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Abstract— In this paper we develop a systematic topological
approach to motion planning for a planar 2-R manipulator
with point obstacles. By considering components in the free
space for the second joint as the first joint varies, we build
a two-dimensional array representing the cells of the free
space and an asociated graph representing the boundaries of
those cells. Using this graph, we derive a closed formula for
the number of components of the free space. At the same
time we solve the motion existence problem, namely, when
are two arbitrary configurations in the same component? If
so, we develop two explicit algoritms for constructing the path
- a middle path method and a linear interpolation method.
These algorithms give complete solutions to the path planning
problem. Extensive examples are worked out which verify the
correctness and efficiency of the resulting program. Then we
briefly discuss how these methods generalize to a3-R planar
manipulator.

I. I NTRODUCTION

Three of the major problems in path planning for a
robotic manipulator with obstacles are : (i) Determine the
path components in the space of collision free configura-
tions? (ii) Determine when two arbitrary points are in the
same component? (iii) If they are in the same component,
plan a path connecting them in the space of collision free
configurations.

The most general motion planning scheme is the
roadmap method, developed by Canny [1]. This method
is exact and complete. However, its complexity is expo-
nential and it has never been successfully implemented for
practical examples. A more practical method is the Prob-
abilistic Roadmap Method (PRM) [3], which is, however,
not complete. [4], [6] employed topological methods for
generating configuration space obstacles for path planning,
while [5], [7] directly computed analytically the boundary
of configuration space obstacles. Maciejewski and Fox [11]
proposed a simple test for determining the connectedness
of two configuration space obstacles, based on which a
collision-free path was calculated.

The goal of this paper is to provide a closed form
solution to Problem (i) and polynomial time algorithms
for Problems (ii) and (iii) for a planar 2-R manipulator
with point obstacles satisfying some weak assumptions. A
minimal cell decomposition of the free configuration space
is algorithmically constructed so that the boundaries of
the cells are exactly the configurations that collide with
the obstacle set. Thus the open cells are the components
of the configuration space of collision free configurations.
Next, methods from algebraic topology are applied to solve
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Fig. 1. (a) A planar2-R manipulator with point obstacles (b) A triangle
oAp forms when link2 collides withp

problems (i) and (ii). Simulations of various examples
verify our approach.

II. CALCULATION OF THE NUMBER OF COMPONENTS

In this section, we prove several important properties of
the free configuration space of a planar2-R manipulator
with point obstacles. The end result is a closed formula for
the number of components of the configuration space.

Let φ1, φ2 be the angles of the two joints, andl1, l2 be
the link lengths of the manipulator as shown in Fig. 1-(a).
If we ignore point obstacles, the configuration space of the
manipulator is simply a torusT 2 = S1 × S1 . A rectangle
[−π, π]×[−π, π] with the parallel boundary lines identified
can be used as a picture forT 2. Suppose that the workspace
of the manipulator contains a finite set of point obstacles
O = {p1, p2, · · · , pn}. The configurations that intersect
the point obstacles form an arrangement of curves inT 2.
We make the following assumption for convenience. It
gives a maximally complex situation where all the collision
curves will be closed. When the assumption is weakened
the arrangement of curves becomes simpler. Some curves
open up, others disappear.

Assumption 1: l2 > 2l1 and 0 < lpi := ‖pi‖ < l1 for
all i. MoreoverO is a generic set of point obstacles, i.e.,
(i) no three points are collinear; (ii) IfS is the set of lines
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Fig. 2. The collision curve whenlp < l1

that contain2 points ofO, then the point of intersection of
any two lines inS does not lie on the circle of radiusl1
about the origin.
Let Vpi

be the collision curve which consists of all the
configurations where the manipulator intersectspi. Vpi is
the union of two curves, the first a circle, whereφ2 is
arbitrary andl1 intersectspi, while the second also a circle
consisting of all configurations wherepi intersectsl2. These
two circles have a single point in common. It is direct to
give equations for these curves. Fig. 2 gives an explicitVpi .
Taking account of the identifications of the parallel edges,
this graph represents two circles with common point on the
x-axis, i.e., a “figure 8” orS1 ∨ S1.

A. A Key Property ofVpi

Let CVpi
be the complement ofVpi on T 2, i.e., CVpi

=
T 2 − Vpi .

Proposition 1: CVpi
is the product of two open inter-

vals.
Proof: The projection ofCVpi

to the φ1 axis will be the
intervalS1−{θ1}, whereθ1 is the angle of the first joint for
which the first link lies on the line joiningpi to the origin.
For eachφ1 ∈ S1 − {θ1}, there is only one configuration
(φ1, θ2) at which the second link of the manipulator will
collide with pi. Therefore, the inverse image ofφ1 will be
an open intervalS1−{θ2}. This decomposition is locally a
product so the total space ofCMpi

fibers over the interval
with fiber an interval. Since any fibration over the interval
is a product of the fiber with the interval, the proposition
follows. ¤

Remark 1: This result generalizes directly tom-R ma-
nipulators as long as for every configuration of the first
m − 1 joints, there is an angle for the remaining joint so
that that link will pass throughpi. The complement ofCVpi

on Tm = S1 × · · · × S1 will be the direct product ofm
open intervals, andVpi will be the m− 1-skeleton ofTm,
the union of them coordinatem− 1 torii of Tm.
By Proposition 1, we know that if there is one point
obstacle, the number of components ofT 2 − Sing is one
becauseT 2 − Sing is connected. Of course, things change
considerably when there are multiple point obstacles.
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Fig. 3. Fixing the first joint and rotating the second joint counterclock-
wise, the manipulator hitO n times
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Fig. 4. Fixing the first joint and rotating the second joint counterclock-
wise, the manipulator hitO n-1 times

B. Counting the Number of Components

Define the singular set,Sing ⊂ T 2, as the set of all
configurations of the manipulator that contain at least one
obstacle ofO. Clearly,

Sing = ∪iVpi .

Sing is a graph given as a union of circles inT 2 but will be
a union of sub-tori,Tm−1, in Tm. To compute the number
components ofT 2−Sing, we proceed as in the proof above.
We projectT 2 − Sing onto S1, π1 : T 2 − Sing 7→ S1 by
(θ1, θ2) 7→ θ1. The image,B ( S1, consists ofn disjoint
open intervals,B = S1 − {θ1,1, · · · , θ1,n} whereθ1,i, i =
1, · · · , n, is the angles of the first joint when that link1
containspi. Now, we look at the inverse image ofπ1 over
each point ofB.

Proposition 2: Under Assumption 1, there are exactly
n(n − 1) points φj ∈ B over which the inverse image,
π−1

i (φj) consists ofn − 1 open intervals. For all the
remaining pointsφ ∈ B, π−1

1 (φ) consists of exactlyn open
intervals.
Proof: When the angle of the first joint is constrained
to be φ1 ∈ B, as φ2 varies from 0 to 2π the second
link will, in general, hitO exactly n times as shown in
Fig. 3. However, whenφ1 is the angle made by one of
the n(n − 1) intersections of the circle about the origin
traversed by the endpoint of the first link with the

(
n
2

)
lines through two distinct points ofO, there will only be
n− 1 angles,φ2, where the second link intersectsO. See
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Corollary 1: Let C ( B be the set of angles,φ1, where
π−1(φ1) is not equal to(n− 1) open intervals. ThenC is
a disjoint union of

(
n+1

2

)
open intervals andπ−1(C) fibers

over C with fiber n open intervals.¤
Since a fibration over an interval is a product, it follows

thatπ−1(C) is the product ofn intervals with
(
n+1

2

)
inter-

vals, orπ−1(C) is exactly the disjoint union ofn× (
n+1

2

)
open rectangles.

What happens at one of then(n− 1) points where there
are (n − 1) intervals in the inverse image, as Fig. 5 and
Fig. 6 show, is that one component ends on each side, and
the remainingn − 1 components extend across the line.
The procedure indicated in Fig. 5 and Fig. 6 allows us to
replaceT 2 − Sing by a union of open curvesG together
with a projectionp : G −→ B.

To obtain these curves, each open interval inπ−1(B) is
replaced by a point, - perhaps thought of as the midpoint of
that interval - so each inverse image is replaced by eithern
or (n− 1) distinct ponts. Moreover, replacement points in
the inverse images of nearby points ofB are close together
if and only if the intervals they correspond to lie in the same
component ofT 2 − Sing. Note that the set of components
of G is exactly identified with the set of components of
T 2−Sing. In fact,G is a deformation retract ofT 2−Sing.

As an example, we consider the components pictured
in Fig. 5 and Fig. 6. Here, the curves in Sing are labeled
1, 2, 3, 4, and the components in the inverse image of
theφi ∈ C are labeled by the two curves that bound them,
choosing the orientation going from top to bottom, so in
the first region the labeling is[4, 1] for the region that
contains the point on thex-axis, which is identified with the
point wherey = 2π at the top, while[3, 4] represents the
component that pinches off atφ1,1. In the second region the
labeling of the region containing thex-axis is [3, 1], while

φ
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φ
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[a,b] means curve a intersects with curve b at this point

1  2 1  41  2
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Fig. 6. A two-dimensional array representing the relations between
components in Fig. 5
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the region on the other side of the pinch is labeled[4, 3].
The named regions over each segment ofC are joined by a
line if they are represent the same component. Otherwise,
the line is broken. Note that they represent the same region
if at least one of the two ordered coordinates is the same,
and a break occurs when the two coordinates are the same,
but the order reverses, as happens with[3, 4] in the first
region and[4, 3] in the second.

From Fig. 6, we see that the number of components
above an interval inB is n + ki with ki being the
number of intersections between collision curves which lie
in this region. Whenever two collision curves intersect in
this region, the number of components increases by one.
Since there aren open intervals inB, andn(n − 1) total
intersections the total number of components ofT 2−Sing
is

∑n
i=1(n+ki) = n2 +

∑
i ki = n2 +n(n−1) = 2n2−n.

Theorem 1: If Assumption 1 is satisfied and we ignore
self-intersections, then the number of components ofT 2−
Sing is 2n2 − n. The number of components when self-
intersections are not allowed is2n2 + n.
Proof: It suffices to take self-intersections into account.
Self-intersections give rise to a single additional curve,γ,
in the singular set. It is easily seen that the coordinates
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Fig. 8. Vpi is an arc forl2 + l1 > |pi| > l2 − l1

on γ (φ, φ + π), and for eachpi ∈ O there are exactly
two φ so that the configuration(φ, φ + π) contains
pi. Consequently, each of theVpi

intersectsγ exactly
twice, and the number of components now becomes
n(n + 1) + n(n− 1) + 2n = 2(n2 + n), since, except for
n(n − 1) + 2n points of B the number of components
over each point is nown + 1. ¤

Example 1: Number of components when there are
1 or 2 point obstacles satisfyinglpi < l1
Consider the case of a2-R manipulator subject to1 point

obstacle satisfyinglp1 < l1. Suppose Assumption 1 is
satisfied. Then the number of disconnected components will
be 2 + 1 = 3, as shown in Fig. 7. If there are2 obstacles
satisfying lp1 , lp2 < l1, and o, p1, p2 are not in the same
line, then this number will be2 · 4 + 2 = 10.

Weakening Assumption 1. Suppose that some of the
pi ∈ O, (still in general position), lie outside of thel1-circle
(but at least one lies inside). Ifpi ∈ O satisfiesl1 + l2 >
|pi| > l1, thenVpi is a single circle whenl2−l1 > |pi| > l1
and otherwise is an arc bounded by the two configurations
where the end-point ofl2 equalspi as Fig. 8 illustrates. If
it is a circle, then each point ofB has exactly one point
of Vpi over it. If it is an arc, the two anglesφ1 for the
bounding points have to be added to the special points in
B, since, at these angles, the points ofVpi will only exist
on one side.

The previous analysis is changed in two ways. First one
has to explicitly determine, for allpi 6= pj ∈ O with l1 +
l2 > |pi| > l1 the structure ofVpi ∩ Vpj .
• This intersection will be empty if the line joiningpi

andpj does not intersect thel1-circle, or if it intersects
it in two points, both of which liebetweenpi andpj .

• It will consist of 2 points if the line intersects the
l1-circle in two points, both of which lieoutsidethe
segment betweenpi andpj .

• Otherwise, it will consist of1 point.
The second way in which the analysis changes is that the
graph in Fig. 6bifurcatesat the first boundary point of the
Vpi -arc, andamalgamatesat the second. See Fig. 9

III. A LGORITHM FOR THEEXISTENCE PROBLEM

Now that the components have been determined, the next
step is the motion planning existence problem:
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Problem 1: Motion planning existence problem
Given two arbitrary configurations of the manipulator

φ(0) = (φ1(0), φ2(0)) and φ(T ) = (φ1(T ), φ2(T ), both
in T 2− Sing, determine whetherφ(0) andφ(T ) are in the
same component.
In this section, we construct an efficient algorithm for Prob-
lem 1 withn point obstacles. We assume that Assumption 1
is satisfied. In the previous section, we constructed an array
and an associated union of curves. Using this construct,
we can assign numbers to nodes of this array to label the
distinct components. denote theith row, jth column node,
asArray[i, j]. The graph allows us to associate a compo-
nent field,comp, to each node, numbered lexicographically.
Using Fig. 6 as an example we have

Array[1, i].comp = 1 , i = 1, · · · , 4
Array[2, 1].comp = 2 , Array[2, 2].comp = 2
Array[2, 3].comp = 3 , Array[2, 4].comp = 3
Array[3, 1].comp = 4 , Array[3, 2].comp = 5
Array[3, 3].comp = 5 , Array[3, 4].comp = 6
Array[4, i].comp = 7 , i = 1, · · · , 4.

Given φ(0), φ(T ) ∈ T 2− Sing, we initially check whether
their first coordinates lie in the same component ofB.
If not, they are not in the same component. If so, we
check the array to find their respective components.φ1(0),
φ1(T ) determine the columns in the array, whileφ2(0),
φ2(T ) determine the rows. Checking the assigned numbers
answers Problem 1. A general algorithm that ignores self-
intersections is summarized as follows, though the self-
intersections are easily accounted for by simply using the
associated array with the self-intersection curve considered
as well as theVpi .

Algorithm 1: Algorithm for the Existence Problem

Input: n point obstaclespi, i = 1, · · · , n, a
planar2-R manipulator satisfying Assumption 1,
and two arbitrary configurationsφ(0) and φ(T )
representing, respectively, the initial and final
configurations;
Output: True if the two configurations are in the
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same component, otherwise, False
Step 1: Determine the components inB that
containφ(0) and φ(T ) by comparingφ1(0) and
φ1(T ) with the θ1,i. If they are not in the same
interval, return False and stop;
Step2: If they are in the same interval, return the
pair (θ1,i, θ1,i+1) that determines the interval;
Step3: For this interval calculate the intersection
points, i.e., all the intersections of the lines con-
necting two distinct points ofO with the interval
θ1,i < φ < θ1,i+1. For each intersection point,
record the angles

Insc(i).φ = (φ1, φ2)

and the intersection points in questionpi, pj are
stored asInsc(i).index(1), Insc(i).index(2) ∈
{1, · · · , n} with the closer point stored in
index(1). (Forφ slightly less thanφ1, the second
coordinate of the configuration(phi, φ2) that in-
tersects the point inindex(1) will be lessthan the
corresponding angle for the point inindex(2).);
Step 4: Sort all the intersection points in this
interval onφ1;
Step5: If there arem intersection points in this
interval, construct the associatedn×(m+1) array:
Array.
Step 6: Fix φ1 ∈ (θ1,i, φ1,1), and calculate the
order in which link2 hits then point obstacles
when it rotates counterclockwise;
Step 7: For i = 2, · · · ,m, write down, suc-
cessively, the order for these columns. Simply
change the order of the previous column by per-
muting the two indices inInsc(i).index(1) and
Insc(i).index(2);
Step 8: Label the nodes ofArray according to
Fig. 6;
Step9: The labels at nodes in successive columns
will agree if at most one number between two
respective labels is changed. Otherwise, if the
order of the labeling pair is reversed, the node
in the new column will receive a new component
label;
Step10: Identify the nodes corresponding to the
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φ1,2
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φ(Τ)

2         3 2         4

Fig. 11. Cell Structure

initial and final configurations. If the associated
labels are the same, they lie in the same com-
ponent andtrue is returned. Otherwisefalse is
returned.

It is not difficult to see that steps7 and 10 take the most
time. Since the number of intersection points in a givenB
component is2(n2−n/n) = n−1 on average, the average
complexity of the above algorithm will beO(n2). Table I
shows the computation time with respect to the number of
point obstacles.

No. of point obstacles 2 4 6 8
Computation time (s) 0.031 0.047 0.0620 0.0630
No. of point obstacles 10 20 30 40
Computation time (s) 0.0780 0.1090 0.2970 0.7970

TABLE I

COMPUTATION TIME FOR DIFFERENT NUMBER OF POINT OBSTACLES

Example 2: A Planar 2-R Manipulator with 8 Ob-
stacles
First we apply Algorithm 1 to the system with the following
point obstacles:

p1 = [−7.3222, 1.1544]T , p2 = [3.2630, 7.5101]T

p3 = [4.0698, 3.8988]T , p4 = [−1.1067, 2.1812]T

p5 = [4.9228,−6.7600]T , p6 = [7.2367, 6.7572]T

p7 = [1.6568,−4.0035]T , p8 = [6.0669, 0.2177]T .

and link lengths,l1 = 10 and l2 = 20. Algorithm 1 gives
that

φ(0) = [−1.5, 2.5]T , φ(T ) = [−3,−3]T

are in the same components, while

φ(0) = [−1.5, 2.5]T , φ(T ) = [−2.6, 1.05]T

are in different components. Fig. 10 helps explain this.



IV. A LGORITHMS FORPATH PLANNING

In this section, we will develop two algorithms for
planning a path fromφ(0) to φ(T ) when they are in the
same component.

In the previous section, Algorithm 1, constructs a two-
dimensional arrayArray for each component ofB. Given
any point in this region, there is a unique node inArray
corresponding to the component that contains the poin.
In fact, as shown in Fig. 5, Fig. 6, Fig. 9, each node of
Array represents a cell-like,1 region in T 2 − Sing, (or
T 2 − Sing −W , whereW represents the self-intersection
curve). The connecting lines between nodes show that the
two regions have a common arc on their boundaries.

For example, Fig. 11 shows one component of Fig.
5, which is the union of two of these regions. The
two cells-like regions are represented byArray[2, 1] and
Array[2, 2], respectively. They are connected since there
is a line segment connecting them, as shown in Fig. 6.
With this in mind we next describe how one can plan
a path linking the two pointsφ(0) and φ(T ) shown in
Fig. 11, whereφ(0) locates inArray[2, 1], and φ(T ) in
Array[2, 2].

A. Middle Path Method

Cell 1 (or Array[2, 1]) is labelled as(2, 3), which means
this cell is bounded from above byVp2 , and from below
by Vp3 . With the usual metric onT 2 − Sing, over each
pointφ ∈ B, each arc inπ−1(φ) has a unique mid-point,
and each of the cell-like regions has a smooth midpoint
curve. Moreover, these curves agree along the common arcs
between regions. Here is the local equation for this arc:

φ2 = atan2(p2(2)− l1sinφ1, p2(1)− l1cos φ1)
φ

2
= atan2(p3(2)− l1sinφ1, p3(1)− l1cos φ1)

φ2 =
φ2+φ

2
2 ,

for φ1 ∈ [φ1,0, φ1,1]T . Herep2, p3 ∈ R2 are the Cartesian
coordinates of obstaclesp2 andp3. Similarly, in cell 2 (or
Array[2, 2]) which is labelled(2, 4), the middle path will
be

φ2 = atan2(p2(2)− l1sinφ1, p2(1)− l1cos φ1)
φ

2
= atan2(p4(2)− l1sinφ1, p4(1)− l1cos φ1)

φ2 =
φ2+φ

2
2 ,

for φ1 ∈ [φ1,1, φ1,2]T . A path fromφ(0) to φ(T ) can be
constructed as follows: first move vertically fromφ(0) to
the mid-point of its arc inpi−1(φ1(0), then move on the
mid-point curve to a pointm with φ2(m) = φ2(T ), and
then move vertically toφ(T ).

We apply the mid-point algorithm to a case with10 point
obstacles in the workspace. The resulting path is shown in
Fig. 12.

B. Linear Interpolation

The path obtained using the mid-point curves is con-
tinuous, but not generally smooth when the curve crosses
between cell-like regions or where the mid-point curve
intersects the two verticals. We can remove these last two

1More exactly, each of these regions is contractible
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Fig. 12. Path planning using the mid-point curve
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breaks in the first derivative by using linear interpolation, so
that the paths from the intial and final points meet the mid-
point curve at the boundary with the next cell-like region
or further on.

We apply linear interpolation to another case with10
point obstacles in Fig. 13. Note that this path is still not
smooth at the intersections of cell-like regions. However,
it is routine to modify these curves near the intersection
points to make their derivatives agree to whatever level is
desired.

V. SHORT DISCUSSION OF THEGENERAL THEORY

Underlying the algorithms above is the use of Poincaré
duality to determine the number of components in an
oriented manifold,M , when a closed subset,X, is deleted.
The0-dimensional (singular) homology group of any space,
Y , H0(Y,R) has the formRn where n is the number
of path components inY . When M is a k-dimensional,
closed, oriented manifold with no boundary, andY =
M −X for X a reasonable, proper, closed subspace, then



H0(M − X,R) ∼= Hk(M, X,R). On the other hand, this
last group is determined by the exact sequence of the pair

· · · −→ Hn−1(M,R) −→ Hk−1(M,R) −→
Hk(M,X,R) −→ Hk(M,R) −→ 0

We can apply this forM = T 2 andX either Sing, orX =
Sing∪W . Moreover, under Assumption 1, the cohomology
map H1(T 2,R) −→ H1(X,R) has image a copy ofR2

from Proposition 1. Hence, the exact sequence becomes

0 −→ R2 −→ H1(X,R) −→ H2(T 2, X,R) −→ R −→ 0

since H1(T 2,R) = R2, and H2(T 2,R) = R. From
this it follows that H1(X,R) = Rn+1, where n is the
number of path components inT 2 − X. More generally,
if there is at least one pointpi ∈ O with |pi| < l1 then
the map H1(T 2,R) −→ H1(X,R) has imageR2. If
|pi| > l1 for all p1 ∈ O, but there is at least onepj so that
l2 − l1 > |pi| > l1, then the image isR. Otherwise, the
image is0.
An explicit method of determining an element inH1(X,R)
associated to two points inT 2 −X is to take any smooth
path, τ , between the two points so that its intersection
with X does not contain any points in the intersections
Vpi ∩ Vpj for i 6= j, and which intersectsX transversally.
(This is easily arranged since the intersections of the
curves in Sing orSing ∪ W are a finite set of distinct
points.) Any two such paths give a closed path inT 2, and
hence the difference between any two choices of path give
an element ofH1(T 2,R).

The intersection ofτ andX defines a homomorphism of
the 1-chains of the cell decomposition ofX (where the0-
cells are the intersections of the curves inX, together with
their boundaries, and the one cells are the components of
the complement of the0-cells) toR. This homomorphism is
given by assigning to each edge inX the sum of the number
of intersections of the path with the edge, each intersection
being counted as+1 or −1 depending on whether the
orientation at the point given by first taking the vector along
the path from the initial to final point and then the vector
at the edge given by a chosen but fixed orientation of the
edge, agree with the orientation ofT 2 or not.
This homomorphism represents a classγ ∈ H1(X,R), well
defined up to the image ofH1(T 2,R). Moreover, the two
points lie in the same component ofT 2 − X if and only if
γ ∈ im(H1(T 2,R)). This is somewhat non-intuitive, but is
a standard technique in mathematics. [12], [13] One thing
that may help is to notice that the only wayH1(X,R) > R2

is if there are at least two components inT 2−X - if there
is only one component, thenγ must lie in the image of
H1(T 2,R).
This theory extends without essential change ton-links,
n ≥ 3. The only difference is that calculations tend
to become quite long and involved, since the space of
configurations that contain points inO can become very
complicated for largern.

VI. CONCLUSION

This paper developed a systematic topological approach
to motion planning of a planar2-R manipulator with point

obstacles. By considering components of the configuration
space that lie above the indiviual pointsφ1, we constructed
a two-dimensional array representing the cells of the free
space and a graph describing the connected components.
Using this graph, we derived a closed formula for the
number of components of the configuration space under
Assumption 1, and then solved the motion existence prob-
lem.

When Assumption 1 is removed, we need to consider
cases where some collision curves are not closed. This is
done by the process pictured in Fig. 9.
If we add a link (3-link manipulators), we consider all
components above each 2-dimensional component in the
2-dimensional picture for the configuration space of the
manipulator consisting of only link1 and2. Two configu-
rations are in the same component only if when projecting
to the(φ1, φ2) space, they are in the same component, but
the inverse image of each point in each component is a
union of disjoint arcs. Where the numbers of arcs change
is when the endpoint of the first two links lies on one of the
lines connecting two distinct pointspi, pj ∈ O. Moreover,
the endpoint must lie on thesame sideof both points.
These give curves inT 2 that are, under weak assumptions,
circles that wind along the first coordinate. Two of these
circles intersect if and only if the two lines intersect in the
workspace of the first two links, but the determination of
the intersections of these circles with theVpi for the first
two links is more involved.
In a forthcoming paper, we will address these remaining
problems in detail.
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