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Abstract

In this paper, we study the problem of predicting the quasistatic planar motion
of a passive rigid body in frictional contact with a set of active rigid bodies. The
active bodies can be thought of as the links of a mechanism or robot manipulator
whose positions can be actively controlled by actuators. The passive body can be
viewed as a “grasped” object, which moves only in response to contact forces and
other external forces such as those due to gravity. We formulate this problem as a
certain uncoupled complementarity problem, and show that it belongs to the class of
NP-complete problems. Finally, numerical results of our proposed linear programming-
based solution algorithm for this class of problems are presented and compared to the
only other currently available solution algorithm.
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1 Introduction

In the field of robotics, one of the most important unsolved problems is that of automatically
planning the motions of a robot or system of robots to accomplish a given task involving
the manipulation of one or more objects. Since practical planners for general tasks of this
sort do not currently exist, robot motion plans are created primarily in two ways. First,
programs in the robot’s control language are written by hand. This is a laborious, error-
prone undertaking. Second, programs can be developed by recording the sequences of joint
positions and end effector! forces experienced by the robot as its operator manually “walks”
it through its task. These sequences are translated automatically into the robot’s control
language and then modified by trial and error until the robot can reliably complete the task
(if possible).

These approaches are best suited to tasks involving no contacts between the robot and
its surroundings or just one contact with an immovable object (as would be the case if the
robot performed grinding or deburring operations on a fixtured part). Neither approach is
suitable when the intended task has any of the following characteristics:

e The task is to take place in an environment hazardous to human health (such as Space,
waste disposal/clean-up sites, and sub-oceanic environments).

e The task is not repetitive (as would be the case in small-batch manufacturing enter-
prises).

e The task involves one or more robots cooperating to manipulate one or more objects
(such tasks require manual dexterity and are referred to as dexterous manipulation
tasks).

One method applicable to tasks with the first two characteristics is tele-operation. While
this method has been used successfully for simple tasks since World War I, it is extremely
difficult and costly to build tele-operation systems with sufficient fidelity in force-feedback to
allow the operator to execute tasks involving multiple sliding and/or rolling contacts. The
same comments apply to manipulation systems employing the technologies of virtual reality.

Tasks exhibiting the last characteristic cannot be planned and executed by any of the
techniques described above (or other existing techniques), so new approaches must be de-
veloped. In several recent articles [9, 10, 11], a new approach based on the mechanics of
quasistatic multi-rigid-body systems has been proposed. These articles demonstrated that
by embedding a model of quasistatic contact mechanics in a dexterous manipulation plan-
ner, it is possible to automatically generate programs (without manual editing) that can be

IThe “end effector” of a robot is the link furthest from the base, i.e., the most distal link. It may be a
robotic hand, grinding wheel, paint-spraying nozzle, or any other device required to perform the intended
task.



successfully executed by a real multi-robot system. However, the planners developed could
be improved if quasistatic rigid body mechanics were better understood.

The purpose of this paper is to advance our understanding of the quasistatic multi-rigid-
body contact problem (or just, the quasistatic contact problem), so that future manipulation
planners can be made more efficient, capable, and reliable than the prototype planner dis-
cussed above. Our improved understanding comes as a result of the three main contributions
of this paper. First, a new complementarity formulation of the quasistatic contact problem
is introduced, which we refer to as the uncoupled complementarity problem (UCP) in order
to distinguish it from the standard linear complementarity problem [2]. Second, it is es-
tablished that the UCP lies in the class of NP-complete problems. Finally, we develop a
linear programming-based algorithm for solving the UCP. The application of this algorithm
to the quasistatic contact problem is discussed and numerical results are reported. We show
that our proposed algorithm is capable of finding a solution much more quickly than the
only other existing algorithm [11]. In fact, the other algorithm is enumerative, requiring the
evaluation of a number of potential solutions, which grows exponentially with the number
of contacts. While this algorithm can find multiple solutions when more than one exists, it
would take years of cpu time to execute on the largest problems for which our new algorithm
found solutions.

2 Problem Formulation

In what follows, we shall first develop the governing equations of the quasistatic multi-rigid-
body contact problem and then show how they lead to an uncoupled complementarity system.
For in-depth discussions of the advantages of the quasistatic multi-rigid-body contact model
over its dynamic counterpart and of previous related work, we refer the reader to [11].

A body of arbitrary shape (the object or workpiece) moves quasistatically due to frictional
contact with one or more actively-controlled bodies (see Figure 1). The actively-controlled
bodies are viewed as the links of a manipulator composed of any number of serial and
branching kinematic chains. The joints are either revolute (allowing only rotational relative
motion between the bodies) or prismatic (allowing only translational relative motion). The
manipulator and the object are collectively referred to as the system. We assume that:

1. The positions, orientations, and geometries of all bodies are known.
2. The bodies are rigid and restricted to move in a plane.

3. The external forces and torques applied to all the bodies in the system (other than
those arising at the contacts) are known.

4. The kinetic energy of the system and all dynamic effects are negligible (this assumption
makes the system quasistatic).



WORKPIEGE

Figure 1: Workpiece in Contact with Manipulator

5. Each joint may be position- or effort-controlled; effort control implies force control of
a prismatic joint and torque control of a revolute joint.

6. The friction forces at the contacts satisty Coulomb’s Law.

Then, given the instantaneous velocities of a subset of joints and the efforts applied at the
remaining joints, our goal is to determine the instantaneous velocity of the object. We would
also like to determine the contact forces and the unspecified joint efforts and velocities.

To formulate the governing equations, a “world” frame may be chosen arbitrarily. For
convenience, we choose it so that its origin coincides with the center of gravity of the work-
piece (see Figure 1). Let n. be the number of contact points on the object and let n, be
the number of degrees of freedom of the object’s motion. Further, let contact point z be the
origin of a coordinate frame i, whose axes, ; and #;, are aligned with the contact normal
(pointing inward with respect to the object) and the contact tangent such that the cross
product of 7; and {;, points out of the plane of motion.

Let the (unknown) vector ¢; = [e;, ci]?, 7 € {1,...,n.}, represent the force applied to
the object at the :*® contact such that ¢;,, and c;; are the normal and tangential components,
where T indicates matrix transposition. The vector ¢; is known as the wrench intensity vector
[8] of the i'h contact. The wrench matrix, W;, transforms the i*" contact force into the world
frame. In the planar case, W; has dimension (3 x 2) and is defined as follows:

i ;
Wim o wd = | T ] ()

where #;, 1;, r; are all expressed in the world coordinate frame, r; is the position of the
™! contact point, and the ® operator applied to two vectors, [a1, az] @ [b1, b, is defined as

ale — ngl.

Let gon; be the external force and torque applied to the object; it includes all forces and
torques not applied at the contact points. Summing all the forces and torques and setting
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them equal to zero (as required by Newton’s Laws) yields the equations of equilibrium of
the object:
We + gobj = Wncn + Wtct + Yobj = 0 (2)

where W and (the unknown) ¢ are referred to as the global wrench matrix and the global
wrench intensity vector [5] and have dimensions (3 X 2n.) and (2n. x 1), respectively. The
normal and tangential wrench matrices, W,, and W;, both of dimension (3 x n.), are formed
by the horizontal concatenation of all the individual normal and tangential contact wrenches
w;n, and w;; (defined in equation (1)). Correspondingly, the normal and tangential wrench
intensity vectors, ¢, and ¢;, both have length n. and are formed by the vertical concatenation
of all the normal and tangential wrench intensity components, ¢;, and ¢;;, respectively.

The manipulator must satisfy similar equilibrium equations as described in [5]:
JTC:JgCn‘FJtTCt:T_gman (3)

where J is the global Jacobian of the manipulator, 7 is the vector of joint efforts, and gman
is the vector of joint loads induced by the external forces. The dimension of the latter two
vectors is equal to the number of joints which we denote ny. The partitions J and J! are
exactly analogous to the partitions, W, and W, of the wrench matrix, W. In particular, JI
and JtT are of order nyg by n..

The motion of the object is subject to kinematic velocity constraints, the satisfaction of
which implies that the bodies in the manipulator do not penetrate the object’s surface. For
i =1,...,n let v; = [vy, vy]! denote the relative linear velocity at the 7*® contact point,
expressed in terms of the i*® contact frame; similar to the definition of ¢, and ¢, let v, and
vy denote the n.-vectors with components v;, and v, respectively. Let ¢ be the (unknown)
ng-vector of (linear and angular) velocity of the point on the object coincident with the
origin of the world frame. Further, let 0 be the ng-vector of angular and linear velocities of
the joints of the manipulator: angular velocities for revolute joints and linear velocities for
prismatic joints. We have the following defining equations:

v =Wrq—J,6 (4)

vy =WTj—J0. (5)

The nonpenetration constraint mentioned before is given by the nonnegativity of the vector
Vs €.,

v, > 0. (6)

Note that there is no such requirement on the vector v;, because while sliding at a contact
may be prevented by friction, it is not prevented by a geometric constraint as penetration
is.

Among the components of the two vectors 0 and T, some are given as inputs while others
are to be computed. The motivation for this partitioning of § and 7, is that it allows us
to model compliant control modes. These modes are implemented by position-controlling



some joints (those corresponding to the given elements of 9) and effort-controlling the others.
Compliant control modes increase the range of tasks that the manipulator can perform by
providing the capability to maintain desired contact modes (i.e., sliding or rolling) at specific
contact points.

Continuing with our development, given is a subset « of {1,...,ng} such that 0; and T;
are given constants for all ¢ € a and j &€ «; éj and 7; are unknowns. Note that as far as
the individual constraints in the equation (3) are concerned, only those that correspond to
known values of 7; are effective restrictions of the problem.

The remaining constraints enforce the Coulomb friction law, which for the planar case,
stipulates that each contact force lies within or on the boundary of its respective friction
cone:

leit| < picin, t=1,...,n,, (7)

where y; is the effective coefficient of friction at the i*h contact point; each p; is a positive
constant. More specifically, Coulomb’s Law states that if contact ¢ is sliding, then the contact
force must be on the boundary of the friction cone such that the friction force component,
cit, opposes the relative motion. If contact ¢ is rolling, there is no additional restriction.
Note that the inequality (7) implies that the contact forces are nontensile (i.e., ¢;, > 0 for
all ¢). Also, the reader should be aware that it is physically meaningful for one or more of
the constants p; to be zero; nevertheless, a zero p; clearly renders the corresponding ¢;; equal
to zero and the constraint (7) trivially satisfied.

To complete the formulation of the quasistatic contact problem, we must specify the three
types of relationships possible between the forces and the relative velocities at the contacts:
foreacht=1,...,n.:

(i) rolling contact:
Cn >0 = vy =0; (8)

(ii) breaking contact:
Vin >0 = ¢ =0 (= ¢ = 0); (9)

(iii) sliding contact:

vie >0 = ¢y = —picin (10)
vy <0 = ¢ = fiCin.

The quasistatic multi-rigid-body contact problem is to find vectors ¢,, ¢, v,, vy, g, and the
unknown components of § and 7 satisfying conditions (2) to (10). Incidentally, the con-
tact conditions (8) and (9) are mathematically equivalent, but they have different physical
meanings.

The contact conditions (8), (9), and (10) naturally lead one to suspect that this contact
problem can be formulated as a complementarity problem. As we shall see below, this is



indeed the case; nevertheless, the resulting complementarity problem is not of the standard
type as discussed in [2].

Adding slack variables s, and sj; to inequality (7), we may rewrite it as the following
pair of equations:

e . s
WiCin = S + ¢ty and ey, =8 —ci, t=1,...,n..

From these equations, we obtain ¢; = s/ — Uc, and 2Uc, = s + s; where U is n. X n.
diagonal matrix with the 7*® diagonal entry given by p;, and s} and s; are, respectively,
the n.-vectors with components s} and s;;. Physically, when the 7*® contact is rolling and
cit 1s positive, s;; represents how much ¢;; can be increased before the onset of sliding in the
negative tangential direction. Similarly, when the i*! contact is rolling and ¢; is negative,
sj represents how much ¢;; can be decreased before sliding begins in the positive tangential

direction.

Eliminating ¢; from the equations (2) and (3), we deduce the following equivalent formu-
lation for the quasistatic multi-rigid-body contact problem.

Proposition 1 Given the vector ¢ and complementary partitions ofé and T (as described
above), the vectors ¢,, ¢i, v,, and vy satisfy conditions (2) to (10) if and only if ¢, and v,
along with st, s;, vy, and v; , satisfy the following conditions:

v, = WLq— J,0

o — vy = Wlq— J,0

0=2Uc, —s§ —s;

0 = (W, — WU)e, + Wisf + gob; (11)

7= (JI —J'U)e, + JEsf + gman

U, V7,07, €y 57,57 >0

(va)fen = (v1)'sf = (v7)"s; =0.

Proof. If ¢,, ¢, v,, and v; satisfy (2) to (10), it suffices to define sf and s; as the slack
variables for (7) and v} and v; be, respectively, the nonnegative and nonpositive part of
ve. It is easy to verify that the contact conditions (8), (9), and (10) imply the desired
complementarity conditions (v,)T¢c, = (v;7)Tsf = (v;)Ts; = 0; the other conditions in the
system (11) are trivial.

Conversely, if v,, v}, v;, ¢,, sf, and s; satisfy (11), then it suffices to define v; = v} —v;

and ¢; = s; — Uc,,. The verification that v,, v, ¢,, and ¢; satisfy (2) to (10) is easy. Q.E.D.

With the above proposition, we can give an equivalent formulation of the quasistatic
multi-rigid-body motion problem as a certain complementarity system. We introduce some



notation. Let & denote the complement of the index set a, a subset of {1,...,n4}; let J, and

J5 denote, respectively, the columns of the matrix J = l ] indexed by « and a; write

J,
P:[WT J&]

where W = [W,, W;]. Note that P is of order 2n. x m where m = n, + |a|. Let Z be any
matrix with 2n. columns such that its null space is equal to the column space of P; i.e.,
a vector a € R?" satisfies Za = 0 if and only if @ = Pb for some vector b € R™. One
such matrix Z can be obtained as follows: if P denotes the submatrix of P consisting of a
maximal set of linearly independent columns, then

Z =1-P(PTP)'PT,

where [ is the identity matrix of order 2n.. The matrix Z can also be obtained by various
rank-retaining factorizations (such as the QR or singular valued decompositions); see [3,
section 6.8] for more details. In several numerical examples to be discussed in Section 5,
both W,, and W; are nonsingular (square) matrices and & = {); in this case, we have

Z=] (W) T —(W) T

In general, we may write Z = [Z,, Z;] where both Z, and Z; have n. columns. Define the
polyhedron:

X=3| v | €R™ :© Zyw,+ Zi(of —v])+ 2.0, =0

where R is the positive orthant of Euclidean 3n.-space and 0, is the vector formed from
6 by removing all unknown elements.

The polyhedron X represents all possible normal and tangential velocities at the contact
points obtainable by varying the unknowns, ¢ and 9&; these variations are made without
regard for their consistency with the equilibrium equations and our model of contact inter-
actions which relate contact velocities and forces. Extreme points of X on the boundary of
the nonnegative orthant represent system motions for which various combinations of sliding
and rolling are taking place at the contacts. Note that all interior points of X correspond
to system motions for which every contact is separating and therefore all the contact forces
are zero. Problems that admit solutions with all contact forces equal to zero are degenerate
in the sense that the external force applied to the object is zero, so no contact is required to
maintain its equilibrium.



We need to define another polyhedron Y that plays the role of the dual of X. For this
purpose, define

2U -1 -1 0
C = Wn — WtU Wt 0 5 d= YGobj ;
(Jn)g - (Jt)gU (‘]t)g 0 (gman - 7-)&

where as before, [ is the identity matrix of order n.. The polyhedron Y is
Cn
Y=Ry=|sf ERTC:O:C'y—I—d
s

This polyhedron represents the set of all possible contact forces without regard for the
unknown velocities, ¢ and 9&, that might give rise to them. However, note that if the ‘b
contact point is sliding, one of s} or s; is zero, and if it is breaking, all of ¢;,, s, and
s;; are zero. Therefore, every system motion with at least one sliding or rolling contact is
represented by an extreme point of Y. Only motions with all rolling contacts can correspond
to interior points of Y, and in this case, the corresponding point in X is the origin.

We have the following result which does not require further justification.

Theorem 1 The quasistatic multi-rigid-body motion problem is equivalent to the problem of
finding a pair of vectors (z,y) € X x Y such that zTy = 0.

This theorem indicates that only vectors in the velocity polyhedron, X, that are orthog-
onal to a vector in the force polyhedron, Y, represent quasistatic system motions consistent
with the equilibrium of the object and manipulator, the kinematic constraints arising from
the contacts, the Coulomb model of friction, and the contact interaction model (of sliding,
rolling, and breaking contact).

3 The Uncoupled Complementarity Problem

Motivated by Theorem 1, we formally define the uncoupled complementarity problem (UCP)
as follows. Let X and Y be two polyhedra in R’ ; this is the problem of finding a pair of
vectors (z,y) € X x Y such that 27y = 0. The term “uncoupled” refers to the fact that
the variables © and y are independent of one another (except through the complementarity
constraint). The use of the word “complementarity” is justified because both X and Y
lie in the nonnegative orthant of R™; hence a pair of vectors (z,y) € X x Y satisfies the
orthogonality condition 7y = 0 if and only if the standard complementarity relation holds:

ry; =0, 1=1,...,n.



The well-known linear complementarity problem (LCP) is to find a vector z € R" satisfying
the following constraints [2]:

w=qg+Mz>0, z>0, wlz=0,
where ¢ € R" and M € R™" are given. The LCP is coupled. Indeed, let X = R} and
Y = ¢+ MR?; then (z,w) solves the LCP if and only if (z,w) € X x Y,z"w = 0, and

0 = w — Mz — g; the last equation is a coupling between the variables z and w.

Besides the quasistatic contact problem, the problem of determining whether two disjoint
point sets in R"™ can be separated by two planes can also be formulated as an uncoupled
complementarity problem [1]. In addition, the zero-one integer feasibility problem is also a
special instance of the UCP; consequently, the uncoupled complementarity problem belongs
to the class of NP-complete problems.

Proposition 2 The uncoupled complementarity problem with integral data is NP-complete.

Proof. The UCP clearly belongs to the class NP. We now show that the zero-one integer
feasibility problem is a special instance of the UCP. More specifically, let A be an m x n
matrix and b an m-vector. Consider the problem of finding a vector z satisfying

Az=1b, ze{0,1}". (12)
Let e be the n-vector of all ones. Define
X={(z,w)e R : Az=b, z+w = e},
YV ={(u,v) e R : Av=0, u+v=ce}.

With the pair X and Y defined in this way, it is trivial to see that if z satisfies (12), then
(z,e —z) € X and (e — z,2z) € Y; moreover, this pair of vectors is orthogonal. Conversely,
if (z,w) € X and (u,v) € Y satisfy 27u = wl'v = 0, we claim that z € {0,1}". Indeed, if
z; > 0, then u; = 0 which implies v; = 1 which in turn implies that w; = 0; thus z; = 1.

Q.E.D.

The above proposition shows that the UCP is in general not easy to solve. In the next
section, we shall describe an algorithm for solving this problem and apply it to the quasistatic
contact problem.

4 A Bilinear Programming Approach

Associated with the UCP defined by the pair of nonempty polyhedra (X,Y’) in R}, we can
define the following “natural” bilinear program:

minimize z'y

. (13)
subject to (z,y) € X x Y.
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Since X and Y are both subsets of the nonnegative orthant of R", the objective function of
this program is always nonnegative on its feasible region. Thus, by the Frank-Wolfe Theorem
in quadratic programming, (13) will always have an optimal solution. Clearly, a pair (z,y)
solves the UCP if and only if (z,y) is a globally optimal solution of (13) with a zero objective
value. Thus, the UCP can be solved by finding a globally optimal solution to the bilinear
program (13).

Section 1 in Chapter 9 of [4] contains a rather extensive treatment of a bilinear program;
in particular, some basic properties and various algorithmic approaches for computing a
solution are discussed. By Proposition IX.1 in the reference and the above discussion, it
follows that the problem (13) must have an optimal solution (z,y) such that # and y are
vertices of X and Y, respectively. Based on this fact, we describe a linear programming

based algorithm for solving the UCP.
The algorithm

Step 0. (Initialization) Let (2% y°) be an arbitrary vector in X x Y, where the superscript
indicates the number of iterations performed by the algorithm.

Step 1. (LP step) In general, given a non-complementary pair (z”,y") € X x Y, we obtain
(zt1 y*t) € X x Y by applying the simplex method in a sequential fashion where z**! is

an optimal solution of the linear program in the variable x:

minimize z!y” (1)
subject to = € X,

and with z**! computed, y**! is an optimal solution of the linear program in the variable y:

minimize ylz¥*!

. (15)
subject to y €Y.

We emphasize that both of these linear programs must have optimal solutions; furthermore,
(l,l/—l—l)Tyy—I—l S (xy)Tyu‘

Step 2. If (zVt1)Ty*+! = 0, stop; a desired complementary solution to the UCP is obtained.
If 0 < (z¥*H)Tyr 1 < (2¥)Ty”, return to Step 1 with v replaced by v + 1. If

0 < (@Y = )y, (16)
then (z”,y") is a stationary point of the bilinear program (13). Continue.

Step 3. We attempt to decrease the bilinear function zy from its current value (z*)%y"

by generating all adjacent extreme points of ¥ and y” in X and Y, respectively, This can
be done by an algorithm described in [6, §3.7.1]. We denote the sets of adjacent extreme
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points of ¥ and y” in X and Y by E(z") and E(y”), respectively. We search for a pair
(z,y) € E(z¥) x E(y”) such that

SCT‘y < (SCV)T‘yV.
If such a pair exists, then we return to Step 1 with v replaced by v+1 and (¥, y") replaced by
the pair (z,y) just identified. Otherwise, we randomly choose a pair (z,y) € E(z") x E(y")
and repeat Step 3 with (z,y") « (2,y) and v «— v + L.

There are several remarks pertaining to the algorithm described above. One is the fact
that the algorithm attempts to maintain the inequality:

($V+1)Tyy+1 < (:CU)TyV. (17)

This goal of decreasing the objective values, although not always attained, qualifies our
algorithm as one of minimizing 7y. Another remark concerns the claim of stationarity of
the pair (z”,y") when (16) occurs. Indeed, when the latter happens, it is easy to show that
the pair (z,y") must satisfy the inequality:

(.13 o $V)T’yy + (y . yy)T.fV Z 0

for all (z,y) € X x Y. The above algorithm must, in a finite number of iterations (i.e.,
with a finite value of the iteration counter v), identify either a complementary pair (z,y")
satisfying (z*)Ty” = 0 or a non-complementary, but stationary pair (z”,y"). The reason for
this finite identification is due to finite number of extreme points that the polyhedra X and
Y possess and the fact that the bilinear objective value 7y can be decreased if (z*,y") is
not stationary (hence, not complementary either). Incidentally, in the article [1], Bennett
and Mangasarian have described a variation of Step 1 to compute a stationary point of an
uncoupled bilinear program (of which the UCP is a special case). They show that it is
sufficient to let (z“*!, y“*!) be any pair of extreme points of X X Y such that (17) holds;
in particular, it is not necessary to solve either program (14) or (15) to optimality. We
also note that due to the independence of the sets X and Y, it is possible to obtain the
pair (z¥* y“*!) in parallel, rather than in the sequential fashion as we have stated. This
variation is also discussed in the cited reference.

Step 3 of the algorithm attempts to improve the objective function 7y when stationarity
(but non-complementarity) is reached. Since finding all adjacent extreme points of a given
extreme point is a relatively easy task if the given point is nondegenerate, this step is
expected to be computationally reasonable. Due to the intrinsic difficulty of the UCP, Step
3 is, in general, not guaranteed to return a pair of extreme points with an improved bilinear
objective value. When no such improved extreme point is identified, the algorithm picks
a new pair of points arbitrarily and proceed with this pair. Consequently, it is possible in
theory for the algorithm to revisit the same pair of vectors; nevertheless, in the application
of the algorithm for solving the quasistatic contact problem, the numerical results reported
in the next section show that this cycling phenomenon occurs only in those cases for which
no solutions to the problem exist.
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5 Numerical Results

We have implemented the algorithm described in the last section for solving the quasistatic
contact problem formulated as an UCP. The set of input data included n., n,, ng, P, J,,, Ji, 9, d
and g which were all defined in Section 2. With these inputs, we generated the data for the
polyhedra X and Y as described in Section 3. The algorithm was coded in C and a self-
written code for the simplex method (with some linear algebraic subroutines taken from [7])
was used to solve (to optimality) the various linear programs (14) and (15). The experiments
were conducted on a Sun SPARCStation IPX with 16 megabytes of memory and one CPU
processor. The initial pair (z°,y°) was generated by solving two linear programs on the sets
X and Y with a zero objective function. The termination rule was =y < 10710,

The output provided a final pair (z,y) € X x Y, the value 27y, and the total number
of intermediate pairs (z,y) found to reach the solution. The recovery of the force variables
¢, and ¢, the velocity vector ¢, and the vector of joint torques 7 from the computed vectors
(z,y) was easily done and also included in the computer code. Since we are more interested
in the performance of the algorithm than in the actual output, we choose to report only the
former and omit the latter.

We initially tested our code with three sets of data drawn from [11] (denoted Data Set 1,2
and 3 below). We successfully solved all of them with ¥y = 0 by finding no more than two
(z,y) pairs (a total of 6 linear programs, including the two initial ones) before arriving at the
complementary solution. We then further tested our code with fifty six different combinations
of {p:} in Data Set 2. The results we obtained were consistent with those presented in [11].
Forty one of them were solved by exploring no more than two pairs of (z,y). Three other
sets of data invoked Step 3 once which successfully identified the complementary solution
from the adjacent extreme points of the current (z,y) pair. The remaining twelve data sets
were taken from the “jamming” region; for these data sets, the algorithm terminated due to
cycling and thus failed to yield (z,y) satisfying 27y = 0. In fact, the problems with these
data have no solutions. One such set of data is given as Data Set 4.

Data Set 1: [n.,ng, ngl = [3,3, 6]

[ 0.966  0.259  0.000 7
0.000  1.000  0.240
—0.707 0.707  0.750
—0.259 0.966 —2.000
—1.000 0.000 —1.450

| —0.707 —0.707 —1.900
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0o0100O0)|, J=[0001T0P0

1 00000 010000
J, =
{000010 000001
=101 0995 0.1 —0.995 0.1 0.995 "
d=[0 00 0 -1 0]F

p=1[05 05 03]

Data Set 2: [n.,ng,ng| = [3,3, 6]

[ 0.804  0.595 1.040 7]
—0.707  0.707  —3.500
—0.973 —0.232 14.000

F= —0.595 0.804 —20.900

—0.707 —0.707 —17.900

L 0.232 —-0.973 —7.630 |
1 00000 01 0000
J,=100100O0}, J=]00201T020
000O0T1FQO0 000 O0O01

0=10.92 —0.391 0.9276 —0.3747 0.9306 —0.367 ]©
d=[0 000 —1 0]"
p=[01 04 03]

Data Set 3: Same as Data Set 1 except that

§=[—0161 0987 0.995 0.1 —0.774 —0.633 ] .

Data Set 4: Same as Data Set 2 except that

p=[07 09 09]"

We tested our code with a data set of larger size (n. = 20,n, = 3,ns = 40, and |a| = 23;
the full data set is too large to be included). A complementary pair (z,y) was identified after
running a single iteration of the algorithm. Subsequently, we modified the external wrench
(gobj), the joint torques and forces induced by gravity (gman) and the coefficients of friction p
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to generate three versions of the data set. The performance of our code on the modified data
was similar to that of the original set. Only one iteration was needed to obtain a solution
pair in all three cases. Moreover, the vector x in the solution pair (z,y) was identical to the
one that solved the original data. The reason for the latter observation is two-fold. First,
our modification of the data only concerned the polyhedron Y and thus rendered that vector
x feasible in all three trials. Second, that vector  was rather degenerate with nine basic
variables at value zero. Hence, by having fewer complementarity restrictions, it was more
likely to obtain a feasible y to complement the given x as a solution pair.

We further tested our algorithm with some randomly generated data sets. The number of
contacts n. was allowed to vary, whereas ny and n, were fixed at 2n. and 3 respectively. We
used a computer code in C written by Sandra Sudarsky to generate the matrices W and J
and the vector 7 that corresponded to a single workpiece in contact with several point fingers.
The coefficients of friction u; were generated randomly with varying magnitude. Since we
were interested only in problems with nonempty polyhedra X and Y, we generated the
remaining data in the following way. First, we generated a random pair (¢, ¢;) that satisfied
the Coulomb friction law (7), we then used equations (2) and (3) to determine gob; and gman-
This ensured the nonemptiness of Y. Next we generated a random nonnegative vector v,
and determined ¢ and 9 from equation (4). jFrom the resulting ¢ and 9, we determined the
set a so that X # (). By varying the value of n., the range of the coefficients of friction,
and the size of the set «, twenty feasible problems were created to test our algorithm. The
results are summarized in Table 1.

Initially, our algorithm solved all but seven of the test problems. These unsolved problems
seemed difficult by construction as they either had relatively large coefficients of friction or
a relatively large cardinality of the set a, or even both. To explore these seven problems
further, we applied a modified form of our algorithm, in which Step 3 was slightly changed. In
both the original and the modified algorithms, Step 3 was only executed when the algorithm
reached a stationary point. Then, if an adjacent extreme point could not be found which
strictly reduced the product, 2y, one was chosen at random. In the original algorithm, Step
3 was repeated with a randomly chosen pair (2',y") € E(2”)x E(y”). The modification of the
algorithm that we implemented returned the algorithm to Step 1 in this situation, rather than
repeating Step 3. Intuitively, instead of repeatedly searching for “better” adjacent extreme
points only, the algorithm initiated the solution of another sequence of linear programs (14)
and (15) with possibly an initial increase in the objective value z7y. Three of seven problems
not solved by the original algorithm were solved under this new scheme. The * in Table 1
indicates the three problems that were solved by the modified algorithm.

The strategy of restarting the search from an adjacent extreme point proved to be useful in
several instances. The solution of Problem 1 was found only after such a restart. Similarly, in
Problem 11, this strategy identified a non-complementary pair that yielded a strict decrease
in the objective value. Problems 3, 7 and 14 also restarted at adjacent extreme points to
reach their solutions. No solutions were found for problems 17 to 20 even though Step 1 was
reinvoked 20 times, after which the algorithm was set to terminate. However, we believe

15



that the difficulty in solving Problem 17 was probably a result of numerical inaccuracy in

our code.
Problem No. of pairs
No. n. Rangeof u |a| |a] (z,y)found Best 27y
1 3 (0, 1.0) 6 0 2 0
: 10 (0, 1.0) 20 0 1 0
*3 10 (0, 2.0) 20 0 5 0
4 15 (0,12) 29 1 2 0
5 18 (0, 0.8) 279 1 0
6 20 (0, 1.0) 40 0 1 0
7 20 (0, 1.5) 40 0 4 0
8§ 20  (0,12) 40 0 2 0
9 20 (0, 1.0) 30 10 2 0
10 20 (0, 1.0) 30 10 2 0
11 20 (0,1.0) 40 0 4 0
12 30 (0, 1.0) 60 0 2 0
13 30 (0,0.5) 45 15 1 0
*14 30 (0, 0.6) 45 15 24 0
15 40 (0, 1.0) 80 0 1 0
16 40 (0, 1.0) 80 0 1 0
17 10 (0, 1.3) 15 5 52 0.00001
18 15 (0, 1.2) 246 39 14.61551
19 30 (0, 0.6) 45 15 49 24.32773
20 40 (0, 1.0) 60 20 52 1.23990

Table 1 : Random problems

In summary, the algorithm and its modification solved sixteen out of the twenty random
test problems. At this time we are not certain whether the four unsolved problems actually
have a solution (although we suspect that problem 17 might). Overall, the algorithm has been
rather successful in solving the quasistatic multi-rigid-body contact problem with Coulomb
friction.

The other existing algorithm for solving this problem [11] is an enumerative scheme that
tests certain candidate solutions (potentially many) which satisfy some constraints derived
from practical engineering concerns. This enumerative scheme has been applied only to
simple cases with very small numbers of contacts. For example, in solving problems with
n. = 8 contacts and |a| = 2n., the enumerative algorithm tests 1107 (z,y) pairs. When n,
is increased to 20, the number of pairs tested jumps to 377,379,369. The largest problem
solved here had 40 contacts and would require the testing of approximately 107 pairs. The
advantage of our solution algorithm discussed here is that a relatively small number of pairs
are tested. However, the disadvantages are that our algorithm might not find a solution even
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if one exists, and it cannot be easily modified to find more than one solution if the solution
is not unique. The enumerative algorithm will find multiple (and possibly all) solutions to

every problem, but is clearly limited to problems with small numbers of contacts.

Acknowledgement. The authors are grateful to Sandra Sudarsky who provided a C code
for the generation of the data used in the last set of experiments.
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