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ABSTRACT

We introduce a hierarchical approach for the analysis and
design of systems with multiple frictional contacts, with a fo-
cus on applications to the design of part feeding and assem-
bly processes. The simplest model in the hierarchy is the geo-
metric model described by a set of non-penetration constraints
that depends only on the geometry of the design. The model
with the highest fidelity is one that incorporates rigid body dy-
namics, joint constraints, and frictional contacts. Our approach
is based on a scheme that first uses Rapidly-exploring Random
Trees (RRTSs) to explore and prune the feasible set of design pa-
rameters. The next step is to redesign the system iteratively with
the pruned parameter set using a model with higher fidelity. This
process is repeated with improved models, until an optimal de-
sign is obtained with the model of desired fidelity. We illustrate
the models, the design process, and the feasibility of this hier-
archical approach by applying it to the design of a simple part
feeder.
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1 Introduction

There are many manufacturing processes in which nomi-
nally rigid bodies undergo frictional contacts, possibly involv-
ing impacts. Examples of such processes include part-feeding,
assembly, fixturing, material handling, and disassembly. In or-
der to understand the complexity of such processes it is useful to
consider the part orienting device shown in Fig. 1. A cup-shaped
part enters chute “A” in one of two nominal orientations, which
we will call “open end up” (on the left) and “open end down” (on
the right). The objective of this mechanism is to cause the part
to exit chute “C” in the “open end up” configuration regardless
of the orientation when entering chute “A”. The part is subject
to multiple intermittent frictional contacts with the walls of the
chutes and the pin “B”. It undergoes frictional impacts before
either going down the chute or getting stuck inside the device.
There are many factors that affect this feeding process, includ-
ing the geometry, physical properties of the device and the part’s
initial condition.

Typically, the preliminary design of such systems is based on
intuition, and the detailed design is refined empirically via proto-
typing. If the prototype does not function properly, as is usually
the case in the first several trials, there is no systematic approach
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to redesign because the design constraints of such systems are
dominated by unilateral constraints and repeated transitions be-
tween contact states. Also, the dynamics of part feeding and as-
sembly processes are notoriously difficult to predict because the
dynamic models for systems with unilateral constraints are vastly
inadequate, and in some cases, do not exist. This is true even
for the case of deterministic models. In the past, geometric and
quasi-static approaches have been developed for planning manip-
ulation [1-4], assembly [5, 6], part feeding [7], fixturing [8, 9],
and grasping tasks [10]. The dynamics of systems with multiple
frictional contacts and impacts have been analyzed in [11-14].
However, there is no systematic approach to planning/design for
systems with dynamics [15], especially when dynamics are non-
smooth.

Figure 1. THE EXIT ORIENTATION OF THE CUP-SHAPED PART
MUST BE WITH THE OPEN END UP, REGARDLESS OF THE EN-
TERING ORIENTATION [16].

A schematic of the design problem is given in Fig. 2. Let
X C ® "™ be the state space for the dynamic system and P C & "»
be the set of parameters (constants) that characterize the geome-
try (e.g., shape), the inertial properties (e.g., mass) and material
properties (e.g., stiffness). The Cartesian product of these sets
will be denoted by z. The set of all system parameters (zg) for
such systems consist of initial conditions and other parameters
that may characterize the system. i.e. zZg = {Xo x P}, where Xo
is the set of initial conditions and P is the set of design parame-
ters, the dimensions of which are determined by the problem at
hand. We are interested in two disjoint sets of points in z that
characterize significant states of the system. The first set z¢g is
the set of all goal states and parameter values. The “unsafe” set
zy is the set of points that the system must avoid for the success-
ful completion of the task. The feasible set zg consists of points
from which appropriate inputs can steer the system to the goal
set zg. The set zp, are those for which no trajectory passing
through them can be steered to zg.

It is unreasonable to expect to obtain an exact description of
Za, ZF, and zy. However, even partial knowledge of these sets
(inset with light shading in the figure) can significantly reduce
the computational cost of planning and improve the robustness of
these plans when executing manipulation tasks. These observa-

tions lead to the idea of using a hierarchical approach to generate
designs such that the optimal design with a desired fidelity can
be obtained through refining the parameter set by using models
at different levels of hierarchy with different levels of fidelity.

Zy

Figure 2. A SCHEMATIC OF THE GOAL SET Zg, THlE UNDE-
SIRABLE OR UNSAFE SET Zy, THE SET Za CONSISTING OF
POINTS THAT ARE GUARANTEED (REGARDLESS OF THE AP-
PLIED INPUTS) TO LEAD TO THE UNSAFE SET, AND THE FEA-
SIBLE SET ZF CONSISTING OF POINTS FROM WHICH APPRO-
PRIATE INPUTS CAN STEER THE SYSTEM TO THE GOAL SET.
THE DESIGN GOAL ISTO IDENTIFY THE SET Zo.

In the next section, we present a family of time-stepping
models ranging from a simple geometric model, to the more
complete dynamic model for systems with intermittent contacts.
These model are built on the recent results in the analysis and
simulation of non-smooth dynamical systems by the authors of
this paper [14, 17-20] and others [21, 22]. A twelve-parameter
design problem of the part-feeding device in Fig. 1 is given in
Section 3. Section 3 also describes the geometric and kinematic
feasibility analysis using the RRT algorithm. Section 4 illustrates
results obtained with the dynamic model. This is followed by a
discussion in Section 5.

2 Time-Stepping Models
The dynamic equation of motion for a multibody system
with contact interactions can be written in the form

M(a)V = u(t,q,v) +Wn(a)An +We(@)At+Wo(q)Ao, (1)

where q is the nq-dimensional vector of generalized coordinates,
v is the ny-dimensional vector of generalized velocities, M(q)
is the ny x ny symmetric positive definite inertia matrix and
u(t,q,v) e U C & ™ is the external force vector (excluding con-
tact forces). Anto are the nc-dimensional concatenations of the
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contact forces in the normal direction (labelled n) and the two
tangential directions (labelled t and o), where n¢ is the number
of contacts. Whto(q) are the ny x n¢ Jacobian matrices corre-
sponding to the contact forces. The kinematic equations relate
the generalized velocity v to the time-derivative of the system
configuration g = dq/dt via a nq x n, parameterization matrix

G(a):
q=G(q)v. 2)

To complete the formulation of the model, we need to in-
clude the contact conditions. In the normal direction, the contact
condition of the system is governed by

OS)\mJ_quEO, |::I.n(37 (3)

where L denotes complementarity condition and iy is the nor-
mal separation between contacting objects at the ith contact.

In the tangential direction, the contact conditions are formu-
lated by requiring that friction forces maximize the energy dis-
sipation rate over the sets of admissible contact forces computed
based on the friction model. For Coulomb’s quadratic cone with
friction coefficient ;, the maximum dissipation principle at the
ith (i=1...nc) contact can be written as

(Ait, Nio) =argmin { (SitAit+SioAio : (Ait, Nio) € F (MiAin) }

where
F (Hidin) = {(?\it,?\io) NN Sui?\in}, 4

and st and sjo represent the components of the slip velocity at the
ith contact.

The quadratic cone can be linearized using the following
polyhedral approximation, atany i=1...nc:

F (Wikin) = {Wiehi © [ Aigll2 < Wikin, Aif > 0} (5)

where Wis is a 2 x ns matrix whose columns are coplanar vectors
that positively space the contact tangent plane (the t-o plane),
Ais is a vector of friction force magnitudes corresponding to the
columns of Wis, and ns is the number of edges of the polyhedral
approximation of the friction cone. Note that the jth component
of Ais is the magnitude of the friction force along the direction de-
fined by column j of Wjs. The following complementarity condi-
tions can be derived from the the maximum dissipation principle
problem as:

0<siei + WJv L Ag>0 ©)
0 < Widin—ef A L si >0’

where s; is a slack variable that approximates the magnitude of
the slip velocity at contact i, and e; is an n¢-vector of ones.

Together, Eqgns.(1), (2), (3), and (4) or (6) constitute the
equations of motion which have four components: the dynamics
of the mechanical system, the kinematic map, the normal contact
conditions, and the friction law.

We consider a time discretization of the differential equa-
tions (1) and (2) fort € (0,T]. Fix a positive integer N and let
h=T /N. Partition the interval [0, T] into N subintervals [t;,t,1],
wheret, = ¢h, for £ =0,1,... N. Write

q'=q(t), Vi=v(t), and Ah,=Antolty).

The time derivatives v and ¢ are replaced by the backward Euler
approximations: forall ¢ =0,... ,N —1,

_ vl e _ (+1_ ot
V(ters) » —— and  q(te1) = Tq

The various time-stepping schemes differ in how M(q) and the
right-hand sides in Eqns.(1) and (2) are approximated.

2.1 Rigid Body Dynamic Model

Stewart and Trinkle [23] developed a semi-implicit time-
stepping method that originally formulated each time step as a
mixed linear complementarity problem (mixed LCP) in terms of
the unknown generalized velocity v/*1, the normal and frictional
impulses (p4*t, pitt) (defined as: p4*t = hAGHL, pitt = ha{t),
and the slack variable s‘*1. However, the generalized velocity
can be eliminated by using the equation of motion, thereby al-
lowing reformulation of the time-stepping method as a standard
LCP(B,b) written as follows:

Vil — Bl |
o<Vt 141 >0 %

with B, bf, and z¢*1 given as follows:

WIM~ W, W MW 0
B'=| WM~w, W M-w; E

U —ET 0
W, (v-+M~tuh)+Wn(g") /h pht
b'= W' (v-+M~tuh) c2 = ptt |,
0 SZH

where E is a block diagonal matrix, with each diagonal block
equal to a column vector length ns with all elements equal to
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one. U is a diagonal matrix of size n. with element (i, i) equal to
Hi.

Several points are worth noting. First, the term Wn(q)/h
provides constraint stabilization with W (q’) being the vector of
the normal separations between each pair of bodies in or about
to be in contact. When it is negative (implying interpenetra-
tion of bodies), it acts to generate a bias impulse that increases
the normal component of the relative velocity at a contact large
enough to eliminate the penetration at the end of the next time
step. Second, there is no restitution law built into this formu-
lation. To include bouncing effects, one must stop the Stewart-
Trinkle method at the time of each collision and apply an im-
pact model. Third, in order to obtain the timestep subproblem
as a linear rather than nonlinear complementarity problem, the
quadratic friction cone and non-interpenetration constraints were
linearized. Fourth, also critical to obtaining an LCP, the quanti-
ties (such as M and W) are explicit functions of the state, i.e.,
they depend only on current or past states.

2.2 Kinematic model

Our kinematic model is a first order approximation of the
dynamic model. Instead of treating forces as inputs, we want to
think of input velocities. These control inputs u are constrained
to lie in a bounded set U as in the case of the dynamic model.
However, the set U now is the set of available velocities. At time
instant ¢, the set of available velocities is denoted by U“+1. Note
that while this model captures first order kinematic constraints
and geometric constraints, it is not guaranteed to produce trajec-
tories that are consistent with rigid body dynamics. Our model is
as follows.

qZ+l _ qZ —h G(qé)véJrl
yitl :W(qé)ulJrl (8)

Pn(gt) >0

where W(qf) is the Jacobian that incorporates kinematic con-
straints.

2.3 Geometric model

Our geometric model is a zeroth order approximation of the
dynamic model. Instead of treating forces or velocities as in-
puts, we simply consider increments in position. The contri-
bution inputs u are now position (and orientation) increments
that are constrained to lie in a bounded set U. While the pre-
dicted motions are guaranteed to conform to geometric con-
straints, the trajectories may not satisfy kinematic or dynamic
constraints. The geometric constraints are simply described by a
set of non-penetration constraints represented by semi-algebraic

sets constructed with distance functions. However when simulat-
ing a system over a small time step starting from a geometrically
generic configuration, the non-penetration conditions can usu-
ally be expressed as a conjunction of non-negativity constraints
on the relevant distance function. The model is as follows.

q€+l _ qé —h G(qé)uf+l
uttl eyttt (9)

Wn (qu) >0

3 Design of the Part Feeding System

For the part feeding system described in Section 1, given a rect-
angular peg with fixed dimensions, mass, and moment of inertia,
the goal is to determine the optimal design of the feeder such that
a peg entering the feeder with different orientations (as shown in
Fig. 10 and Fig. 11) always exits in the orientation with the center
of gravity down. A secondary objective is to have the peg pass
through the device as quickly as possible. The mechanism for
peg insertion problem with the design parameters is described in
Fig. 3.

N
3 d/a

" ‘ ‘ A A ‘ ‘
-4 -3 -2 -1 0 1 2 3 4
Figure 3. REORIENTING DEVICE WITH DESIGN VARIABLES.

The parameter space (design space P) is twelve-dimensional
(See Table 1). In practice, given the dimension of such systems,
it is difficult to guarantee the convergence to the design opti-
mization problem with the dynamic model. The key idea here
is instead of computing the the dynamically feasible sets of P
directly, we first determine a feasible subset using the geometric
model in Egn.( 9). This is then followed by further analysis us-
ing the kinematic model in Egn.( 8) and finally with the dynamic
model in Eqgn.( 7). At each step, the size of the feasible set is
reduced thus decreasing the search space for successive refine-
ments.

Instead of working with the continuous design space, we
sample the design space P to generate a discrete set of design
choices. Thus, we start with a discrete set of points (Ps C P €
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Table 1. DESIGN SPACE (P) PARAMETERS AND THEIR DEFINI-
TIONS.

Parameter  Definition

width of input chute

width of output chute

depth of chamfer

length of input chute

horizontal location of left cavity wall
position of center of tip of protuberance
position of lower left corner of chute
radius of protuberance

angle of input chute

angle of chamfer

Q DOD=Q -~D®D QA O T D

0%2) sampled uniformly ! using a Halton sequence [24]. Each
point in Ps corresponds to a polygonal model of the part feeder
which can be automatically generated. This polygonal descrip-
tion is triangulated using Triangle [25]. The PQP collision detec-
tion scheme [26] is used for collision detection to enforce non-
penetration constraints.

Geometric feasibility of the given set of design parameters
can be systematically determined by the use of RRT algorithm.
The RRT algorithm [27] is designed for efficient search of state
space to obtain a feasible set of states subject to problem con-
straints (e.g., geometric, kinematic or dynamic constraints). The
configuration x of the peg is defined by its position and orien-
tation. The RRT tree 7 is initialized by a single initial config-
uration Xjnj drawn at random from the space of configurations
¢ (C-space). Then a new candidate configuration X;ang € C is
chosen. The configuration Xnear € 7, closest to X;ang, IS deter-
mined using the metric p1(Xrand, Xnear ). New feasible configura-
tions (Xnew) that minimize the metric p2(Xrand, Xnew) are obtained
by using the model in Egn. 9. These configurations are added to
the RRT tree 7. This process is iterated until Xgegreq i Obtained
or a maximum number of iterations is attained. This RRT algo-
rithm is iterated over P to achieve a geometrically feasible subset
of design parameters. This extended RRT algorithm is given in
Algorithm (1).

The metric functions p; and p; that determine the nodes of
the explored RRT tree are simply Euclidean metrices with addi-
tional weights to reconcile the differences in units and scales of
the different elements in x. A more elaborate discussion on the
choice of metrics and the algorithm can be found in [28].

A sample RRT for a given set of geometrically feasible pa-
rameters is shown in Fig. 4. The RRT finds geometrically feasi-
ble paths (thin line) for the peg through the device for the given
design parameters. The thick line shows the path of the center

1The Halton sequence is a quasi-random sequence of points that is known to
minimize the discrepancy measure [24].

Algorithm 1 GENERATE PEGRRT: T

Input parameter space P, P € (012
Uniformly sample P and determine Ps ¢ P € 012
for P, € Psdo
Map P; to geometry of part feeder S € 02
Read Input: max_iterations, steps, time, ¢, U, Xini, Xdesired
Initialize RRT: 7 .addNode(Xini)
while max_iterations do
Generate random node: Xrand € C
Xnear +— minx]er P1(Xrand Xj)

h= time
seps
forueU do

for steps do
Xeurr = Xold +U.h
if Collision(S, Xcurr) then
break
end if
Xold = Xcurr
end for
Xnew = MiNueu {Xnew, P2 (Xrand Xcurr ) }
end for
7 .addNode(Xnew)
7 .addEdge((u € U), Xnear — Xnew)
if Xnew & Xdesired then
break
end if
end while
Store parameter set P; and 7
end for

of mass for a successful feasible path from the start position and
orientation to the goal.

One can also use this algorithm to explore trajectories over a
range of parametric values. For example, by sampling uniformly
over the set of all possible input chute angles 6, we can find those
chute angles that lead to successful trajectories. In Fig. 5 two
samples of geometric feasible paths are shown for 8 = 0.235 and
6 =0.529.

We can also use this approach to uniformly sample the en-
tire twelve-dimensional parameter space in the range specified in
Table 2. Results of two successful trials are given in Fig. 6.
This process allows us to eliminate infeasible design parameters
that result in unsuccessful trajectories thus resulting in a smaller
search space for the design optimization with dynamic models.
See Fig. 7 for designs corresponding to such infeasible design
parameters.
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Figure 4. A SAMPLE RRT WHICH INCLUDES A GEOMETRI-
CALLY FEASIBLE successful PATH FOR THE PART (THICK LINE)
WITH BRANCHES DENOTING OTHER GEOMETRICALLY FEA-
SIBLE TRAJECTORIES (THIN LINE). THE PARAMETERS ARE:
(a=1.113,b=1.134,c=0.7727,d = 3.462,e = —1.161, f =
(—0.616,1.929),9 = (1.325,2.666),r =0.144,0 =0.4764, a =
0.9526).

eeeeeeeeeeeeeeeeeeeeee

xpos

Figure 5. THE RRT RESULT SHOWS THAT BOTH CHUTE AN-
GLES 8 = 0.235 AND 8 = 0.529 LEAD TO SUCCESSFUL GE-
OMETRICALLY FEASIBLE SOLUTIONS FOR THE PARAMETER
VALUES (a =11, b = 1.1086,c = 0.798,d = 3.008, e =
—1.9, f =(-0.985,1.01), g = (0.733,2.039),r = 0.101, a =
1.047).

Table 2. PARAMETER SET P FOR PART FEEDER DESIGN.

Parameter | Range Parameter | Range

a [1.1,1.2] f x =[-1.0,-0.6] x
y =[0.5,2.5]

b [1.1,1.3] g x =[0.2,2.0]x
y =[1.5,3.0]

c [0.75,0.8] r [0.1,0.3]

d [2.5,5] 0 [0.3,0.9]

e [-1.0,-2.0] a [0.9,1.1]

Figure 6. THE RRT ALGORITHM SUCCESSFULLY FINDS A GE-
OMETRICALLY FEASIBLE PATH. THE PARAMETER VALUES
FOR THE LEFT AND RIGHT FIGURES ARE (a =1.178,b =
1.1,¢=0.782,d = 3.106,e = —1.935, f = (—0.923,0.949),g =
(1.493,2.518), r = 0.152, 6 = 0.725, a = 1.005) AND (a =
1.181, b = 1.107,¢c = 0.787,d = 3.298, e = —1.967, f =
(—0.619,1.234), g = (1.043,1.685),r = 0.161,8 = 0.761, a =
1.016).

4
3
2
1
L o
W )
2
s 3 2 1 0 1T 2 R 5 % 5 4 3 -2 -0
xpos xpos

Figure 7. SAMPLE RRTS FOR PARAMETER VALUES FOR
WHICH THE ALGORITHM DID NOT RETURN A SUCCESS-
FUL TRAJECTORY FOR PEG REORIENTATION. THE PA-
RAMETER VALUES FOR THE LEFT AND RIGHT FIGURES
ARE (a=11,b=11c¢c=075d=25e=-10,f =
(—0.6,0.5),g = (0.2,1.5),r =0.1,6 = 0.3, a = 0.9) AND
(a=1.127,b=1.168,c =0.795,d = 4.423, e = —1.322, f =
(—0.632,1.397),g = (0.762,2.055), r = 0.186, 8 = 0.65, a =
1.005).
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The kinematic model (Eqgn. 8) enforces the non-penetration
constraint by determining impulsive forces during collision
based on the impact model described in [29]. The kinematic
model is used to further prune the discrete set of geometrically
feasible design points in the design space. This smaller subset of
geometrically and kinematically feasible design points are used
as initial values for further analysis and optimization with the dy-
namic model. The RRT Algorithm (1) is modified as shown in
the Algorithm (2).

Algorithm 2 GENERATE KINEMATIC PEGRRT: T

if Collision(S, Xeyrr ) then

Calculate Impulse: Imp(Xcurr, Ucurr )

Update state velocity: Unew < Ucurr +M~2Imp(Xeurr, Uourr)
end if

Figure.8 shows two kinematically feasible points starting
with geometrically feasible design points in the design space Ps.

Peg n hole ~Kinematic case: Pegin hole ~Kinematic case

N7~

( ) ! ’ g’l D

i

xpos

Figure 8. THE RRT ALGORITHM SUCCESSFULLY FINDS A
KINEMATICALLY FEASIBLE PATH. THE PARAMETER VAL-
UES FOR THE LEFT AND RIGHT FIGURES ARE (a=1.14,b =
1.2,c=0.769,d =2.899,e = —1.483, f = (—0.65,0.87),9 =
(1.88,1.88), r = 0.23, 0 = 0.829, a0 = 1.06) AND (a =
1159, b = 1.25, ¢ = 0.751,d = 4.245, e = —1.709, f =
(—0.824,0.908), g = (0.931,2.277),r =0.291,8 = 0.478, o =
0.932).

It is of course possible that the RRT algorithm may termi-
nate after a prescribed maximum number of iterations even if the
design parameters may be geometrically feasible. One can run
the algorithm for more iterations and find if a solution indeed
exists. But often we are only interested in finding a set of fea-
sible solutions rather than all possible solutions. Geometric and
kinematic feasibility analysis using the RRT algorithm provides
a computationally efficient way to prune the design space, which
will enable convergence of the design optimization problem with
dynamic models.

4 Dynamic analysis of the part feeding mechanism
Geometrically and kinematically feasible design parameters
for the dynamic analysis are chosen from the range of design pa-
rameters in Table. 2. The RRT results corresponding to a set of
initial design parameters are shown in Fig. 9. The design prob-

Peg in hole ~Geomeric case
7

Figure 9. THE RRT GENERATED FOR THE SET OF PARAM-
ETERS (a =12, b=13,¢=08,d=5e=-10, f =
(=0.7,2.5), g = (1.5,3), r = 0.3, 8 = 0.7854, a = 1.0472)
SHOWING A SUCCESSFUL GEOMETRICALLY FEASIBLE TRA-
JECTORY (LEFT) AND KINEMATICALLY FEASIBLE TRAJEC-
TORY (RIGHT). THIS IS USED AS AN INITIAL GUESS FOR
GENERATING A SUCCESSFUL DYNAMICALLY FEASIBLE DE-
SIGN OF PART FEEDER.

lem with the dynamic models is expressed as an optimization
problem with the design space (P) specified by simple bounds
placed on the twelve design variables and the objective function
given as follows:

2
G Z.ZWHQi(Ti)—QQoaIH‘f‘Ti (10)

where ggoal is a target configuration of the peg at some point well
within the exit chute, T is the time when the peg either comes
to rest or when the y component of its center of gravity moves
below that of ggoar, W is a weight factor and i € {1,2} with 1 or
2 indicating that the peg entered the input chute with the heavy
end of the peg on top or bottom of the chute. With this objective
function, the design problem can be written as

P=ming (X,T) st X=7g(X,P), (11)

where the parameter set P is the set of all the twelve design vari-
ables given in Table. 1, the states variable X = (q, g). The func-
tion Fo(X, P) is given by Eqn.( 7).

The dynamic simulation was carried out in Matlab using
the constrained optimization routine, fmincon, with the time-
stepping dynamic method called twice for each objective func-
tion evaluation. Figures 10 and 11 show the result obtained after
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approximately 1000 objective function evaluations. The weight
factor w in the objective function is set to be 5. Note that the peg
falls through the device in the proper orientation regardless of its
entering orientation. The optimal design parameters found from
dynamic analysis are tabulated in Table. 3.

=

o o
" |
2| 2
= 2 1 0 1 2 R YT 2 0
5

Figure 10. THREE SNAPSHOTS OF A DYNAMICALLY COR-
RECT TRAJECTORY SHOWING THAT THE PEG IS ABLE TO
PASS THROUGH THE DEVICE WITH THE DESIGN PARAMETERS
FOUND BY THE OPTIMIZATION ALGORITHM. THE HEAVY END
OF THE PEG ISON TOP IN THE INITIAL CONFIGURATION.

3 2 1 o

Figure 11. THREE SNAPSHOTS OF A DYNAMICALLY COR-
RECT TRAJECTORY SHOWING THAT THE PEG IS ABLE TO
PASS THROUGH THE DEVICE WITH THE DESIGN PARAMETERS
FOUND BY THE OPTIMIZATION ALGORITHM. THE HEAVY END
OF THE PEG IS FED THROUGH THE CHUTE FIRST IN THE INI-
TIAL CONFIGURATION.

Table 3. OPTIMAL VALUES OF PARAMETERS WITH DYNAMIC
MODEL.

Parameter | Value | Parameter Value
a 1.1 f [-0.9849,1.0098]
b 1.1086 g [0.733,2.0388]
c 0.7979 r 0.101
d 3.0078 0 0.4673
e -1.9 a 1.0472

5 Discussion

The ultimate goal of our research is to be able to automat-
ically generate motion plans (inputs) and designs (initial condi-
tions and parameters) for part feeding and assembly operations.
The problem of finding the feasible sets of initial conditions and
design parameters to plan trajectories for manipulation tasks is
similar to motion planning problem in robotics where the goal
is: given a robot with dynamics and constraints (obstacles), find
a path or trajectory (if one exists) from the starting configura-
tion to the goal configuration. Just as complete motion planning
is hard to obtain for complex problems, we may not be able to
develop complete algorithms, or prove correctness or safety.

In this paper, we present three models that lend themselves
to hierarchical design and planning of manipulation tasks. Our
approach allows us to boot-strap the design optimization process
with a low-resolution model that is used to find geometrically
feasible initial plans quickly without difficulties of convergence
with limited computational resources. This initial plan is then re-
fined in successive iterations by upgrading to models with higher
resolution and fidelity.
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