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Abstract— In this paper we develop a systematic topological
approach to motion planning for a planar 2-R manipulator
with point obstacles. By considering components in the free
space for the second joint as the first joint varies, we build
a two-dimensional array representing the cells of the free
space and an asociated graph representing the boundaries of
those cells. Using this graph, we derive a closed formula for
the number of components of the free space. At the same
time we solve the motion existence problem, namely, when
are two arbitrary configurations in the same component? If
so, we develop two explicit algoritms for constructing the path
- a middle path method and a linear interpolation method.
These algorithms give complete solutions to the path planning
problem. Extensive examples are worked out which verify the
correctness and efficiency of the resulting program. Then we
briefly discuss how these methods generalize to &R planar S e
manipulator.

I. INTRODUCTION

Three of the major problems in path planning for a
robotic manipulator with obstacles are : (i) Determine the
path components in the space of collision free configurg';%b
tions? (ii) Determine when two arbitrary points are in the
same component? (iii) If they are in the same component,
plan a path connecting them in the space of collision frggoblems (i) and (ii). Simulations of various examples
configurations. verify our approach.

The most general motion planning scheme is the
roadmap method, developed by Canny [1]. This method!- CALCULATION OF THE NUMBER OF COMPONENTS
is exact and complete. However, its complexity is expo- In this section, we prove several important properties of
nential and it has never been successfully implemented tbe free configuration space of a plariaR manipulator
practical examples. A more practical method is the Prolyith point obstacles. The end result is a closed formula for
abilistic Roadmap Method (PRM) [3], which is, howeverthe number of components of the configuration space.
not complete. [4], [6] employed topological methods for Let ¢, ¢o be the angles of the two joints, aid I> be
generating configuration space obstacles for path plannitige link lengths of the manipulator as shown in Fig. 1-(a).
while [5], [7] directly computed analytically the boundarylf we ignore point obstacles, the configuration space of the
of configuration space obstacles. Maciejewski and Fox [L@janipulator is simply a toru? = S* x S! . A rectangle
proposed a simple test for determining the connectednéssr, 7| x [—, 7] with the parallel boundary lines identified
of two configuration space obstacles, based on whichcan be used as a picture f6F. Suppose that the workspace
collision-free path was calculated. of the manipulator contains a finite set of point obstacles

The goal of this paper is to provide a closed forn® = {pi,p2, -+ ,pn}. The configurations that intersect
solution to Problem (i) and polynomial time algorithmghe point obstacles form an arrangement of curve%in
for Problems (ii) and (iii) for a planar 2-R manipulatoWe make the following assumption for convenience. It
with point obstacles satisfying some weak assumptions.gles a maximally complex situation where all the collision
minimal cell decomposition of the free configuration spaceurves will be closed. When the assumption is weakened
is algorithmically constructed so that the boundaries dfie arrangement of curves becomes simpler. Some curves
the cells are exactly the configurations that collide witbpen up, others disappear.
the obstacle set. Thus the open cells are the componentdssumption 1: Iy > 2l; and0 < ,, := ||p;|| < {1 for
of the configuration space of collision free configurationsll i. MoreoverO is a generic set of point obstacles, i.e.,
Next, methods from algebraic topology are applied to sol{@ no three points are collinear; (ii) I§ is the set of lines

(@) (b)

1. (a) A planar-R manipulator with point obstacles (b) A triangle
forms when link2 collides withp



Collision curve when Ip<|1

@,

Fig. 3. Fixing the first joint and rotating the second joint counterclock-

. . wise, the manipulator hi© n times
Fig. 2. The collision curve whety, < [; P

that contair points of @, then the point of intersection of
any two lines inS does not lie on the circle of radius
about the origin.

Let V,, be the collision curve which consists of all the
configurations where the manipulator interseggtsV,, is

the union of two curves, the first a circle, whetg is
arbitrary and; intersectg;, while the second also a circle
consisting of all configurations whegg intersectd,. These
two circles have a single point in common. It is direct to
give equations for these curves. Fig. 2 gives an expligit
Taking account of the identifications of the parallel edges,
this graph represents two circles with common point on thég. 4. Fixing the first joint and rotating the second joint counterclock-
z-axis, i.e., a “figure 8" orSt v St wise, the manipulator hi© n-1 times

A. A Key Property ol B. Counting the Number of Components

Define the singular seing c T2, as the set of all

2 3 _
Let Cy,, be the complement oF,, onT7, i.e.,Cv,. = configurations of the manipulator that contain at least one

2
T° = V.. obstacle ofO. Clearly,
Proposition 1: Cy,is the product of two open inter- _
vals. Sing = U; V).

Proof: The projection ofCy, to the ¢, axis will be the gjng is a graph given as a union of circleszii but will be
interval S*—{6, }, where#, is the angle of the first joint for a union of sub-toriZ™~, in 7™ To compute the number
which the first link lies on the line joining; to the origin. components of % — Sing, we proceed as in the proof above.
For eachg; € S* — {61}, there is only one configuration ye projectT? — Sing onto S', 7,: T? — Sing — S! by
(¢1,02) at which the second link of the manipulator will(ghez) — 6,. The image,B C S, consists ofn disjoint
collide with p;. Therefore, the inverse image of will be open intervalsB = S — {01, ,01.,} wheref, ;, i =
an open intervab! — {6, }. This decomposition is locally a 1,---,n, is the angles of the first jdint when that link
product so the total space 6fy;, fibers over the interval containsp;. Now, we look at the inverse image of over
with fiber an interval. Since any fibration over the intervahsch point of3.
is a product of the fiber with the interval, the proposition Proposition 2: Under Assumption 1, there are exactly
follows. [J n(n — 1) points ¢; € B over which the inverse image,
Remark 1: This result generalizes directly t@-R ma- 7-!(¢,) consists ofn — 1 open intervals. For all the
nipulators as long as for every configuration of the firgemaining points € B, 77 *(¢) consists of exactly. open
m — 1 joints, there is an angle for the remaining joint sentervals.
that that link will pass through;. The complement of'y,  Proof: When the angle of the first joint is constrained
onT™ = S x ... x S! will be the direct product ofn  to be ¢; € B, as ¢, varies from0 to 2r the second
open intervals, and},, will be the m — 1-skeleton of7™,  |ink will, in general, hit © exactly n times as shown in
the union of them coordinatem — 1 torii of 7. Fig. 3. However, whenp; is the angle made by one of
By Proposition 1, we know that if there is one pointhe n(n — 1) intersections of the circle about the origin
obstacle, the number of componentsTof — Sing is one traversed by the endpoint of the first link with th&)
becausel™ — Sing is connected. Of course, things changénes through two distinct points aP, there will only be
considerably when there are multiple point obstacles. n — 1 angles,¢,, where the second link interseafd See
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Corollary 1: LetC C B be the set of angleg,, where
7~ 1(¢1) is not equal to(n — 1) open intervals. Thed is
a disjoint union of("$") open intervals and~*(C) fibers
over C' with fiber n open interval§]

Since a fibration over an interval is a product, it follows =
that7—1(C) is the product of: intervals with ("} ") inter- ‘
vals, orr~1(C) is exactly the disjoint union of x ("3") )
open rectangles.

What happens at one of th&n — 1) points where there  Fig. 7. 3 components for one point obstacle satisfylpg < {1
are (n — 1) intervals in the inverse image, as Fig. 5 and
Fig. 6 show, is that one component ends on each side, and
the remainingn — 1 components extend across the linethe region on the other side of the pinch is labejéd].

The procedure indicated in Fig. 5 and Fig. 6 allows us tbhe named regions over each segment'aire joined by a
replaceT? — Sing by a union of open curve§ together line if they are represent the same component. Otherwise,
with a projectionp: G — B. the line is broken. Note that they represent the same region

To obtain these curves, each open intervakint (B) is if at least one of the two ordered coordinates is the same,
replaced by a point, - perhaps thought of as the midpoint ahd a break occurs when the two coordinates are the same,
that interval - so each inverse image is replaced by eithetbut the order reverses, as happens With] in the first
or (n — 1) distinct ponts. Moreover, replacement points iegion and4, 3] in the second.
the inverse images of nearby points®fare close together From Fig. 6, we see that the number of components
if and only if the intervals they correspond to lie in the samgbove an interval inB is n + k; with k; being the
component ofl'? — Sing. Note that the set of componentsnumber of intersections between collision curves which lie
of G is exactly identified with the set of components oin this region. Whenever two collision curves intersect in
T? —Sing. In fact, G is a deformation retract &f? — Sing. this region, the number of components increases by one.

As an example, we consider the components pictur&ince there ares open intervals inB, andn(n — 1) total
in Fig. 5 and Fig. 6. Here, the curves in Sing are labelddtersections the total number of component§8f- Sing
1, 2, 3, 4, and the components in the inverse image & > ., (n+k;) =n®+Y, ki =n*+n(n—1) = 2n* —n.
the ¢; € C are labeled by the two curves that bound them, Theorem 1: If Assumption 1 is satisfied and we ignore
choosing the orientation going from top to bottom, so igelf-intersections, then the number of componentdof-
the first region the labeling i$4, 1] for the region that Sing is 2n? — n. The number of components when self-
contains the point on the-axis, which is identified with the intersections are not allowed 2.2 + n.
point wherey = 27 at the top, while[3, 4] represents the Proof: It suffices to take self-intersections into account.
component that pinches off &f ;. In the second region the Self-intersections give rise to a single additional curyg,
labeling of the region containing the-axis is[3, 1], while in the singular set. It is easily seen that the coordinates




Fig. 8. Vp, isan arc forla + 11 > |p;| > l2 — 11

on~ (¢,¢ + m), and for eachp; € O there are exactly
two ¢ so that the configuration¢,¢ + w) contains
p;. Consequently, each of th&,, intersectsy exactly
twice, and the number of components now becomespygplem 1: Motion planning existence problem

n(n+1) +n(n — 1) +2n = 2(n? + n), since, except for Gjven two arbitrary configurations of the manipulator
n(n — 1) + 2n points of B the number of COMPONENts () = (¢, (0), 2(0)) and ¢(T) = (é1(T), po(T), both
over each point is now + 1. [J in 72 — Sing, determine whethep(0) and¢(T') are in the
same component.

Example 1: Number of components when there are |, this section, we construct an efficient algorithm for Prob-
1 or 2 point obstacles satisfyingl,, <l ~ lem 1 withn point obstacles. We assume that Assumption 1
Consider the case of 2R manipulator subject té point s gatisfied. In the previous section, we constructed an array
obstacle satisfying,, < li. Suppose Assumption 1 iSyng an associated union of curves. Using this construct,
satisfied. Then the numb_er of disconnected components Wil ~an assign numbers to nodes of this array to label the
be2+1 =3, as shown in Fig. 7. If there arobstacles stinct components. denote th#é row, j** column node,
satisfyingly, , lp, < 11, ando, py,p> are not in the same 4q Array;, 7). The graph allows us to associate a compo-

line, then this number will be - 4 +2 = 10. nent field,comp, to each node, numbered lexicographically.
Weakening Assumption 1 Suppose that some of theUsing Fig. 6 as an example we have

p; € O, (still in general position), lie outside of the-circle

Fig. 9. An outsidep;, the associated intersection curves, and array

(but at least one lies inside). if; € O satisfiesl; + Io > Array[l,il.comp=1 , i=1,--- 4
lpi| > 1, thenV,, is a single circle whei, —1; > |p;| > I3 Array[2,1].comp =2 | Array[2,2].comp =2
and otherwise is an arc bounded by the two configurations Array[2,3].comp =3 , Array[2,4].comp =3
where the end-point of, equalsp; as Fig. 8 illustrates. If Array[3,1].comp =4 , Array[3,2].comp =75
it is a circle, then each point aB has exactly one point Array[3,3].comp =5 , Array[3,4].comp =06
of V,, over it. If it is an arc, the two angleg; for the Array[4,i].comp=T7 , i=1,--- 4.

bounding points have to be added to the special points

in 2 -
B, since, at these angles, the pointsigf will only exist Given ¢(0),¢(T') € T° — Sing, we initially check whether

on one side. their first coordinates lie in the same component if

The previous analysis is changed in two ways. First ok not. they are no_t in thg same f:omponent. If so, we
has to explicitly determine, for afi; # p; € O with I; + check the array to find their respective componepts0),

lo > |pi| > I the structure o, N V.. $1(T) determine the columns in_ the array,.wh'd@(o),
« This intersection will be empty if the line joining; ¢2(T') determine the rows. Checking .the aSSIQr]ed numbers
andp; does not intersect thig-circle, or if it intersects answers Problem 1. A general algorithm that ignores self-
it in two points, both of which liebetweerp; andp,. intersections is summarized as follows, though the self-

. . . . L intersections are easily accounted for by simply using the
« It will consist of 2 points if the line intersects the : : . . .
. . . _— ; associated array with the self-intersection curve considered
[1-circle in two points, both of which lieutsidethe

segment betweep; andp; as well as thel),.

- . i . .
. Otherwise, it will consist ofl point. Algorithm 1: Algorithm for the Existence Problem
The second way in which the analysis changes is that the
graph in Fig. 6bifurcatesat the first boundary point of the
V,,-arc, andamalgamateat the second. See Fig. 9

Input: n point obstaclesp;, ¢« = 1,---,n, a
planar2-R manipulator satisfying Assumption 1,
and two arbitrary configurationg(0) and ¢(7T')
IIl. ALGORITHM FOR THEEXISTENCE PROBLEM representing, respectively, the initial and final
Now that the components have been determined, the next configurations;
step is the motion planning existence problem: Output: True if the two configurations are in the



they are not in the same comp
Collision curve
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Fig. 10. ¢(0) and¢(T') are not in the same component

same component, otherwise, False

Step 1. Determine the components i3 that
contain¢(0) and ¢(T") by comparings;(0) and
#1(T) with the 6, ;. If they are not in the same
interval, return False and stop;

Step2: If they are in the same interval, return the
pair (61,601 ,:+1) that determines the interval;
Step3: For this interval calculate the intersection
points, i.e., all the intersections of the lines con-
necting two distinct points o> with the interval

P11

Fig. 11. Cell Structure

initial and final configurations. If the associated
labels are the same, they lie in the same com-
ponent andtrue is returned. Otherwisdalse is
returned.

61 < ¢ < 01,11. For each intersection point, |t is not difficult to see that steps and 10 take the most
record the angles time. Since the number of intersection points in a givgn
) component i2(n? —n/n) = n—1 on average, the average
I’ILSC(Z).¢ = (¢1, ¢2)

complexity of the above algorithm will b&(n?). Table |
and the intersection points in questipn p; are shows the computation time with respect to the number of
b J
stored asInsc(i).index(1), Insc(i).index(2) €

point obstacles.
{1,---,n} with the closer point stored in

. . No. of point obstacles 2 4 6 8
indez(1). (For ¢ slightly less thanp,, the second Computation time (s)| 0.031 | 0.047 | 0.0620 | 0.0630
coordinate of the configuratiofphi, ¢2) that in- No. of point obstacles 10 20 30 40
tersects the point itndex (1) will be lessthan the Computation time (s)[ 0.0780 | 0.1090 | 0.2970 | 0.7970
corresponding angle for the point index(2).);

p g ang p (2)) TABLE |

Step 4: Sort all the intersection points in this
interval ongy;

Step5: If there arem intersection points in this
interval, construct the associated (m+1) array:
Array.

Step6: Fix ¢1 € (014, ¢1,1), and calculate the
order in which link2 hits then point obstacles
when it rotates counterclockwise;

Step 7: For ¢ = 2,--- m, write down, suc-
cessively, the order for these columns. Simply
change the order of the previous column by per-
muting the two indices infnsc(i).index(1) and
Insc(i).index(2);

Step8: Label the nodes ofirray according to and link lengths/; = 10 andl, = 20. Algorithm 1 gives
Fig. 6; that
Step9: The labels at nodes in successive columns
will agree if at most one number between two
respective labels is changed. Otherwise, if thg.a in the same components, while
order of the labeling pair is reversed, the node
in the new column will receive a new component
label;

Step 10: Identify the nodes corresponding to theare in different components. Fig. 10 helps explain this.

COMPUTATION TIME FOR DIFFERENT NUMBER OF POINT OBSTACLES

Example 2: A Planar 2-R Manipulator with 8 Ob-
stacles
First we apply Algorithm 1 to the system with the following
point obstacles:

p1 = [—7.3222,1.1544]T py = [3.2630,7.5101]T
p3 = [4.0698,3.8988]7, py = [-1.1067,2.1812]T
ps = [4.9228, —6.7600]7, ps = [7.2367,6.7572]7
pr = [1.6568, —4.0035]7, psg = [6.0669,0.2177]7.

#(0) = [~1.5,2.5]7 | ¢(T) = [-3,-3]"

¢(0) = [-1.5,2.5]7 | ¢(T) = [-2.6,1.05]"



IV. ALGORITHMS FORPATH PLANNING - Collision curve
—— Self-intersection curve

In this section, we will develop two algorithms for < Initial configuration 1
planning a path froms(0) to #(7") when they are in the » Final configuration &
same component.

In the previous section, Algorithm 1, constructs a two-
dimensional arrayrray for each component aB. Given
any point in this region, there is a unique nodeAnray
corresponding to the component that contains the poin.
In fact, as shown in Fig. 5, Fig. 6, Fig. 9, each node of
Array represents a cell-likg,region in 72 — Sing, (or

T? — Sing — W, whereW represents the self-intersection \

curve). The connecting lines between nodes show that the 2
two regions have a common arc on their boundaries.

For example, Fig. 11 shows one component of Fig. : ‘ ‘ :
5, which is the union of two of these regions. The 3 2 -t 0 1 2 3
two cells-like regions are represented Hyray[2,1] and
Arrayl[2,2], respectively. They are connected since there
is a line segment connecting them, as shown in Fig. 6.
With this in mind we next describe how one can plan

Fi

g. 12. Path planning using the mid-point curve

a path linking the two pointss(0) and ¢(7") shown in o Solsenauve ‘ ‘ i
Fig. 11, where¢(0) locates inArray[2,1], and ¢(T") in 4 Initial configuration
ATTay[2,2]. > Final configuration \
- Path
A. Middle Path Method /
Cell 1 (or Array[2, 1]) is labelled ag2, 3), which means il
this cell is bounded from above by,,, and from below
by V,,. With the usual metric orf™® — Sing, over each & of
pointp € B, each arc inm—1(¢) has a unique mid-point,
and each of the cell-like regions has a smooth midpoint - ~N
curve. Moreover, these curves agree along the common arcs
between regions. Here is the local equation for this arc: -2 x
¢y = atan2(p2(2) — l1sin g1, pa(1) — lycos ¢1) o \ N
QZ = atan2(p3(2) — llsingbl,pg(l) — Z1COS ¢1) . . . .
$2+¢ -3 -2 -1 0 1 2 3
¢ = 5=, !
for ¢1 € [p1,0,¢1,1]" . Hereps, ps € R? are the Cartesian Fig. 13. Path planning using linear interpolation

coordinates of obstacles andps. Similarly, in cell 2 (or
Array[2,2]) which is labelled(2, 4), the middle path will

be breaks in the first derivative by using linear interpolation, so
¢y = atan2(p2(2) — l1sin ¢y, pa(1) — lycos ¢1) that the paths from the intial and final points meet the mid-
¢, = atan2(ps(2) — lysin ¢y, ps(1) — lycos ¢1) point curve at the boundary with the next cell-like region
o _ bato, or further on.
P2 = —5 We apply linear interpolation to another case with

for ¢1 € [¢1.1,¢1.2]7. A path from$(0) to ¢(T) can be POint obstacles in Fig. 13. Note that this path is still not
constructed as follows: first move vertically frog(0) to smooth at the intersections of cell-like regions. However,
the mid-point of its arc inpi~*(¢1(0), then move on the it is routine to modify these curves near the intersection
mid-point curve to a pointn With ¢o(m) = ¢,(T), and Points to make their derivatives agree to whatever level is

then move vertically tas(7T'). desired.

We apply the mid-point algorithm to a case with point
obstacles in the workspace. The resulting path is shown inV. SHORT DISCUSSION OF THEGENERAL THEORY

Fig. 12. Underlying the algorithms above is the use of Poiécar
B. Linear Interpolation duality to determine the number of components in an
oriented manifold M/, when a closed subseX,, is deleted.

tinuous, but not generally smooth when the curve cros The-dimensional (singular) homology group of any space,

) . - . , Hy(Y,R) has the formR"™ where n is the number
between cell-like regions or where the mid-point curve . : . .
. . of path components iY’. When M is a k-dimensional,
intersects the two verticals. We can remove these last t

W, : . :
cl(())sed, oriented manifold with no boundary, afd =
IMore exactly, each of these regions is contractible M — X for X a reasonable, proper, closed subspace, then

The path obtained using the mid-point curves is co



Ho(M — X,R) = H*(M, X,R). On the other hand, this obstacles. By considering components of the configuration
last group is determined by the exact sequence of the psjrace that lie above the indiviual poirts, we constructed

coi — H"Y(M,R) — H*Y(M,R) —
H*(M,X,R) —  H*(M,R) — 0

We can apply this fon/ = T2 and X either Sing, orX =

a two-dimensional array representing the cells of the free
space and a graph describing the connected components.
Using this graph, we derived a closed formula for the
number of components of the configuration space under

SingUW. Moreover, under Assumption 1, the cohomologussumption 1, and then solved the motion existence prob-

map H'(T?,R) — H!(X,R) has image a copy oR?

lem.

from Proposition 1. Hence, the exact sequence becomes \When Assumption 1 is removed, we need to consider

0 — R*> — HY(X,R) — H*(T*,X,R) — R — 0

since HY(T?,R) = R?, and H?(T?,R) = R. From

this it follows that H'(X,R) = R"*!, wheren is the
number of path components ifi2 — X. More generally,
if there is at least one point; € O with |p;| < [; then
the map H'(T?,R) — H'(X,R) has imageR?. If

Ip:| > 11 for all p; € O, but there is at least ong so that
lo — 1y > |p;| > 11, then the image iR. Otherwise, the
image is0.

An explicit method of determining an elementff' (X, R)

cases where some collision curves are not closed. This is
done by the process pictured in Fig. 9.

If we add a link (3-link manipulators), we consider all
components above each 2-dimensional component in the
2-dimensional picture for the configuration space of the
manipulator consisting of only link and2. Two configu-
rations are in the same component only if when projecting
to the (¢1, ¢2) space, they are in the same component, but
the inverse image of each point in each component is a
union of disjoint arcs. Where the numbers of arcs change
is when the endpoint of the first two links lies on one of the

associated to two points ifi* — X is to take any smooth jines connecting two distinct points, p; € O. Moreover,
path, 7, between the two points so that its intersectiophe endpoint must lie on theame sideof both points.
with X' does not contain any points in the intersectionnese give curves if? that are, under weak assumptions,
Vp, NV, for i # j, and which intersect transversally. circles that wind along the first coordinate. Two of these
(This is easily arranged since the intersections of thgrcles intersect if and only if the two lines intersect in the
curves in Sing orSing U W are a finite set of distinct yyorkspace of the first two links, but the determination of

points.) Any two such paths give a closed pattiify and  the intersections of these circles with the, for the first
hence the difference between any two choices of path giNgy links is more involved.

an element offf, (7%, R). In a forthcoming paper, we will address these remaining

problems in detail.
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