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Fig. 1 Schematic diagram 01 model showing rod geometry,
hypothetical center-ol.mass trajectory, point P with maximum height
cleared by all points in the rod, point A in rod above P, and point 0 at
zenith 01 c.m. trajectory, the origin 01 xy Irame

used for the solution with more complicated body shapes. An
expression is derived for the height cleared, above an original
supporting ground plane, in terms of the parameters that
describe the body and its initial conditions. The maximization
of this transcendental expression, subject to certain equality
and inequality constraints on the variables, which arise
naturally in the problem formulation, is necessarily ac-
complished numerically using nonlinear constrained op-
timization techniques. The parameter space of body
descriptors in which the optimal solution (height cleared and
the associated control variables that permit this) is presented,
is shown to decompose into two regions in which the optimal
solutions differ qualitatively.

Introduction

It is occasionally of interest to jump or to throw an object
as high as possible with the height being defined as that which
is cleared by all moving points in the object. This fun-
damental act forms the basis for many games, including
several track and field events, has been practiced by almost all
of us at one time or another in our lives, has some industrial
applications, and has even inspired nursery rhymes. Yet,
except for the particle ballistics problem so familiar to
elementary physics students, there seems to have been little
analytical study of the more general problem that includes the
effects of the extended nature and geometrical shape of the
moving body.

Conservation of energy in the case of a particle, of course,
requires that the height cleared be a monotonic increasing
function of initial kinetic energy. Intuitively, this carries over
to the case of an extended (three-dimensional) rigid body and
provides a conceptual framework for the problem for-
mulation. One would also expect the height cleared by any
connected set of rigid bodies to be a monotonic function of
initial kinetic energy as long as the connections exhibit no
dissipation or potential energy storage. With a given initial
kinetic energy, what is the maximum height, which is possible
for a body to clear (or equivalently, in order to clear a given
height, what is the minimum initial kinetic energy required)
and what are the other conditions that specify the solution
completely?

In this paper a simple model for the extent of the body is
assumed, but it is believed that similar techniques could be
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Model
Figure 1 shows a schematic diagram of the proposed

motion. We consider the simplest possible model for the
moving body, a thin rigid rod of length I, position of the
center of mass along the rod d, mass m, and centroidal
moment of inertia I. Further, the rod is assumed to move only
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This paper addresses the question: In order to clear a given height, defined as that
which is passed over by all points in the moving body, what is the minimum initial
kinetic energy required and what are the other conditions that specify the solution
completely? An expression is derived for the height cleared above an original
supporting ground plane. This transcendental expression is maximized numerically
subject to certain equality and inequality constraints using nonlinear constrained
optimization techniques. The optimal solution includes the height cleared and the
required control variables. The parameter space of body descriptors in which the
optimal solution is presented decomposes into two regions in which the solutions
differ qualitatively.
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Fig. 3 hAP versus t for (a) end brush (tb = t,), (b) noncentral interior
brush (2..11 < 1 and tb '" 0), and (c) central brush (2"11;" 1 and tb = 0)

/
Fig. 2 Schematic of two possible rod positions at the first possible
brush time, -I,

and the last a term due to "convection." Integration of (4)
gives an expression for the height hAP of point A above P,

hAP(t) = ut tan <Ait -gt2 /2 + C. (5)

Having chosen t = 0 when the rod c.m. is above P we denote
by tb the time of brush. We note that tb mayor may not be
zero. When tb ;c 0, then, by symmetry, brushes occur at both
tb and -tb' but when tb = 0 there is only one brush. Because
of the symmetry assumed, various times introduced in the
following enjoy a symmetry similar to that just described for
lb. For example, the take-off time tt, while actually negative,
has the same magnitude as the time of landing. To minimize
unneccessary confusion resulting from signs of these quan-
tities, the times (tb' tt, etc.) are taken in what follows to be
positive whenever possible.

Because hAP(tb) = 0, the constant C in (5) may then be
evaluated with the result that the geometric height loss (i.e.,
the height of the rod c.m. above point P at its zenith) is given
by

hAP(O) = hop = I: = C=gtb2 /2 -utb tan ",tb' (6)

The label "geometric height loss" is somewhat of a misnomer
since, by definition, P is as high as possible. Yet it focuses the
idea that, as is shown in what follows, it is generally optimal
for A and P not to coincide (I: ~ 0). In addition, the label
distinguishes between "geometric height loss" and the height
that is lost because kinetic energy is associated with rotation
and horizontal translation rather than only with vertical
translation. .

Now the height of point 0 is known from energy con-
servation and take-off conditions; at take-off t = 1" vy = v
so that

under the influence of gravity in a vertical plane from an
initial position which has at least one point of the rod in
contact with the horizontal ground plane. Denote by P the
fixed point (as yet unknown) with greatest height cleared by
all points of the rod. This would be the position of the
crossbar in an optimal high jump. Although the case with d ~
//2 can be studied [I], in what follows we pick the simplest
geometry, d = //2.

Define an xy coordinate system with origin at 0, the (also
unknown) zenith of the parabolic trajectory of the rod center
of mass (c.m.) as shown in Fig. 1, and let t = 0 when the c.m.
is at O. Note that 0 must be either coincident with or above
point P.

The final assumption concerns the symmetry of the optimal
trajectory; the rod is taken to be horizontal when its center lies
directly above P. This assumption is motivated from physical
intuition and, based on a preliminary numerical study not
reported here, is felt to be valid except possibly for extremely
small initial kinetic energies. In this preliminary study the
value of /J at t = 0 was allowed to vary freely together with the
remaining variables to be discussed in the following and was
always found to be zero.

Because of the choice of t = 0 when the c.m. is at x = y =
0, we may write particularly simple expressions for the
velocities and positions of the c.m.

vx=u=constant Vy= -gt (1)

gt2

I. 2
ho= 2 Sin ",11+v 12g. (7)

Further, the initial kinetic energy is divided into three parts

T=mu2/2+mv2/2+1",2/2 (8)

which provides an expression for the elimination of v in what
follows.

Now the object must be to maximize the height hp which,
using (6), (7), and (8), is given by

hp = hO-E

I .2= 2 Sin ",t, + Tlmg-u 12g

-1",2/2mg -[glb2 12 -Ulb tan "'lbJ. (9)

Defini!lg dimensionless variables (denoted Qy -) T =
TI!!!8:/, I = limP, E = Ell, Ii = uI-/Tg, fj = vl..Jlg, c;, =
UJVIIg, (I = 1,.fi7I, and (b = Ib ,.Jg11, we notice that (1)

evaluated at II implies that fj = (I. The dimensionless height
cleared hp = hpll can then be written as

hp=T+(sin wtl-li2-1w2..:.tb2)/2+litb tan wtb. (10)

x=ut (2)Y=-~
2

and the rod orientation

8=(,)t. (3)

An Expression for the Height Cleared

From the definition of P. it is clear that the rod must touch
(brush) P from above at least once during the motion (or else
P would be able to be moved up, a contradiction). Consider
now the point A on the rod (or rod extended) which lies
directly above P and which varies throughout the rod during
the motion. From kinematic considerations, we can write the
vertical velocity of A as

hA = -gt+u tan CJJt+UCJJt sec2 CJJt (4)

the first term being the velocity of the rod c.m., the second the
vertical component of the velocity of A relative to the c.m.,
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Fig. 4 t, [solution space decomposes into two regions where interior
brushes (/) and end brushes (/lJ are optimal, respectively

In (10), the four independent variables w, ii, tb' and tf are
to be chosen to maximize hp, for given values of the
parameters T, i and subject to certain constraints. One of
these constraints is the dimensionless form of (8) with v
eliminated using (1),

2T=iw2+ii2+t!. (11)
The remaining constraints on the independent variables

arise from considerations that insure that a particular optimal
solution w, ii, tb' t, results in a physically meaningful
trajectory which passes over point P. The first of these is
concerned with the fact that the brush time fb in (6) is not
completely arbitrary. We require that brush must occur at or
after take-off (because this model treats only the airborne
portion of the motion), which implies that the brush time
must satisfy the inequality constraint

tb s t, (12)
Next we realize that brush can occur only at a time when the

c.m. is on or within a circle of radius 1/2 about point P.
Defining the last (for fb >0) possible brush time, f" to be that
time when the c.m. is on the above circle, we have from
geometry that

where I, is related to the independent variables U, (;j, and Ib by
(15) and (16).

Whether or not constraint (17) is active turns out to be one
of the most interesting features of the solution. In fact, the
existence of a fourth constraint depends on the activity of
(17). Obviously, tb <t, corresponds to a brush in the interior
of the rod, hereafter called an interior brush, while when tb =
f{, brush occurs at the end of the rod. The position of the rod
in these two cases, at time -t" is shown in Fig. 2. In the
former case, point A approaches P from above, brushes P,
and then departs from P from above, as illustrated
schematically in Fig. 3(b). Here, clearly, hAP(tb) =0.
However, in an end brush on the way up, it is possible for
point A (on the rod extended) to be below P until the first
possible brush time -t" after which point A is above P. This
implies that hAP(tb) 2:0 when tb <0. This is illustrated in Fig.
3(0). When the positive brush time is considered, i.e., the
brush on the way down, tb >0 and hAP(tb) $0. The preceding
possibilities can be expressed in terms of dimensionless
quantities as

if I, -Ib >0 then hAP(lb) = -Ib

+utan(;jlb+u(;jlbsec2(;jlb=0, (180)
or else I, -Ib =0 and -Ib + u tan (;jIb

+ U(;jlb sec2 (;jIb $0

for I, >0, Ib >0.

(ISb)

(y(tJ + e)2 +X2 =[2/4. (13)

The two cases of a first possible brush and an interior brush,
defined in what follows, are schematically illustrated in Fig.
2.

Using relations (2) and (6) to eliminate y and x, and non-
dimensionalizing (13) gives

(/1/2-E)2 + (iil,)2 -1/4=0 (14)
a quadratic in II. Thus, the dimensionless last possible brush
time is given by

1/2

(15)

where

Interior brushes can be further decomposed into two
subclasses: central and noncentral. Consider (18a), the
dimensionless form of (4). qbviously, the tangent term
eventually dominates making JiAp liirj,e and positive. Also,
for all parameter combinations, hAP(O) = O. Fo! some
parameter combinations, however, (when CJu 2: 1/2), tb = 0 is
the only zero of (18a) and the JiAp versus t curve has only one
minimum (at tb = 0), as shown in Fig. 3(c). Large CJ and u
represent energy that cannot be channeled into Ii and hence
result in a lower peak height for the c.m. Thus, from these
considerations, it is seen that values for the parameters CJ, U
for which the product 2CJu> I cannot be optimal. Indeed, in
the numerical solutions discussed in what follows this was
verified.

The optimization problem can now be summarized as
follows: maximize hI' (C;, ii, (/J, (,) given by (10) for given t
and j and subject to constraints (II), (12), and (17) augmented
by (IS), (16), and (18). Note that all constraints are in terms of
the independent variables CJ, ii, tb' t, and restrict the possible

e=tl/2-utb tan ~tb' (16)

Therefore, the second inequality constraint that the actual
brush time must satisfy is

tb st, (17)
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problem is an example), such methods have become much
more efficient and reliable, to the point where reasonable
results are possible using routines from software libraries [4].

The numerical solutions presented in the following were
calculated using a computer program written by one of us
(J. T.) based on sequential augmented Lagrangian method [3].
Since the computations are necessarily exceedingly detailed, a
check was made using an entirely different computer program
using the canned subroutine E04VBF from the Numerical
Algorithms Group software library NAGLIB [4]. This
subroutine is also based on a sequential augmented
Lagrangian method and utilizes analytic expressions for the
derivatives of the objective function.

For a time it was felt that an additional constraint on the
curvature of the geometric height lost,

hAP(tb)~O,
might be needed to insure that the object passed over rather
than under P. This was not found necessary, however, since
when the initial guess for the solution was a feasible one
(resulting in a trajectory that passed over P and for which

hAP(tb) >0)
the search never passed the hyperplane

hAP(tb) =0

and the eventual optimal solution always satisfied this most
fundamental constraint.

The conditional nature of constraint (18) was handled in the
following way. The entire problem was solved twice, once
assuming constraint (17) to be inactive and once assuming (17)
to be active. ln the former case (case 1), equality constraint
(180) was used. In the latter case (case 11), inequality con-
straint (18b) was applied. The final solution was then taken to
be the one that yielded the maximum objective !u~ction.
Optimal solutions were generated on a grid in the T, I space
over the range 0.0< t<4.0 at 0.2 intervals and for three
values of I; 0, 0.0833 = 1/12 (a homogeneous thin rod), 0.25
(a double point mass dumbbell with half the mass at either
end). Note that while t is theoretically unlimited, I, is
restricted by geometry to lie in the range 0 < j <0.25. In Figs.
5-9, results are shown parameterized for only these values of
I, the two limiting cases, and a nominal intermediate value.

As shown in Fig. 4, one of the features of the solution is
that the t, I space decomposes into two regions (I and 11)
where brush occurs in the interior and on the end of the bar,
respectively. Interestingly, on the t, j grid that was in-
vestigated, a central brush with E = 0 was never found to be
optimal, In region II, the c.m. can reach its peak significantly

v

0 1.0 2.0 3.0

T
Fig. 7 Optimal v and ii versus t with r as parameter

4.0

optimal solutions to a subset of the w, ii, Ib' It parameter
four-space.

Numerical Solutions
Although the nonlinearity of the objective function (10)

poses no problems, the rather complicated nature of the
constraints motivates the use of numerical techniques to
compute the solution. Over the last decade or two, dramatic
advances have been made in the development of numerical
methods and software for optimization [2, 3]. Even in the
most complicated problem category, optimization with
nonlinear inequality constraints (of which the present
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(analogous to the one in Fig. 6) corresponding to the case
where all initial kinetic energy is associated with vertical
motion. As noted previously, Ii = -(t, so the Ii curves in Fig.
7 can also be viewed as plots of half the time of flight. At low
energies, the three Ii curves for different i are rather
widespread, but they converge at higher energies, and thus the
time of flight and maximum c.m. height become insenstive to
moment of inertia variations at high energies. They also
approach the boundary
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above the bar with relatively large geometric height loss, E >
0.06.

Figure 5 shows the geometric height loss E versus T. The
corners of the curves correspond to the boundary between
regions I and II in Fig. 4. For a given energy T, the geometric
height loss E increases as i increases, as would be expected
since, for a given angular velocity, more energy must be
stored in rotational motion. Yet an interesting fact is that even
with i = 0, corresponding to a rod with negligible mass except
at the c.m. and essentially no rotational energy storage, the
optimal solution is still driven by geometric factors. It
predicts nonzero horizontal velocity u (see Fig. 7) and less
cleared height than would be predicted from a pure energy
balance. For nonzero i, there is an energy at which the
geometric height loss is a minimum, with E rising steeply for
very small T and more gradually for large T. The geometric
height loss can be larger than E = 0.05 when i = 0.25 and T
< 0.2 or T> 3.0.

Shown in Fig. 6 is the optimal objective function, hp, the
maximum height clearable with given energy T and geometry
i. As is apparent, the percent deviation from the upper
bound, hp = T + 0.5 representing the maximum achievable
c.m. height, is largest for small energies Tand larger i. For T
= 0.4 and i = 0.25, the maximum height clearable is less than
50 percent of the height achievable by the c.m. if clearance
were not required. For large energies (T>4.0), the optimal
height cleared becomes insensitive to i and the three i curves
coalesce. This happens significantly below the hp = T + 0.5
boundary, however, since both the geometric height loss and
the horizontal and rotational kinetic energies required are
substantial. Cusps similar to those in Fig. 5 are not apparent
in Fig. 6, however.

The four important control parameters, Ii, U, (Jr' W
(governing take-off conditions completely) are shown in Figs.
7 and 9. Figure 7 plots ';!ertical and horizontal take:off
velocities Ii and u versus T and shows that for given T, Ii
decreases as j increases and more rotational energy is
demanded. Also shown is an upper bounding curve
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v = ..fiT.

Thus, the percentage of kinetic energy wasted in rotation and
horizontal translation gradually decreases as t increases. In
the low energy case, the smaller times of flight require larger
angular velocities (see Fig. 9) for clearance and thus larger
rotational kinetic energies, especially for large i.

Also shown in Fig. 7 is the horizontal velocity Ii. As t
increases ii also becomes increasingly less sensitive to both i
and t, but at a given t, ii increases with increasing i. This can
be understood by remembering the role of ii in the expression
(180) for hAP. As the product ii~ approaches 0.5, the hAP
profile becomes flatter and more like Fig. 3(c), thus
decreasing E. Thus, there is an incentive for the product ii~ to
remain reasonably near 0.5.

Note that, since v = (I' the dimensionless initial x position
of the center of mass, the only remaining take-off parameter
not yet discussed, can be computed from XI = -iiv. Figure 8
shows XI versus t. As is clear from the figure, -XI gradually
gets larger with increasing t but is quite insensitive to i.
Indeed, it was impossible to discern, within the accuracy of
our numerical solutions, any regular variation of XI with i.
Thus, only one curve is plotted.

Figure 9 portrays the rotational aspects (~ and 91) of the
optimal trajectories. For small t and especially for large i,
the small take-off angles 91 imply that a rather severe com-
pensation (a sacrifice in initial c.m. height) must be made to
decrease the required rotational kinetic energy. For large
energies, however, the take-off angle becomes insensitive to
both t and i, remaining in the region slightly greater than
vertical (11"/2).

For low energies t< 1.0 and nonzero moments of inertia i,
the angular velocity ~ reaches a maximum value. Below this
point there is simply not enough kinetic energy available to
allow large ~, while for larger energies t more time is
available to achieve a horizontal attitude at the zenith and
hence large angular velocities (and large rotational kinetic
energies) are not needed. Thus, as t increases beyond 1.0, ~
decreases continuously and becomes, as do all other variables,
less sensitive to i.

Summary and Conclusions
For the first time, an expression has been derived for the

height cleared by an object in terms of the parameters that
describe the object and its initial conditions and which ac-
counts for the fact that any point in the object may limit the
height cleared. Numerical nonlinear optimization techniques
were used to maximize this transcendental expression subject
to both equality and inequality constraints arising naturally in
the problem formulation. Although a simple extent model for
the object was used, similar techniques could be used for the
solution in the case of more complicated body shapes.

Important aspects of the optimal solution are the following:

1. For given initial energy, the maximum height cleared by
an object is less for larger moments of inertia and in the
case of low energies can be less than half of the
maximum achievable c.m. height for the same energy.

2. The t, i space decomposes into two regions where the



usually considerably less than 1.0 and the moment of inertia i
is probably near 0.083.

References

I Hubbard, M., and Trinkle, J. C., "Optimal Initial Conditions for the
Eastern Roll High Jump," in: Biomechanics: Principles and Applications,
Huiskes, R., Van Campen, D. and DeWijn, J., eds., Martinus Nijhoff, The
Hague, 1982, pp. 169-174.

2 Gill, P. E., and Murray, W., eds., Numerical Methods for Unconstrained
Optimization, Academic Press, New York, 1974.

3 Gill, P. E., Murray, W., and Wright, M. H., Practical Optimization,
Academic Press, New York, 1981.

4 NAG Fortran Library Reference Manual (Mark 8), Numerical Algorithms
Group Limited, Oxford, England, 1981.

5 Hubbard, M., and Trinkle, J. C., "Optimal Fosbury-Flop High Jump-
ing," Proceedings of the Ninth International Congress of Biomechanics,
Waterloo, Ontario, Canada, Aug. 1983, in press.

brush characteristics differ qualitatively. Roughly
speaking, for energy-inertia combinations satisfying t
+ 1.5 1>3.3, it is optimal to brush the highest point
with the end of the rod, while when t + 1.51<3.3, a
brush in the interior of the rod is optimal.

3. It is always optimal for brush to occur at times other
than when the c.m. is at its zenith O. Thus the highest
point P cleared always lies below O. This geometric
height loss is a complicated function of the initial energy
and can be more than 7 percent of the rod length when
t~4andl=O.25.

A specific application of the general theory presented in this
paper is to a rather simple model of Fosbury-fiop high
jumping [5] where the jumper moves more or less in a plane
perpendicular to the crossbar. In this case, the energies tare
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