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Abstract— We study the motion problem for planar star-shaped
manipulators. These manipulators are formed by joining k
“legs” to a common point (like the thorax of an insect) and
then fixing the “feet” to the ground. The result is a planar
parallel manipulator with k − 1 independent closed loops. A
topological analysis is used to understand the global structure of
the configuration space so that planning problem can be solved
exactly. The worst-case complexity of our algorithm is O(k3N3),
where N is the maximum number of links in a leg. A simple
example illustrating our method is given.

I. INTRODUCTION

Due to the computational complexity and difficulty of im-
plementing general exact motion planning algorithms, such as
Canny’s [1], today sample-base algorithms, such as Kavraki’s
[5] dominate motion planning research. However, there are
important classes of problems for which these algorithms do
not perform well. These arise in systems whose configura-
tion space (C-space) cannot effectively be represented as a
set of parameters with simple bounds, but rather is most
naturally represented as a variety of co-dimension one or
greater embedded in a higher-dimensional ambient space [8].
Examples of the systems include manipulators with one or
multiple closed loops, whose configuration space is defined by
loop closure constraints. The RLG method [2], [3] improves
the sampling techniques through estimating the regions of
sampling parameters. However, its efficiency relies on the
accuracy of the estimation, which often varies case by case.
Moreover, it ignores the global structure of C-space, and may
fail to sample globally important regions.

Recent advances in the understanding of the global structure
of C-spaces of single-loop closed chains [6], [7] allows us to
develop an effective exact algorithm for a class of manipulators
with multiple loops, namely, the planar star-shaped manip-
ulators. These manipulators are formed by joining k planar
“legs” to a common point (like the thorax of an insect) and
then fixing the “feet” to the ground. The result is a planar
parallel manipulator with k−1 independent closed loops. Each
independent loop imposes an algebraic kinematic constraint
equation on the system, and so the C-space of star-shaped
manipulators is an algebraic variety embedded in the joint
space. Walking robots whose legs are SCARA robots with
axes perpendicular to the ground can be modeled as a planar
star-shaped manipulators.

Here, we extend the previous topological methods in [6], [7]
for C-space connectivity analysis to the case of planar star-

shaped manipulators without obstacle. We derive important
global properties of C-space and use these results to derive a
necessary and sufficient condition for path existence problem.
A complete algorithm based on the properties is implemented
and examples are presented.

II. NOTATION

Manipulator Notation
M - Manipulator
A - Root junction or thorax of M
oi - Grounding point of foot i of M
nj - Number of links in Mj

lj,i - Length of link i of Mj ; i = 1, ..., nj

θj,i - Angle of link i relative to link i − 1
Mj - Leg j of M with foot fixed at oj

and other end free, j = 1, ..., k

M̃j(p) - Leg j of M with foot fixed at oj

and other end fixed at p

M̃(p) - Manipulator with A fixed at p
Lj - Sum of lengths of links of Mj

Lj(p) - A set of long links of M̃j(p)
|L∗

j (p)| - Number of long links of M̃j(p)
Workspace Notation

WA - Workspace of A
dUi - Cell of dimension d of WA

p - Point in the plane of M
γ = p(t) - Curve in the plane of M

f - Kinematic map of A
fj - Kinematic map of endpoint of Mj

ΣA - Singular set of f in WA

Σj - Singular set of fj

Configuration Space (C-space) Notation
C - C-space of M

C̃(p) - C-space of M̃(p)
Cj - C-space of Mj

C̃j(p) - C-space of M̃j(p)
c - Point in C-space

III. PRELIMINARIES

The class of planar manipulators studied here are referred to
as planar star-shaped manipulators (see Fig. 1). A star-shaped
manipulator is composed of k serial chains with all revolute
joints. Leg Mj is composed of nj links of lengths lj,i, i =
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Fig. 1. Star-shaped manipulator with k = 4.

1, ..., nj with angles θj,i, i = 1, ..., nj . At one end (the foot),
Mj is connected to ground by a revolute joint fixed at the
point oj . At the other end, it is connected by another revolute
joint to a junction point denoted by A. Note that when k is
one, a star-shaped manipulator is an open serial chain. When
k is two, it is a single-loop closed chain.

Assuming that the foot of Mj is fixed at oj , let
fj(Θj) = p denote the kinematic map of Mj , where Θj =
(θj,1, · · · , θj,nj

) is the tuple of joint angles, and p is the
location of the endpoint of the leg (the thorax end). When
Mj is detached from the junction A, the image of its joint
space is the reachable set of positions of the free end of the
leg, called the workspace Wj . In the absence of joint limits,
the workspace Wj is an annulus if and only if there exists one
link with length strictly greater than the sum of all the other
link lengths. Otherwise it is a disk. Clearly, the workspace WA

of A when all the legs are connected to A is given by:

WA =
k⋂

j=1

Wj . (1)

In our study of C, it will be convenient to refer to several
other C-spaces. The C-space of leg Mj when detached from
the rest of the manipulator will be denoted by Cj . When the
endpoint is fixed at the point p, leg j will be denoted by M̃j(p).
Note that M̃j(p) is a single-loop planar closed chain, about
which much is known (see [6]), including global structural
properties of its C-space, denoted by C̃j(p) = f−1

j (p).
When the junction A is fixed at point p, its C-space will

be denoted by C̃(p). Since collisions are ignored, the motions
of the legs are independent, and therefore the C-space of the
manipulator (with fixed junction) is the product of the C-
spaces of the legs with all endpoints fixed at p:

C̃(p) = C̃1(p) × · · · × C̃k(p)

= f−1
1 (p) × · · · × f−1

k (p)

= f−1(p)

⎫⎪⎪⎬
⎪⎪⎭ (2)

where by analogy, f is a total kinematic map of the star-shaped
manipulator. Loosely speaking, the union of the C-spaces C̃(p)
at each point p in WA gives the C-space of a star-shaped
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Fig. 2. Left: The workspace Wj of a three-link open chain Mj based at
oj . The singular set Σj of the kinematic map fj is four concentric circles.
Right: The inverse image of the curve γ - a “pair of pants.”

manipulator:
C =

⋃
p∈WA

C̃(p). (3)

Several properties of the C-spaces Cj and C̃j(p) are highly
relevant and so are reviewed here before analyzing the C-
space of star-shaped manipulators. It is well known that the
C-space of Mj is a product of circles (i.e., Cj = (S1)nj ). The
workspace Wj contains a singular set Σj which is composed
of all points p in Wj for which the Jacobian of the kinematic
map Dfj(Θj) drops rank for some Θj ∈ f−1

j (p). These points
form concentric circles of radii |lj,1±lj,2±· · ·±lj,nj

|, as shown
in Fig 2. When A coincides with a point in Σj , the links can
be arranged such that they are all colinear, in which case the
number of instantaneous degrees of freedom of the endpoint
of the leg is reduced from two to one.

Now consider the case where the endpoint of leg j is fixed
to the point p. In other words, we are interested in the C-space
C̃j(p) of M̃j(p). In the 12 o’clock position in Fig. 2, points,
circles, and figure eights are drawn to represent the global
structures of C̃j(p) in the seven regions of Wj . Specifically,
when A is fixed to a point p on the outer-most singular circle,
C̃j(p) is a single point. For p fixed to any point in the largest
open annular region, C-space is a single circle. Continuing
inward, the possible C-space types are a figure eight (on the
second largest singular circle), two disconnected circles, a
figure eight again, a single circle, and a single point (on the
inner-most singular circle).

A detailed analysis of C̃j(p) with an arbitrary number of
links in M̃j(p) can be found in [6]. The results that will be
particularly useful in the analysis of star-shaped manipulators
follow. First, the connectivity of C̃j(p) is uniquely determined
by the number of “long links.” Consider the augmented link
set composed of the links of Mj and ojp, which will be called
the fixed base link with length denoted by lj,0. Let Lj be the
sum of all the link lengths including the fixed base link (i.e.,
Lj =

∑nj

i=0 lj,i). Further, let Lj(p) be a subset of {0, 1, ..., nj}
such that lj,α + lj,β > Lj/2; α, β ∈ Lj(p), α �= β. Over all
such sets, let L∗

j (p) be a set of maximal cardinality. Then the
number of long links of M̃j(p) is defined as |L∗

j (p)|, where
| · | denotes set cardinality.
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Lemma 1: Kapovich and Milson [4], Trinkle and Mil-
gram [6]
The C-space C̃j(p) = f−1

j (p) has two components if and only
if |L∗

j (p)| = 3, and is connected if and only if |L∗
j (p)| = 2 or

0. No other cardinality is possible.

Return to Fig. 2. Viewing Wj as a base manifold and the
C-space corresponding to each end point location as a fibre,
one can see that Σj partitions Wj into regions over which
C̃j(p) forms a trivial fibration. This is useful in determining
the C-space of more complicated mechanisms. Consider a
modification to M̃j(p) that constrains its endpoint to move
along a curve γ within Wj . As long as γ is contained in one of
the regions defined by the singular circles, C̃j(γ) = C̃j(p)× I ,
where I is the interval. If γ crosses a singular circle transver-
sally, then C̃j(γ) = (C̃j(p1) × I)

⋃ C̃j(p3)
⋃

(C̃j(p2) × I),
where p1 is a point in one of the two open angular regions
containing γ, p2 is a point in the other, and p3 is a point on
the singular circle crossed by γ, and

⋃
denotes the standard

“gluing” operation.

IV. ANALYSIS OF STAR-SHAPED MANIPULATORS

For star-shaped manipulators with one or two legs, the
global topological properties of the C-space C are fully under-
stood (see [6]). The goals of this section are to study the global
properties of C when M has more than two legs and to derive
necessary and sufficient conditions for solution existence to
the motion planning problem.

1) Local Analysis: As a direct generalization of the singular
set of a single leg, we define the singular set of a star-shaped
manipulator as a subset Σ of WA such that for every p ∈ Σ,
there exists a configuration c such that at least one of the
Jacobians {Df1(c), · · · , Dfk(c)} drops rank. By definition we
have:

Σ =

(
k⋃

i=1

Σi

)⋂
WA. (4)

An advantage of this definition is that Σ can be used to stratify
WA such that each stratum is trivially fibred. Figure 3 shows
a star-shaped manipulator with two legs. The singular set Σ
is the boundary of the lune formed by the intersection of the
outer singular circles of their individual workspaces. For every
point interior to the lune, the fibre is two circles (the direct
product of two points with one circle). The fibres associated
to the vertices of the lune are single points, which correspond
to simultaneous full extension of the two legs.

Fig. 4 shows a possible workspace for a star-shaped ma-
nipulator with three legs. The singular set defines 65 distinct
sets dUi of varying dimension d, where i is an arbitrarily
assigned index that simply counts components. We will refer
to these sets as chambers. There are 12 two-dimensional,
32 one-dimensional, and 21 zero-dimensional chambers, each
of which is trivially fibred. More generally, the intersections
among the arcs composing Σ are zero-dimensional chambers,
denoted 0Ui, i = 1, · · · ,0m. Removing the 0Ui from Σ
partitions it into open one-dimensional chambers 1Ui, i =
1, · · · ,1m. Removing 0Ui and 1Ui from WA yields open two-
dimensional sets 2Ui, i = 1, · · · ,2m, for which the following

Mj oj
Σ j

A

Mj+1

oj+1

Σ j+1

WA

Fig. 3. The workspace WA of A for a star-shaped manipulator with k = 2
is the intersection of the workspaces of A for each leg considered separately.
The singular set Σ is composed of the black circular arcs where they bound
or intersect the gray area.

oj

oj+1

oj+2

Fig. 4. Workspace (shaded gray) of a star-shaped manipulator with three legs.
The singular set partitions WA into 12 two-dimensional, 32 one-dimensional,
and 21 zero-dimensional chambers.

relationships hold:

Σ =

⎛
⎝ 0m⋃

i=1

0Ui

⎞
⎠ ⋃ ⎛

⎝ 1m⋃
i=1

1Ui

⎞
⎠ (5)

WA − Σ =

2m⋃
i=1

2Ui. (6)

Proposition. 1: For all d = 0, 1, 2 and i, f−1(dUi) =
dUi × f−1(p), where p is any point in dUi and the operator ×
denotes the direct product. Gluing the f−1(dUi) for all i and
d gives the total C-space C.

Proposition 1 and the fact that dUi is a simply connected set,
reveal that each component of f−1(dUi) is a direct product of
one component of C̃j(p), j = 1, · · · , k, with a d-dimensional
disk. Using |L∗

j (p)|, j = 1, · · · , k and Lemma 1, one can show
that the number of components of f−1(dUi) is 2k0 , where
k0 ≤ k is the number of legs for which |L∗

j (p)| = 3.

2) Local Path Existence: Before considering the global
path existence problem, consider motion planning between two
valid configurations cinit and cgoal for which the junction A
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lies in the same chamber. Since the fibre over every point
in dUi is equivalent, path existence amounts to checking the
component memberships of the configurations cinit and cgoal.

For a single leg M̃j(p), if the number of long links |L∗
j (p)|

is not three, then any two configurations of M̃j(p) are in the
same component. When |L∗

j (p)| = 3, choose any two long
links and test the sign of the angle between them (with full
extension taken as zero). There are two possible signs, one
corresponding to elbow-up and the other to elbow-down. If for
two distinct configurations of M̃j , A lies in the same chamber,
there is a continuous motion between them while keeping A
in this chamber, if and only if the elbow sign is the same
at both configurations (naturally, one must perform the sign
test with the same two links and in the same order for both
configurations). Considering all the legs together, a continuous
motion of A in dUi exists if and only if a motion exists for
each leg individually. The previous discussion serves to prove
the following result.

Proposition. 2: Restricted to f−1(dUi), two configurations
c1, c2 ∈ f−1(dUi) are path connected if and only if for each
leg M̃j with |L∗

j | = 3 in dUi, the elbow angle of M̃j has the
same sign at c1 and c2.

Proposition 2 completely solves the path existence problem
if WA consists of a single chamber. However, things become
complex when WA has more than one chamber.

3) Singular Set and Global C-space Analysis: Recall that
the C-space C is a union of f−1(dUi), d ∈ {0, 1, 2}, i =
1, · · · , dm and that f−1(p), p ∈ dUi for d �= 2 and all i is a
set containing at least a singularity of f . Combining the local
C-space and singular set analysis yields the global structure
of C-space.

Proposition. 3: For all p ∈ Σj , f−1
j (p) is a singular set

containing isolated singularities. If a singularity separates its
neighborhood V in f−1

j (p), then it is these singularities which
glue the two separated components in f−1

j (q) where q ∈ WA−
Σj is a point sufficiently close to p.

Next, we establish necessary and sufficient conditions for
the connectivity of C. Let J be the index set such that for all
j ∈ J , |L∗

j | = 3 for at least one chamber dUi. We prove the
following theorem.

Theorem 1: Suppose WA =
⋃2

d=0

(⋃dm
i=1

dUi

)
. Then C =

f−1(WA) is connected if and only if:

1) WA is connected;
2) Σj

⋂
WA �= ∅ for all j ∈ J .

Proof:(sketch) Notice that C is connected if and only if any
two possible configurations of leg j are connected for all j.
These are exactly what Item 1 and 2 imply. �

Fig. 5 illustrates the global connectivity for an example WA

corresponding to a star-shaped manipulator with two legs and
a workspace for which there are two chambers 2U1 and 2U3

where leg 1 has three long links and another chamber 2U4

where both legs have three long links. Among these chambers,
1U1 and 1U2 belong to Σ1, and 1U3 belongs to Σ2. According

U1
U U U2 3 4

+1

−1

+1

−1

0
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−1

0

M2
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f (  )
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2

f (  )1

−1
γ

γ

2

22 2

γ

U1

1
U2

1 U3
1

Fig. 5. C-space of a star-shape manipulator with two legs. For purposes of
simplicity, only the portion of f−1(γ) is shown, where γ is a continuous
curve in WA that visits all chambers.

to Theorem 1, the C-space is path connected. In this example,
the C is the product of the two structures shown.

Corollary 1: Two configurations c1 and c2 of a star-shaped
manipulator are in the same component if and only if

1) f(c1) and f(c2) are in the same component of WA;
2) For each leg j with |L∗

j | = 3 for all chambers dUi in the
component of WA which contains f(c1) and f(c2), the
elbow sign is same at both c1 and c2.

V. A POLYNOMIAL-TIME, EXACT, COMPLETE

ALGORITHM

Our algorithm uses two main routines, PathExists (il-
lustrated in Fig 6) and ConstructPath. Its input is the
topology and link lengths of a star-shaped manipulator and two
valid configurations, cinit and cgoal. Its output is the answer to
the path existence question. We will show that the complexity
of PathExists is O(k3 + kN), where N is the maximum
number of links in a leg and k is the number of legs.

The approach taken is to compute WA and then, for each
leg with its end point constrained to lie in WA, to determine
if its initial and goal configurations are path connected. Since
the C-space of a leg is guaranteed to be connected if one
of its singular circles Σj intersects WA, the most straight
forward way to test connectivity is to explicitly perform the
intersections. However, since there are as many as 2nj−1

singular circles, any algorithm based on this approach will
have worst-case complexity that is at least exponential in N .
The key idea of PathExists is a polynomial-time algorithm
for checking the existence of an intersection between WA and
a singular circle.

1. Construct WA Recall that WA is the intersection of the
workspaces of the legs when they are disconnected from A.
Each workspace is a disk or annulus, which can be determined
by finding the length of the longest link and comparing it with
the sum of all the other link lengths of that leg. The boundary
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Fig. 6. Logical flow and complexity of the major steps of PathExists.

circles of these annuli decompose the plane into 2-D open
cells, among which, those can be reached by all legs constitute
WA. We adopt a cell-decomposition algorithm (e.g., the line
sweeping algorithm) to compute a graph representation for
WA. The complexity of constructing the graph is O(k2+kN).

2. Are pinit and pgoal in same component of WA? A con-
sequence of the cell decomposition is that this can be answered
directly by searching the cell graph. This requires O(k2) since
in worst case the number of nodes in the graph is O(k2).

3. Compute J This step is used to filter out easy solution
existence checks, based on the cardinality and members of the
sets L∗

j (pinit) and L∗
j (pgoal). For each leg M̃j(pinit), compute

Lj (see Section III) and find the three longest links of the
set {lj,0, ..., ljnj

}. Denote these links by (pinit;λj,1, λj,2, λj,3).
Do the same for (pgoal) and define (pgoal;λj,1, λj,2, λj,3).
This requires O(N) work. Finally, |L∗

j (p(·))| = 3 if and
only if λj,2 + λj,3 > Lj/2. If L∗

j (pinit) = L∗
j (pgoal) and

|L∗
j (pinit)| = 3, and if the signs of the long links are different

at cinit and cgoal, then add j into J . Computing J is O(kN).

4. Does the set of long links vary for all j ∈ J? If and only
if a way point pj ∈ WA exists such that L∗

j (pj) �= L∗
j (pinit),

then it is possible to make the long links colinear and thus
change the signs of their relative angles. This can be done by
computing a point pj ∈ WA on the boundary of the cell which
contains pgoal and keeps the same constant L∗

j (p) for all p in
this cell. This boundary is characterized by λj,2+λj,3 = Lj/2.
Using the fact that the base link is the only link with variable
link length, {pj | j ∈ J} can be computed in O(k3 + kN).

The basic idea of ConstructPath is to use two kinds of
motion generation algorithms: accordion move and sign-adjust
move. The former moves the thorax endpoint (at A) along
a specified path segment with all legs moving compliantly

so that all loop closures are maintained. The latter keeps the
endpoint fixed at a way point qj ∈ Σj while moving leg j
into a colinear configuration and then to a nearby configuration
with the sign of the relative angle between a pair of long links
in this leg chosen to match those of cgoal.

The input of ConstructPath is WA and its cell graph,
cinit, cgoal, and the set of way points pj ∈ WA, j ∈ J
computed during the execution of PathExist.
1. Construct an initial path ConstructPath explores the

cell graph of WA, and constructs a path in WA connecting
pinit to pgoal and visiting all of the way points. Since there
are at most k way points, this can be done in O(k3) time (the
path has k segments each with O(k2) arcs).
2. Construct guards and insert the guards into the path No-

tice that accordion moves keep the sign of the relative angle
between a pair of long links of leg j only when the thorax
endpoint moves in a cell where C̃j has two components.
For this reason, we set guards {qj} for legs which have
three long links at pgoal. The set of such legs is denoted I .
{qj} is computed as the last intersection point between the
above constructed path in WA and the boundary of the two-
component cell of leg j containing pgoal, for all leg j ∈ I .
Inserting these guards into the path. Assuming each arc in
the path is approximated by fixed number of line segments,
finding guards is O(k3).
3. Accordion moves and sign-adjust moves The path in C

then is produced by using accordion moves along the path
and sign-adjust moves at the guards. At each guard qj , j ∈ I ,
one checks the sign between a pair of long links of leg j. If it
does not match the goal one, do sign-adjust move, otherwise,
accordion moves keep going on. Once A is coincident with
pgoal, one is assured by the previous steps, that with A fixed at
pgoal, the configuration of each leg is in the same component
of its current C-space C̃j(pgoal) as cgoal. The final move can
be accomplished using a special accordion move algorithm
found in [6].

The complexity of the accordion move algorithms reported
in [6] are O(N3). Since the path has O(k3) line segments the
complexity of ConstructPath is O(k3N3).

Overall, our path planning algorithm is O(k3N3).

VI. EXAMPLE

In this example, the manipulator has three three-link legs,
one of which has three long links when A is fixed at pgoal. Fig-
ure 7 shows the manipulator in its starting and goal configura-
tions. Since when A is fixed at pgoal, the C-space of two of the
legs have one component, our algorithm requires that A move
from its initial location to one guard, and then to the goal. At
the guard, the two lower legs can remain fixed while the other
leg is moved to adjust the signs of its relative angles. This leg
was then moved to make all its links colinear. Before leaving
the guard via the next accordion move, leg’s angles were
adjusted to match the relative signs in the goal configuration.
Figures 8, 9, 10, and 11 show the progress of the manipulation
plan as the steps of the complete planning algorithm are carried
out. Animation of the motion in this example can be found in
http://www.cs.rpi.edu/˜liugf/multiloop.
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Fig. 7. Manipulator’s initial configuration (junction on the right, drawn red)
and goal configuration (junction just below the top foot, drawn blue.
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Accordion move to one singular circle of leg 2

Fig. 8. All legs use an accordion move to move the junction A to the guard
on a singular circle of leg 2.

VII. CONCLUSION

We have studied the global structural properties of planar
star-shaped manipulators. Via the analysis of the singular
set Σ, we derived the global connectivity of the C-space,
and necessary and sufficient conditions for path existence.
Based on these results, we devised a complete algorithm for
motion planning. Simulation examples illustrate the key steps
in motion planning for planar star-shaped manipulators.
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Fig. 9. With the junction A at the guard of leg 2, its join angles can be
adjusted to achieve the signs required at the goal configuration.
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Fig. 10. All legs use an accordion move to move the junction A to its goal
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Fig. 11. All legs use the Trinkle-Milgram algorithm with A fixed.
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