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Abstract. This paper formally introduces several stability
characterizations of £xtured three-dimensional rigid bodies
initially at rest and in unilateral contact with Coulomb fric-
tion. These characterizations, weak stability and strong sta-
bility, arise naturally from the dynamic model of the system,
formulated as a complementarity problem. Using the tools of
complementarity theory, these characterizations are studied
in detail to understand their properties and to develop tech-
niques to identify the stability classi£cations of general sys-
tems subjected to known external loads.

1 Introduction

Many useful mechanical systems are composed of a num-
ber of bodies that interact through multiple, unilateral fric-
tional contacts. Examples include gears, cams, modular £x-
turing systems, and robot grippers. 1 Designers of such sys-
tems rely heavily on the analyses of initial designs, which are
often carried out under the rigid body assumption. Nonethe-
less, signi£cant holes in both the relevant theory and compu-
tational tools remain. In this paper, we attempt to close one of
those holes through a rigorous study of the stability of a free
three-dimensional rigid body (called a workpiece) initially at
rest and in frictional contact with £xed rigid bodies (called
£xels). Our analysis is based on the theories of rigid body
dynamics and complementarity. Our primary objective is to
develop a sound basis that will enable us to gain a thorough
understanding of the main issues involved with stability. Our
secondary objective is to derive theoretical results that will
enable the development of tests that more accurately charac-
terize stability than the overly conservative tests in use today.
The main results are presented in three new theorems and il-
lustrated through a planar example.

∗This research was partially supported by NSF grants CCR-9624018, IRI-
9713034, and IRI-9619850, THECB grant ATP-036327-017, and Sandia, a
multiprogram laboratory operated by Sandia Corporation, a Lockheed Mar-
tin Company, for the United States Department of Energy under contract
DE-AC04-94AL85000.

1In fact at a £ne level of detail, every lower pair joint in every mechanism
is actually implemented with a clearance, which leads to unilateral contacts
in the joint interfaces.

1.1 Previous Work
There are two primary ways to stabilize a rigid workpiece.

The £rst is known as form closure [5]. A workpiece is form-
closed if it cannot move, even in£nitesimally, without at least
one £xel penetrating the workpiece. This sort of stability does
not rely on friction and is easy to check (by solving a linear
program [11]). Several automated £xture design systems are
based on form closure.2 However, because form closure re-
quires large numbers of contacts, it can sometimes be impos-
sible to design form-closure £xtures that provide suf£cient
access for machining tools or part insertions.

Recognizing the limitations of using large numbers of con-
tacts, Palmer [8] and others have studied rigid body stability
without form closure (e.g., see [1, 4, 10, 14]). For such situa-
tions, the stability of the workpiece should be determined by
examining the solution(s) to the dynamic model composed of
the Newton-Euler equations for the workpiece, the relevant
kinematic constraints, and appropriate friction laws. How-
ever, typically the dynamic equations are replaced by equi-
librium equations, which can lead to false positive stability
conclusions. In order to prevent this problem, the results in
this paper are based on the dynamic equations.

Despite our beginning with a dynamic model, we do not
adopt the usual stability de£nition for dynamic systems. The
reason is that we allow sliding at the contacts which results
in an irrecoverable loss of energy, and hence an arbitrarily
perturbed workpiece will generally not return to its initial
equilibrium con£guration. Instead, we will adopt Fourier’s
inequality [6]:
De£nition 1: If the acceleration of the workpiece is zero
(for all solutions of the dynamic model) for given £xel lo-
cations and applied load, then the workpiece is said to be sta-
ble. Equivalently, a workpiece is stable if the virtual work for
every kinematically admissible virtual motion is nonpositive.
Note that for convenience, we will also refer to the load and
the £xture as being stable when this condition is met.

Palmer found that determining stability (which he referred
to as “in£nitesimal stability”) in the presence of friction is ex-

2For an excellent review and extensive bibliography of many papers on
this topic, see [2].



tremely dif£cult (co-NP complete), so he identi£ed two other
stability classi£cations that could be tested ef£ciently by lin-
ear programming methods. These classi£cations were:

Potential Stability – Contact forces exists that satisfy equi-
librium and Coulomb’s law.

Guaranteed Stability – Contact forces exists that satisfy
equilibrium without friction.

The primary problems with these stability characteriza-
tions are that they are overly conservative in one direction or
the other, so their use in £xture design algorithms is limited.
Figure 1 illustrates the problem. For a given £xture and work-
piece con£guration, let SS(µ) denote the set of strongly sta-
ble external loads (i.e., those that satisfy stability De£nition 1
in the presence of friction, where µ is the vector of friction
coef£cients at the contact points). Similarly, let SS(0) de-
note the set of loads that are strongly stable without friction
(Palmer’s “guaranteed stability”) and let WS(µ) denote the
set of weakly stable loads with friction (Palmer’s “potential
stability”). A load can be tested for membership in WS(µ) or
SS(0) using linear programming techniques, and as will be
demonstrated, one can identify all the external loads in these
sets for a given £xture. However, since there are loads in
WS(µ) that have multiple dynamic model solutions, some of
which correspond to instability (nonzero workpiece acceler-
ation), £xture design using this set is not recommended. On
the other hand, the set of loads SS(0) is usually a small subset
of SS(µ), so its use in design is also limited.

Weakly Stable Loads

Strongly Stable Loads
µSS( )

All Loads

WS( )µ

Frictionless Stable Loads
SS(0)

Figure 1: Important load subsets; SS(0) ⊆ SS(µ) ⊆ WS(µ).

Despite the limitations, Palmer’s stability characteriza-
tions have been the best available for rigid £xture design with-
out form closure. The results contained in this paper represent
a signi£cant step toward stability tests which are not conser-
vative, and hence could lead to better £xture design and anal-
ysis tools.

2 Methodology
Our basic framework is the discrete-time dynamic model

for multiple rigid bodies in contact presented in [13]. By set-
ting the initial velocity of the free body (the workpiece) to
zero and £xing the positions of the actuated bodies (the £x-
els), this model represents a £xtured workpiece. Three sets

of conditions are imposed on the workpiece: (a) the Newton-
Euler equation written in terms of the contact accelerations,
(b) conditions on the normal contact forces, and (c) Coulomb
friction constraints on the tangential forces. These conditions,
derived in [13], are listed below.

(a) The Newton-Euler equation:

[

an
at
ao

]

= A

[

cn
ct
co

]

+ b, (1)

where the subscripts n, t, o denote the normal (n) and two
tangential directions (t, o) in the contact coordinate systems,

A ≡ J TM−1J and b ≡ J TM−1 gext

with J being the system Jacobian matrix and M the sys-
tem inertia matrix, the latter being symmetric positive def-
inite, and gext being the external load applied to the work-
piece. The vector an = (ain)

nc

i=1 is composed of the relative
normal accelerations at the contacts indexed by i, where nc is
the number of contact points among the bodies. The relative
accelerations in the tangential directions, t and o, are de£ned
analogously. The vectors of normal wrench intensities, cn,
and frictional wrench intensities, ct and co, are de£ned simi-
larly. In the case of the £xture stability problem studied here,
the system Jacobian matrix J is composed of wrench matri-
ces W n (in the normal direction), W t and W o (in the two
tangential directions):

J ≡ [W n W t W o ] .

These matrices simply map the contact forces into a common
inertial coordinate frame. The matrix A can be written in
partitioned form as follows:

A =





Ann Ant Ano

Atn Att Ato

Aon Aot Aoo



 ,

where for ν, η ∈ {n, t, o}, Aνη ≡ W T
νM−1W η. Similarly,

the vector b can be written as: b =
[

bTn b
T
t b

T
o

]T

, where for

η ∈ {n, t, o}, bη ≡ W T
ηM−1gext.

(b) Normal contact conditions:

0 ≤ an ⊥ cn ≥ 0, (2)

where the notation ⊥ means perpendicularity. Note that this
condition expresses the complementary relationship between
the normal load and acceleration at each unilateral contact.

(c) Constraints on tangential forces: for i = 1, ..., nc,

(cit, cio) ∈ argmin c′itait + c′ioaio
subject to (c′it, c

′
io) ∈ F(µi cin),

(3)



where F(·) is the Coulomb friction map and µi is the non-
negative friction coef£cient at contact point i; that is, for each
nonnegative scalar ζ ≥ 0, F(ζ) is a planar circular disk with
center at the origin and radius ζ:

F(ζ) ≡ { (a, b) ∈ <2 : a2 + b2 ≤ ζ2 }. (4)

Note that in the context of the quadratic Coulomb law (4),
the “argmin” condition in (3) implies that the friction force
opposes the direction of impending slip (we recall that the
system is initially at rest).

The results developed in this paper apply to more general
friction laws (including some axi-asymmetric laws (see [9]));
nevertheless, for simplicity, we focus on the above standard
Coulomb friction law.

Every set of contact forces c ≡ (cn, ct, co) induces a vec-
tor of body accelerations q̈, as follows:

q̈ ≡ M−1 (J c+ gext ). (5)

Letting a ≡ (an,at,ao) denote the vector of relative accel-
erations at the contacts and using the fact that the workpiece
is initially at rest, we see that

a = J T q̈.

Based on the above model, we rede£ne our stability char-
acterizations in terms of contact forces and we introduce ter-
minology for the complementary characterizations for three-
dimensional bodies with Coulomb friction laws:
De£nition 2: For a given external load g ext and £xel and
workpiece con£gurations, the workpiece (and £xture and
load) is said to be:

Weakly Stable – if a set of contact forces exists that satis-
£es equations (1–3) and that induces zero body accelerations;

Strongly Stable – if every set of contact forces that satis£es
equations (1–3) induces zero body accelerations;

Weakly Unstable (Palmer’s in£nitesimal instability) – if it
is not strongly stable;

Strongly Unstable (Palmer’s guaranteed instability) – if it
is not weakly stable.

2.1 Weak stability
Clearly, the load gext is weakly stable if and only if there

exists a contact force vector c satisfying:

J c+ gext = 0
c ∈ F(µ),

(6)

where F(µ) is the Coulomb friction cone; that is

F(µ) ≡

nc
∏

i=1

{ (cin, cit, cio) : cin ≥ 0, (cit, cio) ∈ F(µicin) }

with µ ≡ (µi) is the vector of friction coef£cients µi at
the contacts and

∏

represents the Cartesian product operation
applied to the spaces of the contact forces.

Geometrically, the system (6) de£nes the cone of weakly
stable loads:

WS(µ) ≡ { gext : the system (6) is consistent }. (7)

This cone is the image of the friction cone F(µ) under the
linear transformation de£ned by the negative of the system
Jacobian matrix J ; that is,

WS(µ) = −J (F(µ)).

As will be seen, the cone WS(µ) will play a central role
throughout our study. The complement of WS(µ) consists
of the strongly unstable applied loads. We illustrate this cone
in the example below.
Example: Consider a uniform laminar disk of mass m and
radius R in the plane in contact with two immovable £xels
and external loading gext as shown in Figure 2. The £xels are
located by the angles θ1 and θ2 measured counterclockwise
about the origin of an inertial coordinate frame {x, y} cen-
tered in the disk. The normal contact forces, c1n and c2n, are
directed from the £xels toward the center of the disk. The
corresponding friction force components are tangent to the
disk, with positive values of cit assumed to produce clock-
wise (negative) moments. We wish to examine conditions on
the angles θi ∈ (0, π) and the friction coef£cients µi so that
an applied load gext ∈ <3 is weakly stable.

R

θ2
y 2n

c

Fixel 2
2t

c

x

g
ext

1t
c

θ1
c1nFixel 1

Figure 2: Loaded disk contacting two £xels.

The data for this problem are as follows. The problem
is planar; thus there is only one tangential direction (no “o”
direction) at each contact. There are two contact points; thus
nc = 2. Moreover we have:

[

W n W t

]

≡

[

− cos θ1 − cos θ2 sin θ1 sin θ2
− sin θ1 − sin θ2 − cos θ1 − cos θ2

0 0 −R −R

]

M =

[

m 0 0
0 m 0
0 0 mR2/2

]

, gext =

[

g1
g2
g3

]

.

Note that the analysis of this example is straight forward, but
tedious, so is not included here. The interested reader can £nd
the details in [9]. We restrict this presentation to the primary
qualitative aspects.



Figure 3: The set of weakly stable loads in <3; µ1 = 0.2 and
µ2 = 0.5.

The condition for the weak stability of gext is the existence
of c = (c1n, c2n, c1t, c2t) satisfying the following linear in-
equality system:

J c+ gext = 0 (8)

| cit | ≤ µi cin, i = 1, 2. (9)

A contact force c satisfying equation (8) can be solved in
terms of the friction force at the second contact c2t and then
substituted into the friction constraints to yield four inequal-
ities linear in c2t. These inequalities de£ne a convex cone of
all weakly stable loads. Figure 3 shows WS(µ) on the unit
sphere centered at the origin of <3 for µ1 = 0.2, µ2 = 0.5,
θ1 = π/4, and θ2 = 2.5π/4. The generators of WS(µ)
are indicated by four medium-sized bubbles at the vertices
of the “quadrilateral.” Any external load passing through the
interior or boundary of this “quadrilateral” has weak stability.
Note that the g3-direction (the moment direction) is indicated
by the big bubble on the top of the sphere. The g2-direction
(the y-component direction of the external force) is marked
by the big bubble inside the quadrilateral.

Figure 4 shows the two dimensional slice of WS(µ)
through the equator of the sphere shown in Figure 3, thus cor-
responding to g3 = 0. In this case, the external loads in ques-
tion are those representable as pure forces passing through
the center of the disk. As expected, the set of weakly stable
external forces are those contained in the convex cone formed
by the radii to the contact points.

Further analysis of this example leads to two interesting
cases summarized next.

Case 1. WS(µ) = <3

In this case, all loads are weakly stable and the situation is
equivalent to “force-closure” as each friction cone contains
the other contact point [7]. Force closure is obtained for this
example, if and only if the smaller of the friction coef£cients
is greater than 1.4966. In terms of the unit sphere in Figure 3,
increasing the friction coef£cients corresponds to separating
the generators (the vertices of the “quadrilateral”). Once the
values of both friction coef£cients increase beyond 1.4966,
the 4 generators positively span <3.

1θ
2θ

WS(µ)

x

y

extg

Figure 4: The set of weakly stable loads in <2; g3 = 0, µ1 =
0.2, and µ2 = 0.5.

Case 2. WS(µ) degenerates into a “triangle.”
In this case, the friction cone at one contact contains the
other contact point, but the converse is not true. For this
example, this situation arises when one friction coef£cient
is greater than and the other is less than 1.4966. Figure 5
shows the set of weakly stable loads for µ1 = 1.8, µ2 = 0.5
with the other data remaining the same as above, θ1 = π/4
and θ2 = 2.5π/4. Again, the big bubble on the top of the
sphere indicates the g3-direction while the one on the equa-
tor represents the g2-direction. Note that increasing µ1 from
0.2 causes the two left-most generators in the “quadrilateral”
shown in Figure 3 to separate following their great circle.
When µ1 reaches a value of 1.4966 the left-most generator
from the original quadrilateral reaches the great circle de£ned
by the two right-most generators, causing the “quadrilateral”
to degenerate into a “triangle.” Further increasing µ1 to 1.8
yields the “triangular” set shown, with one of the original
generators inside.

Figure 5: The set of weakly stable loads in <3; µ1 = 1.8 and
µ2 = 0.5.

Figure 6 shows the slice through the sphere correspond-
ing to g3 = 0. It is interesting to note that the set WS(µ)
has grown (by 0.08 radians) to include loads outside the cone
formed by the radii to the contact points. 2

We close this section by noting that it can be shown that
decreasing any coef£cient of friction causes the set of weakly
stable loads to contract monotonically:

WS(µ) ⊆ WS(µ′) if µ ≤ µ′.
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Figure 6: The set of weakly stable loads in <2; g3 = 0, µ1 =
1.8, and µ2 = 0.5.

3 Main Results
In this section, we present the main results pertaining to

the stability concepts de£ned in the last section. We begin
with a preliminary result that gives an equivalent way of de-
scribing strong stability. In essence, this result asserts that
strong stability (i.e., zero body accelerations, q̈ = 0) can be
characterized as nonpositive virtual work (i.e., q̈Tgext ≤ 0); 3

this result is consistent with the asserted equivalence in Def-
inition 1 of stability. A proof of the following proposition is
given in appendix A in [9].

Proposition 1 Let gext be a given applied load. The follow-
ing statements are equivalent:
(a) gext is strongly stable;
(b) every set of contact forces consistent with equations (1-3)
yields nonpositive virtual work.
(c) gext is weakly stable and every set of equilibrium contact
forces yields zero relative tangential accelerations, at and
ao.

The distinction between weak stability and strong stability
is clearly due to the nonuniqueness of the contact forces. If
the dynamic rigid body contact model has a unique solution,
then these two stability concepts are equivalent. Based on a
uniqueness result obtained in [13], we state a suf£cient con-
dition for this equivalence to hold. Subsequently, this result
will be generalized.

Proposition 2 Suppose that the Jacobian matrix J has full
column rank. There exists a scalar µ̄ > 0 such that if µi ∈
[0, µ̄] for all i = 1, . . . , nc, gext is weakly (un)stable if and
only if it is strongly (un)stable.

The scalar µ̄ has to do with the preservation of the “P-
property” of certain perturbations of the matrix A (which is
positive de£nite under the full rank assumption in the above
proposition). For more discussion on this scalar, see [12].

3Note that since the system begins at rest, the instantaneous acceleration
q̈ is proportional to the instantaneous velocity q̇ and hence the expression
given is proportional to the virtual work.

3.1 The role of frictionless stability
The frictionless problem corresponds to µ = 0. This case

plays an important role in the frictional problem. For one
thing, the frictionless case provides another instance where
weak and strong stability are equivalent. This is part of the
content of Theorem 1 below. Besides establishing the equiv-
alence of weak and strong stability, this theorem also shows
that frictionless stability is easy to check, namely, by solv-
ing a linear program. More importantly, frictionless stabil-
ity is actually equivalent to (weak or strong) stability for all
friction coef£cients. Thus we see that frictionless stability is
a very desirable property. Note that while many have pre-
viously conjectured that frictionless stability implies strong
stability with friction, we were not aware of a formal proof
until now (see Appendix B of [9]).

Unlike Proposition 2, the theorem below and all subse-
quent results do not require J to have full column rank.

Theorem 1 Let gext be a given applied load. The following
£ve statements are equivalent:
(a) There exists a vector ĉn satisfying

W nĉn + gext = 0, ĉn ≥ 0. (10)

(b) The load gext is weakly stable for all µ.
(c) The load gext is strongly stable for all µ.
(d) The load gext is weakly stable when µ = 0.
(e) The load gext is strongly stable when µ = 0.

With the above result, it is natural to ask what happens if
frictionless stability is absent. The next result asserts that if
the workpiece possesses a certain “separation property”, then
frictionless instability implies strong instability in the case of
small friction coef£cients; thus in this situation, there must be
suf£cient friction at the contacts in order for strong, or even
weak, stability to hold.

Theorem 2 Suppose that there exists a vector un satisfying
W T

nun > 0. The following two statements are equivalent:
(a) gext is unstable for the frictionless problem;
(b) there exists a scalar µ̄ > 0 such that if µi ∈ [0, µ̄] for
all i = 1, . . . , nc, gext 6∈ WS(µ); that is, gext is strongly
unstable for the problem with µ ≡ (µi).

The physical interpretation of the supposition of Theorem
2 (that is, the existence of the vector un) is as follows. If
there exists a generalized acceleration (un) of the £xtured
workpiece that would cause all contacts to separate simulta-
neously, then the external load is strongly unstable for all fric-
tion coef£cients suf£ciently small if and only if it is strongly
unstable when there is no friction. Notice that the existence
of such a separating acceleration un depends entirely on ge-
ometry and has nothing to do with the applied load. We say
that the workpiece has the separation property if such an ac-
celeration exists.



From Theorems 1 and 2, it becomes evident that the most
dif£cult case for analyzing strong stability is when the load
is not (strongly or weakly) stable in frictionless contact but
becomes strongly stable when friction is present. A critical
value of the friction coef£cients where the transition from in-
stability to (weak or strong) stability occurs (if it occurs at
all) is unfortunately not known and is expected to be very dif-
£cult to determine in general. Nevertheless, such a value can
be computed in special cases.

In order to illustrate Theorems 1 and 2, it will be useful
to introduce the polyhedral cone de£ned by all nonnegative
combinations of the columns of the matrix −W n; that is,

WS(0) ≡ −pos(W n) = { gext : system (10) is consistent }.

Theorem 1 then says that this cone WS(0) is precisely the set
of all applied loads gext that are strongly stable for all friction
coef£cients; moreover, Theorem 2 implies that if the work-
piece has the separation property, then a load gext 6∈ WS(0) is
weakly (not necessarily strongly) stable only if there is suf£-
cient friction at the contacts. We illustrate Theorems 1 and 2
further using the example from the last section.
Example (continued): Setting µ1 = µ2 = 0, we can show
that the cone WS(0) consists of all loads (g1, g2, g3) satisfy-
ing:

g3 = 0 (11)

g1 sin θ2 − g2 cos θ2 ≥ 0 (12)

−g1 sin θ1 + g2 cos θ1 ≥ 0. (13)

This closed cone consists of all pure forces passing through
the center of the disk and passing between the two contacts or
through one of them. It is the same set illustrated in Figure 4
as WS(µ).

With un ≡ (0,−1, 0), we clearly have W T
nun > 0. Thus

the disk has the separation property. To illustrate Theorem
2, consider a load gext = (g1, g2, 0) that fails one of the two
conditions (12) and (13), and therefore lies outside of WS(0).
Such a load is illustrated in Figure 6. In order for this load
to be weakly stable in the frictional case, the analysis in [9]
implies that there must exist a scalar c2t such that four certain
inequalities, linear in c2t, hold. From these inequalities, it is
not dif£cult to verify that if

0 ≤ max(µ1, µ2 ) <
sin(θ2 − θ1)

1− cos(θ2 − θ1)
= 1.4966 = µ̄,

then there cannot exist any c2t that balances gext 6∈ WS(0).
Theorem 2 is therefore veri£ed. 2

3.2 The WUR sets
One of the primary goals of this paper is to identify the set

of loads that are strongly stable (i.e., members of SS(µ)) for
a given friction coef£cient. Since it is hard to identify such
loads directly, we are interested in identifying loads that are
weakly unstable (WU(µ) and therefore known to lie outside

SS(µ)). By Theorem 1, we know that loads lying outside of
SS(µ) must also lie outside of the cone SS(0). In order to
motivate the main result in this subsection, Theorem 3, we
state a preliminary result pertaining to the frictionless prob-
lem. The next result is inspired by the concept of a comple-
mentary cone in linear complementarity theory [3].

Proposition 3 If W n has full row rank, an applied load gext
is (weakly or strongly) unstable for the frictionless problem
if and only if there exist a nonempty subset α of {1, . . . , nc}
with complement ᾱ and nonnegative vectors anα and cnᾱ
with anα 6= 0 such that

W T
nM−1gext = I ·αanα − (Ann)·ᾱcnᾱ.

Here α and ᾱ are the index sets of the contacts that are to
be separated and maintained, respectively. The dot subscript
following Ann indicates that all rows of Ann are included.
Notice that Proposition 3 depends on the full row rank as-
sumption of W n to guarantee that if an = 0, then q̈ = 0
also. Since this rank condition is rather restrictive, this re-
quirement is removed in the next proposition. Without this
restriction, the phrase “and only if” must be removed.

Proposition 4 An applied load gext is (weakly or strongly)
unstable for the frictionless problem if there exists a nonempty
subset α of {1, . . . , nc} with complement ᾱ and nonnegative
vectors anα and cnᾱ with anα 6= 0 such that

W T
nM−1gext = I ·αanα − (Ann)·ᾱcnᾱ.

The equation in the above propositions can be easily
derived from the original Newton Euler equation (1) by
setting friction forces to zero and removing the equations
corresponding to the tangential components of the contact
accelerations.4 Applying all subsets α of {1, . . . , nc} to the
equation represents all possible combinations of breaking and
maintained contacts. We will henceforth refer to each such
combination as a “contact mode.” Note that the set of exter-
nal loads corresponding to any particular contact mode is a
convex cone. Thus we see that the set of applied loads, de-
noted WU¤ , that are unstable for the frictionless problems can
be described in terms of the union of £nitely many polyhedra
(the subscript “¤” denotes “frictionless”).

Introducing friction into the problem, we de£ne, for a
given nonzero friction vector µ ≡ (µi), the set WUR(µ)
(the subscript “R” denotes “rolling”). consisting of all load
vectors gext for which there exist a nonempty subset α of
{1, . . . , nc} with complement ᾱ, nonnegative vectors anα
and cnᾱ with anα 6= 0, and (free) vectors ctᾱ and coᾱ such

4Note that the “and only if” could be reinserted into Proposition 4 if
one adds enough additional linearly independent equations corresponding
to nonzero values of the relative translational and relative angular accelera-
tions at the contacts. However, we restrict our attention here to the present
propositions.



that

W T
nM

−1gext = I ·αanα
−(Ann)·ᾱcnᾱ − (Ant)·ᾱctᾱ − (Ano)·ᾱcoᾱ

(W T
tM

−1gext)ᾱ =
−(Atn)·ᾱcnᾱ − (Att)·ᾱctᾱ − (Ato)·ᾱcoᾱ

(W T
oM

−1gext)ᾱ =
−(Aon)·ᾱcnᾱ − (Aot)·ᾱctᾱ − (Aoo)·ᾱcoᾱ

and
( cit, cio ) ∈ F(µicin), ∀ i ∈ ᾱ.

These equations de£ne the set of external loads for which all
contacts either separate or roll. Sliding is not allowed, as in-
dicated by the absence of atα and aoα.

Of particular interest among these WUR(µ) sets is
WUR(0); this is clearly a subset of WU¤ ; moreover, because
the set WUR(µ) does not include external loads correspond-
ing to sliding contacts, we have

WUR(µ) ⊆ WUR(µ
′) if µ ≤ µ′. (14)

In words, as the friction coef£cient increases, the set of
weakly unstable loads with no sliding contacts grows.

The role of the WUR sets is formally established in the
result below.

Theorem 3 If gext ∈ WUR(µ̂) for some friction vectors µ̂,
then gext is weakly unstable for all friction vectors µ ≥ µ̂. In
particular, if gext lies in WUR(0), then gext is weakly unstable
(via a non sliding contact mode) for all friction coef£cients.

Example (continued). For convenience, we take the disk
radius R =

√
2 and the mass m = 1; thus M becomes the

identity matrix. Further, de£ne the quantities: r = sin(θ2 −
θ1) and s = cos(θ2 − θ1). Then, we have

A =







1 s 0 −r
s 1 r 0
0 r 3 2 + s
−r 0 2 + s 3






.

Omitting the algebraic manipulations, we can obtain a com-
plete description of the set WUR(µ) as three convex cones.
For this purpose, we de£ne several vectors:

g1 ≡
[ − sin θ1

cos θ1
0

]

, g2 ≡
[

sin θ2
− cos θ2

0

]

g3 ≡
[

sin θ1
− cos θ1
1/
√
2

]

g4 ≡
[ − sin θ2

cos θ2
−1/

√
2

]

g5 ≡
[ − sin θ1

cos θ1√
2

]

g6 ≡
[ − sin θ2

cos θ2√
2

]

and u3 = (0, 0, 1)T . We have

WUR(µ) = WUR1
(µ) ∪ WUR2

(µ) ∪ WUR12
,

where

WUR1
(µ) ≡ { gext ∈ <

3 | gext = x1g
3 + x2(sg

1 + g2) + x3g
5

for some (x1, x2, x3) 3 x1 > 0, |x3| ≤ µ1x2}

WUR2
(µ) ≡ { gext ∈ <

3 | gext = x1g
4 + x2(g

1 + sg2) + x3g
6

for some (x1, x2, x3) 3 x1 > 0, |x3| ≤ µ2x2}

WUR12
≡ { gext ∈ <

3 | gext = −x1g
1 − x2g

2 + x3u
3

for some (x1, x2, x3) 3 0 6= (x1, x2) ≥ 0}.

These sets are illustrated on the unit sphere in <3 in Fig-
ure 7 for µ1 = 0.2 and µ2 = 0.5. The big bubble at the
north pole is the positive g3 axis, while the big bubble at the
lower right points in the y-direction. The 5/16 sector of the
sphere toward the back left corresponds to WUR12

and is inde-
pendent of the values of the friction coef£cients. It becomes
narrower as the contact points separate on the disk. The “tri-
angular” set in the front delineates the loads in WUR1

. The
short leg of the triangle widens along its present great cir-
cle as µ1 increases, as predicted by Theorem 3. As expected
from the symmetry of this example, there is also a triangular
set emanating from the other side of WUR12

with a leg that
extends with increasing values of µ2. The leg dependent on
µ2 is indicated by the small gray bubbles on the right hori-
zon. It is interesting to note that the quadrilateral formed by
the convex combination of the two extensible legs of the tri-
angular regions is exactly the set WS(µ) shown in Figure 3
(as long as both friction coef£cients are less than 1.4966).
The remaining uncharted regions on the sphere correspond to
external loads which induce contact modes with at least one
sliding contact as long as both friction coef£cients are less
than 1.4966. Otherwise, some loads correspond to more than
one contact mode. 2

Figure 7: The set of weakly unstable loads in <3; µ1 = 0.2
and µ2 = 0.5.

4 Conclusion
Motivated by the problem of £xture synthesis, we have

studied the stability of a moveable rigid body (a workpiece) in
frictional contact with several £xed rigid bodies (£xels). We
have introduced the terms weak stability and strong stability



to characterize two types of “stability” of a £xtured work-
piece. These classi£cations are particularly relevant to the sit-
uation in which the contact forces of the workpiece cannot be
uniquely determined from Newton’s Laws, the relevant kine-
matic constraints, and a friction law. Strong stability exists
(for a given external load) when all admissible contact forces
imply zero workpiece acceleration. This is the most desirable
type of stability, because it provides absolute assurance that
the workpiece will remain in place despite unknown internal
stresses, however, strong stability is dif£cult to test.

The primary contribution of this paper is new insight into
the stability problem derived from three theorems (a fourth
theorem for the case of a linearized friction cone is derived in
[9]) that provide ways to test for strong stability. While we
have focused on the case of one workpiece, the extension to
multiple workpieces is trivial. Speci£cally, the dimensions of
the vectors and matrices appearing in the various equations
increase, but the results and conclusions still hold. The three
theorems are summarized below and illustrated in Figure 8 in
the context of a disk in the plane in contact with two £xels.
For simplicity, the £gure only applies to external loads which
are pure forces passing through the center of the disk.

Theorem 1 presents (for the £rst time known to the au-
thors) a formal proof that if a workpiece is (weakly or
strongly) stable without friction, then it is strongly stable for
all (positive) values of the friction coef£cients. For the exam-
ple summarized in Figure 8, the external forces in the convex
cone labeled “Theorem 1” are stable without friction. Theo-
rem 1 implies that this cone is a subset of the set of all strongly
stable loads for any (nonnegative) friction coef£cients.

Theorem 2 implies that weak and strong instability are
equivalent when the friction coef£cients are below some
bound. In general, this bound is dif£cult to £nd, but in some
special cases, it can be computed easily. Returning to Fig-
ure 8, all external forces lying strictly outside the cone iden-
ti£ed by Theorem 1 are strongly and weakly unstable as long
as both friction coef£cients are less than 1.4966.

Theorem 3 indicates that if for some external loading
and friction coef£cients, the workpiece has a solution with
a nonzero acceleration with all contacts rolling or breaking,
then the workpiece is guaranteed to have a solution with the
same contact mode if the friction coef£cients are increased.
Figure 8 shows external loads corresponding to Theorem 3 as
two convex cones bounding the Theorem 1 cone. The cones
as drawn correspond approximately to friction coef£cients,
µ1 = 0.5 and µ2 = 0.8 With no friction, the cones degen-
erate to the edges of the cone of Theorem 1. As the friction
coef£cients go to in£nity, the edges of the cones move mono-
tonically to the dashed lines (these are the edges of the normal
cone of the SS(0)).

The results presented here leave several open questions for
future study. Perhaps the most important questions relate to
the computation of the friction bound appearing in Theorem 2
and the use of all the results in this paper in an effective £x-

µ) = SU(0)
0 < µ < 1.4966−

WUR((.), 0.8)
Theorem 3

WS(0)=SS(0)

WUR(0.5, (.))

SU(

Theorem 3

Theorem 2

Theorem 1

Figure 8: Summary of the stability sets for disk example.

ture design and analysis system. We intend to address these
questions in future work.
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