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Abstract 
Dextrous manipulation is a problem of paramount 

importance in the study of multifingered robotic 
hands. In this paper, we derive in detail the kinematic 
relations between the finger joint velocities and ob- 
ject/contact velocity. The problem of dextrous manip- 
ulation is precisely formulated and cast in a form suit- 
able for integrating relevant theory of nonholonomic 
motion planning, potential field methods and grasp 
stability to develop a general technique for dextrous 
manipulation planning with multifingered hands. 

1 Introduction 
Given an object to  be manipulated by a robotic 

hand, the goal of dexterous manipulation planning al- 
gorithms is to  generate finger joint trajectories that 
can drive the object to  the desired configuration while 
simultaneously achieving the desired grasp. Vari- 
ous aspects of the dexterous manipulation problem 
have been studied by many researchers over the past 
decades[lO], but a solution to the general problem re- 
mains elusive. 

In this paper, by incorporating closed kinematic 
chain constraints[7] in multi-fingered hand manipula- 
tion system and the physical constraints imposed by 
the contact models, we derive in detail the manipule- 
tion kinematics which relates the object and contact 
movements to  finger joint movements. With the re- 
sults of forward and inverse manipulation kinematics, 
we precisely formulate the problem of dextrous manip- 
ulation planning and cast it in a form suitable for inte- 
grating the relevant theories of nonholonomic motion 
planning [5, 81, potential field methods [4], and grasp 
stability[9] to  develop a general technique for dexter- 
ous manipulation with multifingered robotic hands. 
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2 Mathematical Preliminaries 
Following the notations in [8], we briefly review the 

mathematical preliminaries of rigid body motion and 
the kinematics of contact in this section. 

We denote by p a b  E R3 and R a t ,  E SO(3) the po- 
sition and orientation of a coordinate frame B rela- 
tive to  another coordinate frame A ,  and call g a b  = 
( & b , p a b )  E S E ( 3 )  the Euclidean transformation of B 
relative to  A. The velocity of B relative to A is denoted 
by V a b  = (VU,b ,Wab)  E R6. The adjoint transformation 
Ad,,, E R6x6 associated with g a b  is used to transform 
velocity between coordinate frames. 

We parameterize the surface of a smooth object rel- 
ative to a frame 0 by an orthogonal, right-handed co- 
ordinate chart 

f : U E R2 + S C R3 : a = ( u , ~ )  I---+ f (a) .  

At a point p = f ( a ) ,  we define the Gauss frame, C ,  
to  be a coordinate frame with origin poc = f ( a )  and 
orientation 

R o c = [ "  y .I=[& h M] (1) 

In terms of the Gauss frame, the geometric parameters 
of the surface are defined by the metric tensor, M E 
R2X2,  the curvature tensor, K E R2x2 and the torsion 
form, T E RlX2.  

Consider two rigid bodies, F and 0, in contact as 
shown in Figure 1. Let a f  = (uf,vf) E R2 and CY, = 
(u,,~,) E R2 be the local coordinates of F and 0, 
respectively. Denote the geometric parameters of F 
by ( M f  , K f  , T f )  and the the geometric parameters of 

A contact configuration between the two bodies is 
described by af, a,  and +, the angle of contact defined 
by the respective Gauss frames, C f  and CO, of F and 
0. Let 7 = (a!,  a,, +) E R5. 

Denote the contact velocity of F relative to  0 in 
terms of the local gauss frames by 

0 by (MO, KO, To). 

def v, = voy = [Ox, vy,  v,, @ a ,  wy, &IT 
Rolling contact constraint implies that in addition to  
U, = 0, 

U, = vy = w, = 0 
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For a robot grasping system, only the finger joints 
are directly controlled by the robot system. The object 
and contact points are forced to  move to  comply with 
the kinematic constraints associated with the contact. 
Thus, the object and the contact points are 'passively' 
actuated, and we need to  derive the manipulation 
kinematics relating object and contact movement to 
finger joint movement. 

In the following subsections, we will develop in de- 
tail the forward and inverse kinematics for the dex- 
trous manipulation problem. The kinematics for Qb- 
ject Manipulation and Grasp Adjustment can be de- 
fined and developed in the way parallel that are used 
for dextrous manipulation For brevity, we 
omit the discussion here and interested readers 
refer to our technical report [3]. The kinematic equa- 
tions are consistent with previous research results 1 [ $ ] kf Jc(q)7j 3.1 Kinematics of Multifingered Robotic 

Figure 1: Motion of two objects in contact 

The forward kinematic equations of contact relating 
the contact velocities to the rate of change of contact 
coordinates are given by [7] 

R@ MO 0 

RoKf Mf - h R o K o M o  0 
-TOMo 1 

[7, 8, 11. 0 

(2) 

v, =: 

1 cos+ -sin+ 1 ,  1 Q 1'1 where Rq = R, = - s ind  -cosd -1 Q L ' J  L .I 

and Jc(q )  E R6x5 is referred to  as the contact Jaco- 
bian. 

Equation (2) can be inverted to  give the rate of 
change of the contact coordinates, 4, in terms of the 
contact velocity[6] : 

(3) 
Colllectively, with the contact constraint w, = 0, the 
above equations can be written in the form 

4 = J;'(v)Vc (4) 

where J;'(q) E R5x6 is the inverse of the contact Ja- 
cobian (not to be interpreted as usual matrix inverse). 

3 Kinematics of Manipulation 

gered hand systems: 
There are 3 types of manipulation task for multifin- 

Object Manipulation - obtain desired object ve- 
locity, and thus achieve object goal configuration 

Grasp Adjustment - obtain desired contact veloc- 
ity, and thus achieve grasp goal configuration or 
improve the quality of grasp 

Dextrous Manipulation - achieve the above two 
objectives simultaneously 

Hands 
For a multifingered robotic hand system, set P be 

the palm frame, 0 be the object frame, and Fi, be 
the fingertip frame of finger i. Denote the forward 
kinematic map and the Jacobian of finger i by 

where = is the joint angle vector of 
finger i. 

Let afi = (ufi ,  w f i )  E R2 and aOi = (uoi, woi) E R2 
be the local coordinates of the contact points of finger 
i and object, and the corresponding Gauss frames are 
Cf, and COi. The contact configuration vi is given by 
vi = (aji,aoi,+i), where +i is the angle of contact. 
Contact velocity between finger i and the object is 
defined in terms of local gauss frames Gf, by 

def Ki = veri of = (wa,, way, W a z , W i r , W i y ,  W i z )  

For a m-fingered hand, let n = ni and 

e = (el,.-e,) E R", =  ER^^ 

Given q d  = (Oi,  vi), the position and orientation of 
the object is obtained by composing the forward kine- 
matic map of finger i with a transformation defined by 
Ti 1 

Qpo = Q*fi(ea) * gfiO(vi1 (5) 

Differentiating (5) with respect to q; = (&,vi) and 
making use of the contact Jacobian yield 
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J,(qi) E R6x(nit5) relates the object velocity to  the 
rate of change of the extended joint angle, qi = (&, v,), 
and is referred to  as the extended Jacobian of finger i. 

By equating the right hand side of (5) and (6) for 
i = l , * * * m ,  we have the following closed-kinematic 
chain (or simply closure) constraints on the generalized 
coordinates of the system 

€R5, & =  

- - 
1 0 0 0 0  
0 1 0 0 0  

0 0 1 0 0  
0 0 0 1 0  
0 0 0 0 1  

where 8; selects the unconstraints components of the 
contact velocity at contact i. 

With respect to  the contact velocity, the object ve- 
locity Vpo (6) can be written as: 

The corresponding closed kinematic chain con- 
straints are: 

3.2 Dextrous Manipulation 

equation(IO), we get 
By straight-forward algebraic manipulation of 

AdgjioVp, + Adgj i c j iB iRi  = Jpf46i (12) 

Stacking equation( 12) for each finger, we can write 
the constraint for m-fingered hand in the matrix form 
that explicitly shows the dependence of the object and 
contact velocities on the finger joint velocities: 

where 

The sizes of Joc, pot, J f  , and e are, respectively, 6m x 
( 6  + C D O F ) ,  (6 + C D O F )  x 1,6m x n, and n x 1. 
C D O  F is the dimension of admissible contact velocity 
components, 

m. .._ 

CDOF = 
i = l  

For the special cases that all the contacts are pure 
rolling or sliding contacts, the corresponding CDOF 
is: 

(15) 
2m, pure rolling contacts { 5m, sliding contacts C D O F  = 

The kinematic problems to be solved are 

0 Forward Instantaneous Kinematics 

Based on the kinematice constraints, Given joint 
velocity 4, are the object and contact velocity pOc 
uniquely determined? 

if so, the system is said to  be Kinematically- 

v,, = [ Ad g t i  -1 0 J p f i  

where j; is the extended Jacobian with respect to  the 
contact velocity. Determined. 

(10) 
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e Inverse Instantaneous Kinematics 

Given the desired object and contact velocity vac, 
is it possible to find appropriate finger joint ve- 
locity 6 to obtain such a trajectory? 

If the answer for the above question for any speci- 
fied object and contact trajectory is yes , the sys- 
tem is said to be Manipulable 

3.3 Forward Instantaneous Kinematics 
For a given vector of joint velocities, 8, a nec- 

essary condition for the existence of v,, to  satisfy 
equation( 13) is 

where $?(Joe) is the range space of J,,. 
If the contacts are maintained and the contact mod- 

els are correct, the above condition is automatically 
satisfied. A violation of the above condition indicates 
the ,joint velocities are not valid for the contact model. 
When $?(Jp) c $?(Joe), any value of the joint velocity 
is valid. 

1)enote by V I  the orthogonal complement of a 
space V. Then since ( V I )  = V, the equivalent con- 
dition for equation (16) is 

J p i  E $?(Joe), (16) 

'- 

Jp6 E ((R(JOC))'-)l (17) 

Recall the fundamental theo- 
rem of Linear algebra[ll]: N ( A T )  = ($?(A))'-, where 
N ( A )  and R(A) denote null space and range space of 
matrix A. 

Suppose the singular value decomposition of matrix 
J,, iis 

wheiee U and V are orthogonal matrices of size 6m 
and (6+CDOF) respectively, u1 . . .a, are the singular 
values of J,,, and r is the rank of J,,. 

wheire U, E 8PmxT,U2 E $?6mX(6m-r) 1 1  V E 
Suppose U = [ U, U, ] , v = [ v, v, ] 

R(J0,) = sPan(ul), N(J,T,) = Span(U2) 

R ( ~ + C D O F ) X ~  , v, E ~ ( ~ + C D O P ) X ( S + C D O P - T )  Then 

Thus the condition(l7) can be rewritten as the fol- 
lowiing constraints: 

Suppose the set of columns of J f g ,  is a basis for the 
null space of l7,T.Jp, then the solution for equation( 19) 
is 

B = Jpg,6,, (20) 

where Os, is the real free parameters of finger joint 
velocities, and we c d  it generalized finger joint veloc- 
ities. 

Suppose the condition( 16) is satisfied, then the nec- 
essary and sufficient condition to  uniquely determine 
the object and contact velocity v,, is 

ranlc(J,,) = dim(coc) = 6 + CDQF (21) 

A necessary condition for this is 6m 2 6 + CDOF. 
Refer to equation (15), for a grasp system composed of 
the sliding or pure rolling contact to  be kinematically 
determined, the minimum number of contact points, 
is 6 and 2 respectively. 

When condition (21) is satisfied, the object and con- 
tact velocities can be determined using the generalized 
inverse of J,, in equation(l3), 

V,, = ( J , $ J ~ B  = ( J , T , J , , ) - ~ J , ' , J ~ B  (22) 

which is the least normal solution [ll] for equation 
(13). If we didn't restrict 6 to satisfy condition (16), 
i.e., Jp6 @- R(J,,,), then the least normal error of 
kiematic equation (13) caused by applying the solu- 
tion of cOc(22), implies the kinematic constraints (13), 
which serve as fundamental kinematic mechanism for 
the robot grasping system, is violated, and thus, it is 
an undesirable situation that we should avoid. 

If condition (16) is satisfied, we can substitute 
equation(20) for e and get the explicit dependence of 
the object and contact velocity on the generalized fin- 
ger joint velocity egf : 

def 
QOC = ( J o c ) + J f J p g , Q g ,  = Jocg,& (23) 

For a kinematically-determined system, it is suffi- 
cient to use kinematic-based control to  obtain a spec- 
ified object/contact trajectory since actuating the fin- 
ger joints to achieve the desired joint trajectories forces 
the object and contact velocities to be desired. 

When the system is kinematically underdetermined, 
there are infinite solutions for equation (13). Then 
dynamic control need be used to  remove the ambigu- 
ity of the motion of the object and contact points. 
Therefore, dynamics can be thought of as additional 
constraints which could possibly fully determine the 
system motions. 
3.4 Inverse Instantaneous Kinematics 

The objective of manipulation planning is to find 
the trajectory of the object, contact points, and finger 
joints to reach the final configuration. Since the goal 
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is naturally specified in terms of the object and grasp 
configuration, it is more convenient to  do the planning 
for the object and contact trajectory first, and then 
determine the desired finger joint trajectory through 
the kinematic constraint equation(l3). Thus the in- 
verse instantaneous kinematics problem arises: for a 
specified object and contact trajectory, is it possible 
to  implement it with proper finger joint motion under 
the kinematic constraints? The answer must be yes 
for the trajectory to  be feasible. 

Given pot, a necessary condition for the existence 
of joint velocity B to  satisfy equation(13) is 

If R(Joc) c R ( J f ) ,  then any value of eoc is feasible, 
such a system is called Manipulable. There are no 
constraints for a manipulable system on the instanta- 
neous object and contact trajectory, since the finger 
joints can actuate any contact and object velocity. A 
suficient condition for a system to be manipulable is 
that all fingers have 6 joints and all finger configura- 
tions are nonsigular, since in this case R ( J f )  = R6m. 

For the general case, we can follow the steps as we 
have done for the finger joint velocities(l6) and get 
similar expression as equation(20) for feasible Foe: 

poc = JocgVocg (25) 

where vocg is the real free parameters of feasible pOc 
and we call it generalized object/contact velocity. 

Suppose condition(24) is satisfied. If J f  has full 
column rank, then the joint velocity is uniquely deter- 
mined using generalized inverse of J f :  

e = J; J,,F~,, = J; J,, J ~ ~ ~ F ~ ~ ~  (26) 

Otherwise, there is not a unique value for 6 ,  but 
rather an infinite set of possible values. 

Note when the system is manipulable and kinemat- 
ically determined, there will be no constraints of in- 
stantaneous manipulation planing in terms of the ob- 
ject and contact trajectory, and the kinematic-based 
control is sufficient to  achieve the desired trajectory. 

4 Dexterous Manipulation Planning 
The objective of manipulation planning is to  gen- 

erate a sequence of trajectories for the fingers so that 
through the effects of contact constraints the system 
can be transferred from an initial to  a goal configu- 
ration without dropping the object. The concerned 
state variables for dextrous manipulation are gpo and 

7. From the equations(4)(9) , we get 

If the system is manipulable, then there will be no 
constraints on the object and contact velocities to  be 
feasible. Thus we can use the above equation to  do the 
manipulation planning directly with respect to  pot. If 
all the contact points are sliding contact points, then 
dim(Vd) = dim(Qoc) = 6+5m, i.e. the DOF ofvelocity 
is equal to the dimension of concerned variables. While 
for pure rolling contact system, dim(voc) = 6 + 2m < 
dim( v d ) ,  the nonholonomic motion planning problem 
[8] arises. 

For a general system without manipulability, we 
need consider the constraints on Po, to be feasible and 
we can further formulate the manipulation planning 
problem with respect to  generalized object/contact 
velocity(25): 

I v d  = JdJocg vocg  I (28) 

The desired finger joint velocity can be obtained using 
inverse kinematic solution (26). 

Also we can formulate the problem directly with 
respect to the generalized finger joint velocity (23): 

The corresponding finger joint velocity can be obtained 
using equation (20). 

Treating eOcg and e,, as the control inputs for 
equations(28) and (29) respectively, systems (28) (29) 
are referred to as standard nonholonomic systems in 
[5,  81. Thus we can use general nonholonomic motion 
p~anning techniques to  generate a trajectory for v d ,  

and thus, achieve the object and grasp goal configura- 
tions simultaneously. 

For a manipulation task which only specifies the 
goal configuration for the object, we can further de- 
fine the manipulation task as to  (1) achieve the goal 
object configuration and (2) improve the quality of 
grasp. Thus we achieve a better coordination among 
the fingers. For the second objective, we need define 
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Figure 2: Grasp Angles and change of contact 

a m.easure of quality of grasp, and one choice is grasp 
angles [SI. 

Referring to figure 2(a), let np and n f  be the out- 
ward surface normal of the object(ball) a t  the point 
of contact with the palm(rectang1e) and the finger- 
tip(disk), respectively. 

L Then, np = [ 0 0 1 I T ,  nf =Ro[ 0 0 1 ] T 

Define two grasp angles [6] by 

9, := cos- l ( -n ,  e -); Po := cos-'(nf e -). Po 
IIPoll IlPOll 

The grasp is force closure [9] if 

where p is the Comlumb friction coefficient. 
We can use potentid field methods [4] to choose the 

conitact velocity that will minimize the grasp angles, 
and thus achieve optimal grasp quality. 

We have applied the methodology of integrating 
nonholonomic motion planning techniques with poten- 
tial field methods in the manipulation planning to two 
special but important manipulation cases: one flat fin- 
ger rolling a ball on a plane and two flat fingertips ma- 
nipulating a ball. The experiment results are reported 
in paper [2]. 

5 Conclusion 
In this paper, we derive in detail the manipulation 

kinematics which relates object and contact movement 
to finger joint movement. Using results from forward 
and inverse manipulation kinematics, we precisely for- 
mulate the problem of dextrous manipulation planning 
and cast it in a form suitable for integrating relevant 
theories of nonholonomic motion planning, potential 
field methods, and grasp stability to develop a general 
technique for dexterous manipulation with multifin- 
gered robotic hands. 

While these planing techniques work well for local 
motion planning, we need a complete picture of config- 
uration space and global motion planning techniques 

that allow us to realize realistic, usually complicated, 
manipulation planning task. This forms part of our 
future research topics. The current theory will also be 
generalized to incorporate issues like hard joint lim- 
its( e.g. the workspace limits for finger joints), con- 
tact force regulation/optimization and dynamic con- 
straints. 
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