
however, needs valid contact forces, which satisfy the 
friction cone constraints and generate the specified ob- 
ject wrench, as the starting point. The initial contact 
forces are not easy to compute for general grasps and 
make their algorithm not applicable for solving force 
closure and grasping force existence problems. 

In this paper, based on the BHM observation and 
a detailed analysis of the structure of the symmet- 
ric positive definite matrices arising from the friction 
cone constraints, we further cast the friction cone con- 
straints into linear matTix inequalities (LMIs) and for- 
mulate the basic grasp analysis problems as a set of 
convex optimization pToblems involving LMIs [l]. The 
latter problems have been extensively studied in opti- 
mization and control community and highly efficient 
algorithms with polynomial time complexity [16, 13, 
are now available for their solutions. We perform sim- 
ulation studies to show the simplicity and efficiency of 
the LMI formulation to the three problems. 

2 Problem Review 
Consider an object grasped by a k-fingered robotic 

hand. The grasp map, G E RGx"', transforms applied 
finger forces expressed in local contact frames to re- 
sultant object wrenches 

F = Gx (1) 

where 2 = [zT . . .a$. . . xZlT E 3 c R"' is the con- 
tact wrench of the grasp, xi E Rmi the indepen- 
dent wrench intensity vector of finger i which is con- 
strained to the friction cone 3 i  c R"'' of the respec- 
tive contact model, m = C;=,mi the dimension of 
total independent contact wrenches of the grasp and 
3 = 3 1  x - . x 3 k  C R"' the friction cone of the grasp. 

For a PCWF contact, we have mi = 3 and 

where xi3 is the normal force component at the point 
of contact, x i l ,  x i2  the tangential components and 
is the coefficient of Coulomb friction. 

For a soft-finger contact, we have mi = 4 and 

where xi4 is the component of moment about the con- 
tact normal and pit a proportionality constant be- 
tween the torsion and shear limits. Note that the fric- 
tion cone constraints given in equation (3) is based 
on an elliptic approximation [8]. A linearized version 
of the above model which has also been investigated 
through experimental studies [8] is given by: 

where pit still models the relation between the torsion 
and shear limits at  the point of contact, but differs in 
value from pit  in the elliptic model. 

The grasping force x is exerted by hand joint effort 
E R" and their relation is given by 

J T X  + Q e r t  = Th 

where JT is the transpose of the hand Jocobian[l4] 
J E RmXn and gert E R" is the vector of generalized 
forces experienced by the joints due to external loads 
such as gravity (and Coriolis, centripetal, and inertial 
loads if the hand is moving). 

Assume that the elements of the joint effort vector 
are bounded by known constants: the lower bound 
rL E R" and the upper bound rU E R", i.e. 

( 5 )  

Then the admissible grasping force z must satisfy joint 
effort constraints 

Collectively, the friction cone constraints 3 and joint 
effort constraints 7 will be referred to as the grasping 
force constraints. 

Problem 1 Force closure problem 

sure, i.e.,  G ( 3 )  = R6. 
Given a grasp ( G , 3 ) ,  determine if it has force clo- 
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Problem 2 Grasping force existence problem 
Given a grasp (G, 3), joint effort constraints T and 

an object wrench F = ( f , ~ )  E R6, determine if there 
exists a grasping force x f 3 n 7 such that Gx = F .  

Problem 3 Grasping force optimization problem 
and 

an object wrench F = ( f , ~ )  E R6, find an optimal 
grasping force x E 3 n 7 such that Gx = F .  

Given a grasp ( G 1 3 ) ,  joint effort constraints 

3 Formulating Grasping Force Con- 
straints as LMIs 

First, let us recall the important observation made 
by BUSS, Hashimoto and Moore [3] that the fric- 
tion cone constraints 3 with contact models specified 
in (2), (3) and (4) are equivalent to positive semi- 
definiteness of the matrix 

where Si, , j = 1, - e ,  -,are real symmetric constant 
matrices.For example,the S:js for a PCWF contact are 

Sii = ~$3 + E& 
Si2 = Ei3 + E& 
Si3 = pi (E131 + E232 + Ei3) (11) 

where EbQe stands for a square matrix of dimension a 
with element ( b , c )  to be 1 and all others to be zero. 
Note that E& = (E,“)T. Likewise, for a SFCE con- 
tact, the S:js are given by 

si1 = ai(E:4 + E&) 

Si3 = E:, + E& + E& + E& 
Si2 = ai(E:4 + E&) 

Si4 = Pi (E3”4 + E:,) (12) 

and for a SFCL contact by 

Si1 = Ei4 + Ez2 + E:? + ET5 
Si2 = Ei4 + Ez3 + E& + E:c~ 

7 

si3 = E:, + pi ~ j ’ i  
j = 2  

and for a soft-finger contact with elliptic approxima- 
tion (SFCE), Since P is block diagonal with the Pis on the main 

diagonal, it can be written as: 

where ai = 6, Pi = fi. For a soft-finger contact 
with linear approximation (SFCL), we have 

Pi = (9) 

where Si = pi(~i3 + ~ x i 4 ) ,  1 ~i = f i ( ~ i 3  - kx.4). 
We make another important observation that the 

matrix Pi in (7), (8) or (9) is in fact linear in the 
contact wrench vector xi E Rmi and has the form 

I p. s - -Em; 1=1 x . . s . .  a) $3 - - x  il s. a 1  + . . . + x i m i s i m i 1  (10) 

P(x) = Blockdiag(Pl,...,Pi-l,Pi,Pi+l,...,Pk) 
k 

= Blockdiag(0, - e ,  0, Pi, 0, . , 0) 
i=l 

k mi 

= ~ ~ x , j B l o c k d i a g ( O , . . . , O , S i j , O , . - . , O )  
i=l j=l 
m 

1=1 

where the double-indexed xi, is simplified to X I ,  

l(i, 3 )  - - CiZtrnb + j and 
SI = Blockdiag(O,-~-,O,S~j,0,~~~,0), 1 = l , - * - , m .  
Note that the Sis remain symmetric. 

In summary, the friction cone constraints are equiv- 
alent to the positive definiteness of a linear combina- 
tion of constant symmetric matrices, i.e., 

where SI, 1 = 1, am, are constant and symmetric. 
Replacing 2 in equation (15) by > defines the con- 
straint of the interior of the friction cone, int(7).  

1263 



An inequality of the form (15) is a special case, 
with SO being zero, of what is called a nonstrict linear 
matrix inequality(lM1) [l] 

m 

Q ( 2 )  = So + xis1 2 0 (16) 
1=1 

where z E Rm is the variable and the constant matri- 
ces Sis are symmetric. The interior friction cone con- 
straint corresponds to a strict linear matrix inequality 
whose general form is 

m 

Q(z) = So + zlsi > 0 (17) 
1=1 

Recall that a set A c Rm is convex if V a l ,  a2 E 
d, X E [0,1], Xu1 + (1 - X ) a 2  is also in A. One key 
property of LMIs is that both nonstrict LMIs (16) 
and strict LMIs (17) are convex constraints on E, i.e., 
their feasible sets are convex, as shown in the following 
proposition[7]. 

Proposition 1 Given Q ( x )  = SO + E:, xlS1, where 
SI = q,Z = O , ~ ~ - , r n .  The sets d,, = {x E Rm I 
Q(z) 2 0 )  and A, = {x E Rm I Q ( x )  > 0 )  are convex. 

In general, LMIs can be viewed as an extension of 
linear inequality constraints where the componentwise 
inequalities between vectors are replaced by matrix in- 
equalities. It is shown in [l] that the LMIs(l6) (17) can 
represent a wide class of convex constrains on x such 
as linear inequalities, (convex) quadratic inequalities 
and matrix norm inequalities. Here we will only take 
a linear inequality constraint as an example. Consider 

A z + b L O  (18) 
where A = [a l - - .a , ]  E RnXm and b E R". Since a 
vector y 2 0 (componentwise) if and only if the matrix 
diag(y) (the diagonal matrix with the components of 
y on its diagonal) is positive semi-definite, the linear 
inequality constraint(l8) can be cast into a nonstrict 
LMI with Q(z) = diag(Az + b), i.e., 

SO =diag(b),S; =diag(a;) , i= l , - - . , r n .  (19) 

As a direct application of this example, partition 
the joint effort constraints 7 in (6) into two linear 
inequality constraints: 

and formulate the corresponding LMIs as: 

~ " ( x )  = diag(JTx + gc+t - 7") = c," + 
m 

sic: 2 o 
1=1 
m 

~ " ( x )  = diag(-JTz - gert + 7") = c," + sicy 2 o 

where C& = diag(gezt - rL), Cf = diag(-gezt + 
T ~ ) ,  Cf = diag(Jy), C y  = diag(-JT), 1 = 1,. . . , m, 
and JY is the l th  column of matrix JT. 

Therefore, the joint effort constraints(6) can also 
be cast into one LMI constraint: 

C ( Z )  = Blockdi~g(C"(~),C"(~)) = CO + E:, ziCi 2 0 

(21) 
where Cl = Blockdiag(Cf, CF), 1 = 0,.  . . , rn. 
4 Grasp Analysis Problems 

Based on the LMI formulation of grasping force 
constraints, we now reformulate the grasp analysis 
problems as follows: 

Problem 1 Force Closure Problem 
Given a grasp ( G 1 3 ) ,  determine if for every F E R6, 
3 z E Rm, such that P ( x )  2 0 and Gx = F .  

Problem 2 Grasping Force Existence Problem 
Given a grasp ( G , 3 ) ,  joint effort constraints 7 and 
an object wrench F E R6, determine if 3 x E Rm, such 
that P ( x )  2 0 ,  C (x )  2 0 and G x  = F .  

Problem 3 Grasping Force Optimization Problem 
Given a grasp (G,  3), joint effort constraints 7 and 
an object wrench F E R6, find an "optimal" grasping 
force z E Rm satisfying P ( z )  2 0 ,  C(z) 2 0 and 
G x =  F .  

In this section, we will analyze these problems 
and transform them into standard convex optimiza- 
tion problems involving LMIs. The resulting problems 
can be efficiently solved in polynomial time using re- 
cently developed interior-point methods [16, 11. 

4.1 Force Closure Problem 
It is shown that a grasp has force closure if and only 

if the grasp map G has full row rank and there exists a 
strictly internal grasping force[l4]. In other words, the 
following two conditions are simultaneously satisfied: 

1. rank(G) = 6; and 

2. 3cint E Rm, s.t. P(z i , t )  > 0 and Gxint = 0. 

While verifying the first condition is straightfor- 
ward, the second condition, i.e. the existence of a 
strictly internal force, is difficult due to the nonlin- 
ear friction constraints. To resolve this problem, note 
that x;,,t lies in the null space of G and since the rank 
condition is satisfied, there exists z E Rm-6 such that 

1=1 
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where the columns of V E Rmx(m-6) is a basis for the 
null space of grasp map G .  

Substituting equation (22) into the LMI P(x) > 
0, we obtain an equivalent LMI in terms of z,  which 
encodes the null space and the friction cone constraints 
for strictly internal forces: 

4.3 Grasping Force Optimization Prob- 

Given a grasp (G,  F), joint effort constraints 7 and 
an object wrench F, the grasping force optimization 
problem amounts to finding an optimal grasping force 
x in the feasible set 

lem 

F ( z )  is indeed a LMI since LMI structure is pre- 
served under affine transformations as shown in the 
following proposition[7]. 

Proposition 2 Given Q(x) = SO + x1S1, where 
SI = q,l = O , - - - , m .  Let x = Az + b, where A E 

, b E Rm and z E Rn is the new variable. Then 
Q(z)  := Q(A5 + b)  has LMI structure, i.e., &(z) = 
S O + C Y = ~ ~ ~ S ~ ,  a n d S ~ = $ ' , l = O , - . . , n .  

In summary, the force closure problem is deter- 
mined by first checking the rank of G and, ifit is onto, 
then determining if there exists a z E Rm-6 such that 
(23) holds. The latter problem is a standard LMI fea- 
sibility problem [l] and efficient algorithms exist for its 
solution. 
4.2 Grasping Force Existence Problem 

Rmxn 

The grasping force existence problem is very simi- 
lar to the internal force existence problem and can be 
solved using a similar approach: First, determine if 
there exists a solution xo E Rm for the linear equation 

GXO = F (24) 

Here, 00 E Rm need not satisfy the grasping force 
constraints. Thus, a simple choice is the least-square 
solution: 

where G# is the generalized inverse of G .  The solution 
xo is exact i f F  E Range(G). Otherwise, the answer to 
the grasping force existence problem is negative. For 
the case that F E Range(G), the general solution of 
equation(24) has the form 

x0 = G#F (25) 

= x0 + vz = G#F + vz (26) 
where the columns of V E Rmx(m-') is a basis for the 
null space of G and T is the rank of G .  

Thus, the answer to the grasping force existence 
problem is positive if and only if F E Range(G) and 
there exists z E Rm-' such that the LMIs hold: 

I F ( z )  := P(xo + V z )  = So + E;"=;;' zJ1 2 0 1 

Again, the latter one is a LMI feasibility problem. 

SZ, = { X  E Rm(P(x) 2 0, C(x) >_ 0, Gx = F } .  (28) 

Here, we only consider the nontrivial case when the 
feasible set SZ, is nonempty. This is true if and only 
if the answer to the corresponding grasping force exis- 
tence problem is affirmative. In this case, there exists 
a feasible set for z: 

& = { z  E Rm-'(F(z) 2 0, E ( z )  2 0) (29) 

where P ( z )  and c ( z )  are defined in (27). 

forces by 
We define a measure of optimality for grasping 

~ ( x )  = wTx + In d e t P - l ( x )  (30) 

where the vector w = [w~..-w~.-.wT]' E Rm is 
used to weight the normal components of the grasp- 
ing force x, for a PCWF contact w,=[O 0 diIT and 
for a SFC contact wi=[O 0 di O]', di 2 0.  This objec- 
tive function (30) is very similar to the self-concordant 
one proposed in [2] and can be interpreted as follows: 
the first term grows with the magnitudes of the nor- 
mal components of the contact forces; and the second 
term is a barrier term which tends to infinity as any 
contact force approaches the boundary of its friction 
cone. More discussions on the weight can be found in 

The grasping force optimization problem can there- 
[3, 51. 

fore be stated as follows 

Let x = G#F + Vz and 

@(z) := Q(G#F + Vz) .  

The problem can be transformed into a problem of 

argminZE.4.w (32) 

Recall that a function f (x) is strictly convex if 

f(h + (1 - X)X2) W.1) + (1 - X)f(22), 
VX E ( 0 , l )  and Vx1, x2 E domain(f) c Rm. In order 
to apply the convex optimization algorithms in [16, 
11 to the above problems we need to show that the 
objective function and the domain of the function are 
both convex[7]. 
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Proposition S The constraint domains SZ, in (28) 
and Az in (29) are convex. 

Proposition4 The functions 8(z)  and $ ( z )  are 
strictly convex functions on the sets and dz, Te-  

spectively . 
Problems (31) and (32) are thus shown to be con- 

vex optimization problems involving LMIs. Problem 
(32) is also in the standard form of determinant maz- 
imization problem with LMI constmints 1231 and can 
be efficiently solved using existing software package. 
Remark 1. The barrier term In detP-'(x)  in the ob- 
jective function (30), in fact, requires P ( x )  > 0. An- 
other way to define a convex objective function is to 
only include the linear term w T x .  Then the whole fric- 
tion cone P ( z )  2 0 will be used in the optimization. 
Such a linear objective function will lead the grasping 
force optimization problem to a standard semi-definite 
pTogramming problem [22] or a standard second order 
cone programming problem [ 1 l] , depending on the fric- 
tion cone constraints being cast into LMIs(7, 8, 9) or 
the conventional cone constraints (2,3, 4). Paper[ll] 
includes a brief discussion on the grasping force opti- 
mization problem as an engineering application of the 
second order cone progamming. 

5 Simulation Results 
In this section, we discuss the simulation re- 

sults obtained from applying software package mazdet 
by Wu, Vandenberghe and Boyd [24] to vari- 
ous grasp analysis problems. We downloaded the 
source code of mazdet (written in ANSI C) from 
http://www.stanford.edu/-boyd/MAXDET.html 
and extended it to record the contack forces and objec- 
tive values during the optimization procedure. Please 
refer to paper[23] and manual[24] for the information 
of the algorithm and the software package. 

To simplify the presentation, we assumed lower and 
upper bounds for the contact force components as a 
simplified way to incorporate joint effort constraints. 
This exempted us from presenting a long description 
of the Jocobian matrix J and allowed our presenta- 
tion to focus on the properties of various grasps. All 
simulations presented here used -10 and 10 as lower 
and upper bounds for all contact wrenches. Other 
simulation parameters can be found in our technical 
report [TI. 
All our simulations were done within matlab5 on a 

Sun SPARCstation 4. For each example, besides the 
convergence of the normal wrenches, we will also re- 
port, where applicable, the feasibility time, optimiza- 
tion time and computation time, which are defined, re- 
spectively, as the time to determine the feasibility of 

the LMI, the time to optimize the feasible optimiza- 
tion problem and the total time used to solve the given 
problem, including preparing the LMI constraints, de- 
termining the feasibility and optimizing the objectives. 
All simulations observed monotone decreasing objec- 
tive values during the optimization procedure and we 
will only show the trend of the objective function for 
one example. More simulation results can be found in 
our technical report [7]. 
5.1 A Four-Fingered Grasp 

Here we considered the same numerical example as 
given in paper [2]. It has four hard fingers grasping a 
rectangular prism with PCWF contacts. Using the 
grasp map, object wrench and valid initial contact 
forces given in paper[2], our LMI simulation results of 
normal contact wrenches are shown in figure(l), sim- 
ilar to what was observed by Buss et. al. (see figures 
4 and 6 in paper [2]). It was reported in paper [2] 
that the computation times using Matlab on a SUN 
SPARCstation 20 for three continuous gradient flow 
methods (without Dikin's algorithm) were Ssec, 38sec 
and 6Osec. Our implementation of the discrete version 
of their fastest algorithm for this particular example 
used 1.45sec for optimization and 3.42sec overall on 
our platform (different from the one reported in paper 
[2]). By contrast, the optimization and total compu- 
tation times of the LMI simulation on our platform 
were 0.27sec and 0.87sec, respectively. 

Convergence of Normal Wrenches (weight=l ) 
7.5 . 

t g 
3 
€ 
P 

. .- 

e.: I \ x-13 - 
x-23 .+ .... 
x-33 = 
x-43 -- 

3.5 I I 
0 2 4 6 8 1 0 1 2 1 4  

step 

Figure 1: Four-Fingered PCWF Grasp 

5.2 Two-Fingered Grasps 
Consider the case that two fingers grasp a unit 

sphere at its south pole and north pole. We know 
that such a grasp has force closure if the contacts are 
soft finger contacts, but it does not if they are point 
contacts. The infeasibility of force closure under the 
PCWF model is determined by the rank of the cor- 
responding grasp map. As for the soft finger contact, 
maxdet needs to be used to determine the existence of 
a strictly internal force. When the weights d:s in the 
objective function were all set to 0.1, 1 and 10, the 
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corresponding feasibility times were 0.34sec1 0.35sec 
and 0.35sec for SFCL contacts. The strictly inter- 
nal forces found in this case were the normal forces 
with equal magnitudes for both fingers. Figure(2) 
shows the optimization of the normal forces for dif- 
ferent weights. As observed by BUSS, Hashimoto and 
Moore [3], a smaller weight resulted in larger normal 
wrenches and therefore a tighter grasp on the object. 
Similar trends were observed for soft finger contacts 
with elliptic approximations[7]. 

Convergence of Normal Wrenches 
l o  ....- - ...... 
9 -  * ................... .,- ......... weightil 0 - . 
8 ........... weight=O.l ..*-..- - weightzl ------- ..... 

................................ .. ............... ... .. 

0 
2 3 4 5 6 

step 
Convergence of Objective Values 

140 
weight-10 - 

weightsO.1 --*-.... 
weighkl ------- - 

20 - 

-20 ................... ~ .................. * ......... & 
1 2 3 4 5 6 

step 

Figure 2: Two-Fingered SFCL Antipodal Grasp 

5.3 Three-Fingered Grasps 
Consider two three-fingered grasps of a unit sphere 

on its equator. The first scenario is that two fingers, 
say, finger 2 and 3, are close to each other and are both 
close to the antipodal point of finger 1. The second 
grasp has three fingers that are 120' apart from each 
other, i.e., the contact points form a equilateral trian- 
gle. In this section, these two grasps will be referred 
to as the antipodal grasp and the equilateral grasp. It 
is easy to prove that both grasps have force closure 
under our simulation parameters [7], no matter what 
contact models are used. However, because of the con- 
straints on the contact wrenches, they cannot generate 
arbitrary object wrenches. Figure(3) shows the sim- 
ulation results for generating object wrench (17.000,- 
0.5472,0,0,0,0) by the three-fingered PCWF antipodal 
grasp. The feasibility, optimization and computation 
times were 0.32sec1 O.2lsec and 0.82 sec, respectively. 
It took maxdet O.3lsec to determine the infeasibility 
of the given object wrench for the PCWF equilat- 

eral grasp. This conclusion can be easily verified by 
straightforward computation [7]. 

Convergence of Normal Wrenches (weight-10) 
10 I 

i ..... ..... ...... ., ..... ...... .) ..... ~ ..... ., ..... x 13, .rrrrr;rr... 3-7-3 __* --.. .... x-33 .._ ..... 
.... * .... .. ..._-_...-.._ ~* .... * ....-.....-.... * .... 

0 2 4 6 8 1 0 1 2 1 4  
step 

Figure 3: Three-Fingered PCWF Antipodal Grasp 

Remark 2. The simulation in this subsection (in fact, 
all simulations we performed) required more time to 
determine feasibility than to optimize the wrenches. 
This implies that feasibility is a harder problem than 
optimization. Nonetheless, we have demonstrated 
that the tools and algorithms of LMI theory can be 
used to solve this problem quickly. More generally, 
our new LMI formulations of the three fundamental 
grasp analysis problems (with any number of contacts, 
each of any type) can be solved readily by combining 
algorithms from LMI theory and convex optimization. 

6 Conclusion 
Grasp analysis is of fundamental importance in 

robotics, yet despite many years of research effort, ef- 
ficient solutions to general formulations of some of the 
basic problems, such as grasp feasibility, have not pre- 
viously been developed. The major stumbling block 
has been the nonlinear friction cone constraints im- 
posed by the contact models. In this paper, based on 
the important observation by BUSS, Hashimoto and 
Moore [3], that the nonlinear friction cone constraints 
are equivalent to the constraint that certain symmet- 
ric matrices be positive definite, we further cast the 
friction cone constraints into linear matrix inequal- 
ities (LMIs) and formulate the basic grasp analysis 
problems as a set of convex optimization problems in- 
volving LMIs. The resulting problems can be solved 
in polynomial time by highly efficient algorithms. Our 
simulation results showed the simplicity and efficiency 
of this approach. 

Convex optimization has found wide applications 
in various areas such as control and system the- 
ory, combinatorial optimization, statistics, computa- 
tional geometry and pattern recognition. It can effi- 
ciently solve problems involving nonlinear and nondif- 
ferentible functions, which would be considered to be 
very difficult in a standard treatment of optimization. 
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Backed with its natural application to grasp analy- 
sis problems, it appears that convex optimization will 
play an active role in solving complicated mathemat- 
ical and engineering problems in robotics. 
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