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Abstract. In this paper, we study the problem of predicting the accelera-
tion of a set of rigid, 3-dimensional bodies in contact with Coulomb friction.
The nonlinearity of Coulomb’s law leads to a nonlinear complementarity
formulation of the system model. This model is used in conjunction with
the theory of quasi-variational inequalities to prove for the first time that
multi-rigid-body systems with all contacts rolling always has a solution un-
der a feasibility-type condition. The analysis of the more general problem
with sliding and rolling contacts presents difficulties that motivate our con-
sideration of a relaxed friction law. The corresponding complementarity
formulations of the multi-rigid-body contact problem are derived and exis-
tence of solutions of these models is established.

Key Words. Rigid-body contact problem, Coulomb friction, linear com-
plementarity, quasi-variational inequality, set-valued mappings.

1 Introduction

One of the main goals of the robotics research community is to automate
the planning of tasks to be carried out by robots. When tasks do not involve
contact (e.g., paint-spraying) planning is well understood and provably good
planning algorithms exist for several classes of problems [16]. However, tasks
involving contact between the robot and its surroundings (e.g., grasping
tasks) are more difficult to plan [9, 23]. When contact interactions (e.g.,
rolling, sliding, or breaking) must change during task execution, the planning
problems are even more difficult. (e.g., mechanical assembly and dexterous
manipulation tasks). The reason for this is that the “simple” dynamic model
commonly used to predict the motion of the multi-rigid-body system is not
well understood [4, 7, 8, 20].

Generally speaking, the multi-rigid-body contact problem is concerned
with a number of passive rigid bodies of arbitrary shape (objects) that move
dynamically due to frictional contact with a number of active rigid bodies.
The active bodies can be viewed as the links of a manipulator joined by
actuated revolute and prismatic joints (e.g., a robotic hand). A model of
such systems is fundamental to a robot task planner, because it can be
used to predict how the robot and the objects it contacts will move from a
given state when acted upon by a given input. The crux of the difficulty
in planning, is that the multi-rigid-body contact model (for a given input)



does not always have a solution, and when it does, it may not be unique
[17, 3]. Therefore, plans generated using the model may not accomplish the
goal when executed by corresponding real robot system.

As in several previous studies of this problem [17, 3], we focus our at-
tention on the situation in which there are no impacts occurring at the time
for which the contact problem is formulated (i.e., the current time). Colli-
sions are assumed to be dealt with as they arise by an appropriate impulse-
momentum model, such as the ones studied by Seyfferth and Pfeiffer [30],
Marques [21], Moreau [22], and Paoli [27]. Nonetheless, the reader should
be aware that even though no impacts are occurring at the current time,
our model could predict consistent impulsive contact forces. Indeed, as sug-
gested by Baraff [3] in the 2-dimensional case, when a Lemke-like algorithm
is applied to a linear complementarity formulation of the contact problem,
termination on an unbounded ray could be interpreted as an impulse.

The objective of this paper is to introduce several useful complementarity
formulations of the multi-rigid-body contact problem with Coulomb friction,
to present a previously unknown existence result for the all-rolling problem
using a theory of quasi-variational inequalities [5], and to discuss a com-
plementarity constrained least-squares formulation for the general rolling-
sliding problem. Our results provide strict theoretical guidelines for the
applicability of the models, and thus are of great importance in automatic
task planning, and more generally in the field of rigid body mechanics. The
treatment in this paper is purely analytical; in the accompanying paper [31],
we shall report the numerical results of solving the multi-rigid-body contact
problem using the various complementarity formulations introduced herein.

2 The Multi-Rigid-Body Contact Model

We refer the reader to [31] for the detailed physical description of the multi-
rigid-body contact model with Coulomb friction considered here. In this
section, we shall summarize the governing equations of the model and in-
dicate how one can replace Coulomb’s nonlinear law with a linear friction
pyramid law. Then, in Section 3, we shall present the corresponding com-
plementarity systems.

For the purposes of this paper, we will assume that there is only one
object, it may contact any number of manipulator links at any number
of points, and the contact forces obey a Coulomb-like friction law (such a
law will be made clear when it is introduced later). Our objective, given



the actuator torques and forces applied at the joints of manipulator, is to
determine the instantaneous accelerations of the object and the manipulator
joints, the contact forces, and contact interaction (e.g., rolling, sliding, or
breaking) at each contact.

At the time instant for which the model is formulated (i.e., the current
time), there are n. isolated contact points between the manipulator and the
object. Let my be the object’s number of degrees of motion freedom. In
formulating the governing equations, it is convenient to define an inertial
“world” frame whose origin coincides with the center of gravity of the ob-
ject, and to assign a “contact” frame at each contact point. For each contact
point i = 1,..., 7, let the vector ¢; = [cin cit cio]” represent the (unknown)
force applied to the object at contact point ¢ with ¢;, being the component
of the contact force in the direction of the contact normal and ¢;; and c¢;, be-
ing the components of the force in two orthogonal directions in the tangent
plane of the contact; also let W; = [w;, wit w;o] be the wrench matrix which
transforms the contact force ¢; into the world frame, where w;,, w;, and
w;o are (column) vectors of length n,. Let W,, W;, and W, be the (n, x n.)
matrices with their ¢-columns equal to w;,, ws, and w;, respectively; sim-
ilarly, let c¢,, ¢t, and ¢, be the n.vectors whose i-components are c;y, cit,
and c;, respectively. Let gon; and hepj be the ng-vectors defining the ap-
plied gravitational wrench (force and moment) and velocity product wrench
experienced by the object, respectively. Summing all forces and moments
in the world frame yields the following dynamic equation:

When + Wicy + Woco + gobj + hobj = Mobjd, (1)

where My,; is the (ng X ng) positive definite and symmetric inertia matrix
of the object and ¢ is the (unknown) ng-vector of linear and angular accel-
erations of the center of mass of the object expressed with respect to the
world coordinate frame.

A similar dynamic equation holds for the manipulator:

T — [chn + JtTct + cho ~+ Gman + hman] = Mmané. (2)

In this equation, 7 (given) is the ng-vector of joint torques and forces sup-
plied by the joint actuators, with ny being the number of joints of the manip-
ulator; JI', JT', and J! are the matrices which transform the contact forces,
expressed in their respective contact frames, to equivalent joint torques and
forces (torques for revolute joints and forces for prismatic joints); these ma-
trices are of order (ng X m¢); gman and hpa, are the ng-vectors of joint



torques and forces induced by gravity and Coriolis and centripetal acceler-
ations, respectively; Mpman is the (ng X ny) positive definite and symmetric
inertia matrix of the manipulator; and 6 is the ng-vector of (unknown) joint
accelerations.

The motion of the object is subject to kinematic acceleration constraints,
the satisfaction of which implies that the bodies do not interpenetrate. For
i=1,...,n let a; = [ai, ait a;o)T denote the relative linear acceleration at
the i-th contact point, expressed in terms of the i-th contact frame; similar
to the definitions of ¢,, ¢;, and ¢,, let a,, at, and a, denote the n.-vectors
with components a;,, a;+, and a;, respectively, for ¢ = 1,...,n.. We have
the following defining equations:

an = WEi—J0+WTj— J.b (3)
ar — Wth — Jt¢9 + V'Vth. — Jt(9 (4:)
ao = WZXi—J,0+WZXj—J,6, (5)

where the object and joint velocities, ¢ and é, are given. The nonpenetration
constraint mentioned before is given by the nonnegativity of the vector a,,
i.€.:

ap > 0. (6)

Note that there are no similar requirements on the vectors a; and a,.

The remaining constraints enforce Coulomb’s law, which stipulates that
each contact force lies within or on the boundary of its corresponding friction
cone represented as follows:

2 2 2 2 .
cit +Ci0 S ,LLZ'CZ'n, 1= ]., s Ny (7)

where y; is the effective nonnegative coefficient of friction at the i-th contact
point. Since the contact forces must be nontensile, we have:

cin >0, i=1,... 0 (8)

Incidentally, it is meaningful for one or more of the constants u; to be zero;
nevertheless, a zero u; clearly renders the corresponding c¢;; and ¢;, equal
to zero and the constraint (7) trivially satisfied. For this reason, we shall
assume throughout this paper that each y; is positive.

By definition, the normal component of the relative velocity at the i-th
contact, vy, is zero at the time the model is formulated. Among the n. con-
tact points, some are rolling and others sliding; no contacts are breaking at



the current time. Specifically, with the tangential components of the relative
velocity at the i-th contact, v and v;,, given, a contact point ¢ is rolling
if v2 + v2, = 0 and sliding otherwise. Let R and S denote respectively the
subsets of {1,...,n.} pertaining to the rolling and sliding contacts; R and
S partition {1,...,n.}. For each sliding contact, the following restrictions
apply:

iCin(Vit, Vio) + \/vE + v2, (cit, cio) =0, for alli € S, 9)

For each rolling contact, similar restrictions apply:

WiCin(ait, ajo) + \/a,%t + a?o(cit, Cio) =0, forallieR. (10)

Mathematically, the difference between the sliding constraint (9) and the
rolling constraint (10) is that in the former, the velocities v and v;, are
known, whereas in the latter, the accelerations a; and a;, are unknown.
Since v2 +v2 > 0 for i € S, (9) completely determines the tangential forces
¢t and ¢, for a sliding contact 2 € § in terms of the corresponding normal
force c;;, via the expressions:

HiUst HiVio
Cit = ——p————=Cin and ¢, = —————Cin- (11)
\/ Vit t Vio \ iz T Vio

Similar expressions exist for a rolling contact 7 € R that has a nonzero tan-
gential acceleration component. (This will occur if the contact interaction is
about to change from rolling to sliding.) Notice that there is no additional
restriction on the tangential components of the accelerations, a; and a;,,
for all © € §. Moreover, for each sliding contact ¢ € S, the contact force
lies on the boundary of the friction cone; that is, the triple, (¢in cit Cio),
satisfies the constraint (7) as an equation. The same conclusion holds for
a rolling contact ¢ € R with a nonzero tangential acceleration component;
equivalently stated, for any rolling contact i, the triple (c;, cit cip) lies in
the interior of the friction cone only if a;; = a;, = 0.

To complete the formulation of the model, we must stipulate the follow-
ing complementarity condition at all contact points:

Cintin =0, foralli=1,..., n. (12)

To summarize, the dynamic 3-dimensional multi-rigid-body contact problem
with Coulomb friction is to find vectors c,, ¢, ¢o, ap, at, a,, ¢, and 6 satisfying
conditions (1) to (10) and (12). A solution to this problem yields four
possible types of contact interaction transitions classified as follows:



(i) rolling — rolling:

Cin 20,  ain = aiy = ajo = 0; (13)
(ii) rolling — sliding:
Cin 20,  ayp =0, azgt + CL,?O # 0, (14)
i@t Hilio
Cit = ——F=—=Cin, Cio = ——F——=Cin; (15)
V azzt + a’zzo V azzt + a’zzo
(iii) sliding — sliding:
Cin 2> Oa Qip, = 0; (16)
(iv) rolling or sliding — breaking:
ain 20, cin=0, (= cit=cio=0). (17)

The constraints on the normal components of the contact forces and ac-
celerations, (6), (8), and (12), naturally lead one to suspect that the above
model can be formulated as a certain complementarity problem. Neverthe-
less, the rolling constraints (10) cause complications. Indeed, as we shall see
later, the resulting complementarity formulation is not of the standard type.
Moreover, standard existence results from complementarity theory [24] are
not applicable.

The friction pyramid model

The quadratic expressions (7) defining the friction cones and the correspond-
ing relations (10) between the normal and tangential components of the
forces at the rolling contacts cause the above model to be nonlinear. This
fact motivates the second formulation in which the friction cones, at only
the rolling contacts, are replaced by four-sided friction pyramids; as we shall
see, the resulting model leads to a standard linear complementarity problem
(LCP).

More specifically, the alternative, linear, dynamic multi-rigid-body con-
tact model with Coulomb friction pyramid constraints is obtained by replac-
ing the nonlinear friction constraints (7) and (10) by the following conditions:

max(|cit, [cio]) < picin, forallie R, (18)

wicin(|ait], |aio|) + (aitcit, aiocio) = 0, for all i € R. (19)



The resulting problem is to find vectors c¢,, ¢t, ¢y, @y, at, a0, ¢, and 6 satisfying
conditions (1) to (6), (8), (9), (12), (18), and (19). We stress that the usual
nonlinear Coulomb friction Law is still applicable at the sliding contacts
through equation (9).

A variation of the problem

In the above description of the multi-rigid-body problem, we have taken
as input the entire vector of joint torques 7 and treated the corresponding
vector of joint accelerations 6 as an unknown. In certain situations, only
a subset a C {1,...,ny} of the torque components 7;(i € a) and the com-
plementary acceleration components 0] (j & o) are given, and the unknown
torque components 7;(j € ) and acceleration components 0:(i € a) then
become part of the variables to be computed. This variant of the model
can be treated in the same way as the original version; we will focus on the
treatment of the latter only, (i.e., the case for which o = {1,...,n9}) .

3 Complementarity Formulations

It is known that many contact problems can be formulated as complemen-
tarity problems; see [1, 3, 11, 12, 14, 15, 17, 18, 30]. While the model with
Coulomb friction cones described above does not lend itself to a standard
nonlinear complementarity problem (NCP) formulation, the friction pyra-
mid model can be formulated as a standard LCP [6].

The starting point in obtaining a complementarity formulation for both
the friction cone and pyramid models is to eliminate the acceleration vectors
of the object and the joints, § and 6, via the equations (1) and (2). Such
elimination results in the following expressions:

q= M&)ﬁ [Wncn + Wicer + Woeo + Jobj + hobj] >

é: M;;n [7‘ — J,?;Cn - JtTCt - JZCO — Yman — hman] -

Substituting these expressions into equations (3), (4), and (5), we obtain:

Qnp Cn bn,
ag | =A| ¢ [+ | b |, (20)
a, Co bo



where

Ann Ant Ano
A = Atn Att Ato
| A(m Aot Aoo
(21)
B T
Mo ey W, Wi W,
= wr I ob] i ' °
o 0 Mk || 27 I8 Il
L o o
by wr J,
. q
bo WOT‘ Jo
(22)
Wl J, )
Mg 0 Jobj t+ Pob;
+ | WE % .
WtT J l 0 Mr;;n Yman + hma.n - T
o o

Notice that the matrix A is positive semidefinite and symmetric. Moreover,
the single equation (20) is equivalent to the equations (1) to (5).

Next, we can use the expressions in (11) to eliminate the tangential forces
corresponding to the sliding contacts, ¢;; and ¢;, for i € S. Since there are
no additional restrictions on the corresponding accelerations, a;; and a;, for
i € S, the equations in (20) that define these components can be dropped
from the model without affecting its solvability. Carrying out this reduction
results in:

asn CSn bsn
ARn ~ | CRn b’Rn
=A + , (23)
aRt CRt brt
aRo CRo b'RO



where

(Ann)ss (Ann)sr  (Antdsr (Ano)sw
N (Ann)rs (Amn)rr  (An)rR  (Ano)rR
A7 Gudrs (e (Aodrr (Awrr 24
(Aon)rs (Am)rr  (Aot)rr  (Aoo)mR
Here ) _
(Aun)ss | (Ann)ss (Ant)ss (Ano)ss
(Ann)rs _ | Qmadrs || (Aue)rs Ve (Ano)rs v
(Am)rs |~ (Atn)rs (Ait)rs o (Ato)rs 5
Aom)rs | [ (Ao)rs | | (Aa)rs (Aoo)rs

Vst and Vg, are, respectively, the diagonal matrices with diagonal entries
given by pvi/+/v: + v} and pvie/+/vE + vl for i € S; and in general, for
an N x N matrix M, if o and § are subsets of {1,...,N}, M,g denotes
the submatrix of M consisting of rows and columns indexed by « and
respectively.

The model with the friction pyramid law

Given the development so far, it is clear that Coulomb’s friction law has
already been applied at all sliding contacts. The friction pyramid law will
only be applied at the rolling contacts. To derive the linear complementarity
formulation, we adopt the technique used in [26] for a planar quasistatic
model under the same friction law. Specifically, for each rolling contact
1 € R, we define:

Si = MiCin + Cits S = HiCin — City (25)
Sip = WiCin + Cioy  8ig = [iCin — Cio;
af; = max(0,a;), a;; =max(0,—a;),
(26)
aj = max(0,a;,), a;, = max(0, —a;).
Note that (25) implies
s+ sy = 2picin = s + s, (27)

10



The following lemma is key to the LCP formulation of the rigid body
problem with the friction pyramid constraints.

Lemma 1 If (18) and (19) are satisfied by some (Cin, Cit, Cio, Qit, Qio), then
(si,sE,a:,a), defined by (25) and (26) satisfy

it> Sior it s Qio

+ + + &+
(Sit> Sior Qit» B0) = 0,

+ .t + .+ (28)
A Sig = a‘itszt Q30350 = BipSi0 = 0.

Conversely, if (28) and (25) but not necessarily (26), hold for some tuple
(Cin Cit, Cio, i,afo,sﬁ, w) then (18) and (19) hold for (cin, Cit, Cio, Git, Gio),
where

aip = af, —ay,. (29)

-+ -
At = a; —a io

it?
Proof. This is straightforward. Q.E.D.

We may now use the expressions (25) and (29) to replace the free vari-
ables ¢;t, Cio, ait, and a;, by the nonnegative variables (s it, si, ;';, i) Mak-

ing this substitution into the equation (23), rearranging terms, and includ-
ing (27), we obtain an equation that is equivalent to (23) and (25) combined:

[ asn ] [ csn | [ bsn ]
aRn CRn brn
aiit =M sft | : (30)
ARo SRo bro
SRt aRy 0
L SRo Lag, 1L 0
where
[ (Mpn)ss  (Mpn)sr  (Ant)sr (Ano)sr 0 0]
(Mnn)rs (Mpn)rRrR  (Ant)RR  (Ano)rr 0 0
= (Min)rs  (Mim)rr (Au)rr  (Aw)rr I 0 | (31)
(Mon)rs  (Mon)rRrR  (Aot)rR  (Aoo)rr 0 I
0 2UR -1 0 0 0
0 2 0 I 00

11



with Ui being the diagonal matrix with diagonal entries p;,7 € R, and

[ (Mun)ss  (Mnn)sr
(Mpn)rs (Mpn)rR |
(Min)rs  (Min)rr |
L (Mon)rs  (Mon)rR
[ (Ann)ss  (Ann)sr (Ant)ss  (Ant)sr
(Ann)rs  (Aun)rRR (Ant)rs  (Ant)rRR Vst 0
(Amlrs (Awrr | | (Awrs (Awer || 0 Ur |
L (Aon)rs  (Aon)rR (Aot)rs  (Aot)rR
[ (Ano)ss  (Ano)sr
(Ano)rs  (Ano)rR Vso 0
(Ato)rs  (Ato)RR 0 Ur
[ (Aoo)rs  (Aoo)rR

Together with the nonnegativity and complementarity conditions: (6), (8),
(12), and (28), the equation (30) defines an LCP with the matrix M given
by (31) and the constant vector as given in (30); see also (22).

We summarize the above derivation in the following result.

Theorem 1 The dynamic 3-dimensional multi-rigid-body contact problem
with the friction pyramid laws (18) and (19) applied at the rolling contacts
is equivalent to the LCP defined by the equation (30) and the nonnegativity
and complementarity of the variables: (6), (8), (12), and (28).

It should be clarified that an arbitrary solution to the equivalent LCP
need not satisfy (a},)"ar, = 0 or (a},)" agn, = 0; nevertheless, any such
solution must yield a solution to the contact problem, according to the
converse part of Lemma 1.

In principle, the LCP stated in Theorem 1 is amenable to numerical so-
lution by the well-known Lemke’s almost complementary pivotal algorithm.
Nevertheless, the results pertaining to the ray termination of this algorithm

as summarized in [6, Section 4.4] are not applicable. Indeed, the matrix M

12



of this LCP does not seem to belong to any known class of matrices existing
in the linear complementarity literature. As a consequence, while Lemke’s
algorithm may find a solution, it is not guaranteed to do so whenever a
solution exists. In the accompanying paper [31], we have obtained sufficient
conditions on the data of the model which ensure the successful termination
of Lemke’s algorithm for computing a solution of this LCP.

The model with Coulomb’s law

We consider applying Coulomb’s law (i.e., the friction cone law) at the
rolling contacts. Thus equations (7) and (10) replace (18) and (19). With
the cone law, the basic equation remains (23). We write:

_ o+ - _ o+ —
ARt = ARy — Qry;  ARo = O, = ARy
_ 4+ — _ o+ -

CRt = CR¢ —CRtr  CRo = CRro ~ CRos

where the superscripts “4” and “—” refer, respectively, to the nonnega-
tive and nonpositive parts of the variables. Substituting these expressions
into (23) and rearranging terms, we obtain the following equation:

sy ]
CRn
+
asn CRi bsn
ARn c7_Zt brn
n =B + + s ( 32 )
ARy “Ro brt
n _
ARo ‘Ro b’Ro
ARy
L aRo -

where B is the matrix given by

[ (Ann)ss (Amn)sr (Ant)sr —(Ant)sr (Ano)sr —(Ano)sr 0 0
(Ann)rs (Ann)rr (Ant)rR —(Ant)rR (Ano)rR —(Ano)rr 0 0
(Am)rs (Am)rr (Au)rr —(Au)rr (Aw)rrR —(4o)rR —1 0

| (Aon)rs (Aon)rr (Aot)rR —(Aot)rR (Aoo)RR —(Aco)rr 0 —I



The following lemma is key to the transformation of the friction cone
constraints (7) and (10) into a complementarity system.

Lemma 2 For each i € R, if (Cin, Cit, Cio, Qit, Qio), With cin, > 0, satisfies (7)
and (10), then (cin, cﬁ, cz?g, aﬁ, ai), with the superscript + denoting the non-
negative and nonpositive parts of the quantities, satisfies:

min (u2c3, — (cf; — ¢z)? = (¢, — 65,)%, (aif — az)? + (a), — ap)?) =0

(a5 = @5) (o = Cio) = (a5 — ap) (€ = €3) =0
(azp)cih = (ag)ey = (agp)ey, = (ag,)c;, = 0.
Conversely if arbitrary nonnegative numbers (cm,ci,c;g, ai,aiio) satisfy the
latter three equations, then (Cin, Cit, Cio, Git, Gio), Where
Cit = czf'g —Cyy Cio = czﬂ; = Cips
it = a;; — Ay, Qjo = a;'; — Qs
satisfies (7) and (10).
Proof. The equivalence clearly holds if ¢;;, = 0 or (a}; —a;;)? +(a}, —a;,)? =
0. If ¢, and (aj;, — aj;)? + (a;, — a;,)? are both positive, the verification is
not hard either. We omit the details. Q.E.D.

Based on the above lemma, we obtain an equivalent formulation of the
dynamic 3-dimensional multi-rigid-body contact problem with Coulomb fric-
tion cone constraints. In the following theorem, we employ the notation of
the Hadamard product of two vectors: x oy is the vector whose i-th com-
ponent is z;y; for all 4.

Theorem 2 The dynamic 3-dimensional multi-rigid-body contact problem
with Coulomb friction cone constraints is equivalent to the problem of finding
vectors (an,cn,ait,a;%o,c%t,cio) satisfying (32), and

min(ay,, c¢,) =0

0

min(a}gt, Cjit) = min(a;io, Cjio) (33)

min(ay,, ¢x,) = min(ag,, cx,) =0

(a7—;,t - a';?,t) © (C7—;o - 07720) - (a’7—;o - a;?,o) o (C7—;t - C’?@t) =0

14



. 2 92 — \2 — \2 —1\2 — \2
min (/«‘RcRn_(c;Et_cm) —(cRo—CRo)", (agy—ag)’ +(ag,—ag,) ) =0,
where the subscript R in the last equation means that this equation has to
hold for all components i € R.

The system (33), including (32), is a complementarity problem of a spe-
cial kind. It is not a standard NCP because of the last two equations in (33).
In their present forms, (32) and (33) constitute a (square) system of nons-
mooth equations involving the “min” function. As such, it is amenable to
numerical solution by the (nonsmooth) Gauss-Newton method described in
[25]. An extensive study of the computational aspects of solving the above
nonlinear rigid body problem is currently under way.

4 The All-Rolling Case

So far, we have described two complementarity formulations of the dynamic
3-dimensional multi-rigid-body contact problem: one with Coulomb’s law
applying at all contacts and the other with Coulomb’s friction cone ap-
proximated by a friction pyramid at the rolling contacts. We expect these
formulations to be instrumental in the computation of a solution to the con-
tact problem. In general, there is a difficulty in establishing the existence of
a solution using these formulations. This is due to the presence of the sliding
constraints (9). As an illustration of the difficulty, consider the matrix

(Ann)ss  (Ann)sr

which occurs as a leading principal submatrix of A associated with the nor-
mal forces ¢, in (23). Although the matrix A in (21) is positive semidefinite,
the above (2 x 2) block matrix does not seem to have any viable property
that can be put to use.

A quasi-variational inequality formulation

As a first step toward the investigation of solution existence, we shall con-
sider a special case of the multi-rigid-body model with Coulomb friction
cones in which all contacts are initially rolling; that is, we assume S = (.
We call this the all-rolling problem. The analysis in this section makes use of
some basic results from linear complementarity theory; the reader is referred

15



to [6] for a comprehensive study of the linear complementarity problem. Re-
sults pertaining to the LCP with a symmetric positive semidefinite matrix
are most relevant below; see Section 3.1 in the cited book for a summary of
these background results.

In the all-rolling problem, we shall work with the full system (20) and
take advantage of the special structure of the matrix A. This matrix is
symmetric and positive semidefinite; as such A satisfies

2T Az =0 < Az = 0;

indeed, we have

Cn Cn
Wn Wt Wo
Al ¢ =0& T T Ct = 0.
Jn Iy
Co Co

In order to develop an existence theory for the all-rolling problem, we
introduce one important assumption. First, formally define the friction cone:

F ={(cn,ct,¢0) € R x R*™ : (7) holds}.
Also, let N' C R®" denote the null space of the matrix

W, Wi W,
VAR

and let Fgr = F N N. The assumption is:

N

Equivalently, by the definition of the vector (b, by, b,) in (22), this assump-
tion can be rephrased as:

o W W ]| v( ) (35)
. . . ¢t | >0, Cn,Ct,C0) € FR- 35
Jr gr jr "

Co

T

bn Cn
bt Ct > 0, V(Cn, Ct,C()) c fR.
bo Co
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Inequality (35) holds if Fz = {0}. This special case includes the situation
in which the matrix (34) has full column rank.

The assumption (35) is motivated by the frictionless case in which the
friction coefficients p; are all zero. Indeed, in this case, any triple (cp, ¢, ¢o)
in the friction cone F must have ¢; = ¢, = 0. Thus, the above assumption

becomes
Wn q.
cp >0, JnT cp=0; = iy

Moreover, the rigid-body contact problem reduces to the standard LCP:

T!Wn

Ty

] >0, (36)

an = Apncy + by > 0, ¢, 20, (an)Tcn =0, (37)

with the matrix A,, and vector b, given in (21) and (22) respectively, it
follows from elementary LCP theory [6, Section 3.1] that (37) has a solution
if and only if the implication (36) holds.

Returning to the all-rolling problem with positive friction coefficients,
we note that the implication (36) remains valid under the assumption (35).
Indeed, given any ¢, satisfying the left-hand conditions in (36), the triple
(cn,0,0) € Fr. Thus (36) follows from (35). In turn, (36) implies that for
any pair (¢, c,) € R?™, the following LCP in the variable c,,:

an = Appcn + Aper + ApoCo + b >0, ¢ >0, (an)Tcn =0,

has a nonempty convex solution set which we denote SOL(c¢t, cg) C R™. By
the special structure of

M1 0 W,
_ T obj n
A=t J”[ 0 Myl HJl

man

it is not difficult to show that for any two solutions ¢, ¢}, € SOL(c¢t, ¢,), we
must have

W ,
| Je
This implies that
Cn
lat] lAtn Ay Ato] [bt]
= Ct +
Qo Aon Aot Avo bo
Co
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is independent of the solution ¢, € SOL(¢, ¢,); we let F(ct, c,) denote this
common vector. Thus F can be considered a mapping from R?" into itself.
We note that the set SOL(ct, c,) reduces to a singleton if A,, is positive

definite, or equivalently, if
Wn
(38)
T

has linearly independent columns.
The following lemma summarizes two important properties of the map-
ping F.

Proposition 1 The mapping F as defined above is continuous and momno-
tone. Moreover, if the matriz A is positive definite, then F is strongly mono-
tone.

Proof. To show the continuity of F, let a sequence {(c},cy)} converge to
(¢}, c;). For each v, let ¢ € SOL(c/,c4). Since the solution set of an LCP
is a locally upper Lipschitzian multifunction of the constant vector [29], it
follows that there exists a constant L > 0 such that for each v sufficiently
large, there exists ¢/ € SOL(c}, ¢}) such that

len = enll < Lll(cfs c5) = (¢t ) l-
Consequently, we have for all v sufficiently large,

1F(cf, c5) = e, co)ll < L't c) = (e )l

T n
Aon

where

Att Ato
Aot Aoo

To show the (strong) monotonicity of F', suppose there is a constant
v > 0 such that
xl Az > 'yxTw, for all z € R3me.

(Positive semidefiniteness of A corresponds to v = 0; whereas positive defi-
niteness corresponds to v > 0.) Let (¢}, c}), ¢ = 1,2, be two arbitrary pairs
of vectors in R%"; let ¢!, € SOL(ct, %) and

aﬁl = A,mcil + Amcf; + A”ocf, + by,.

18



We have

(an — ap)"(cn = ci) = —(an)T s — (a3)T e, <0.
Write )
Cn
= |, fori=1,2.
c

Then we have

(391 _ $2)TA(.Z'1 _ .TZ) —

1 2
G~ G

ek ) - e’ | 7 | k-l -
o o

which implies

Y

1 20|12
Y|zt —x
o o Cl—C2 || ||

(F(ch,cl) — F(c2, e2))T [ aTa ]

o (2

> 7 (lle; = cII” + lleg — 21%) -
Thus the (strong) monotonicity of F' follows. Q.E.D.

We now define a set-valued map K from R?" into the family of nonempty
convex subsets of R?™. Specifically, for each (ct,c,) € R?™, K(ct,c,) con-
sists of all vectors (¢}, c)) € R?" for which there exists ¢, € SOL(c, c,) such
that for allz =1,...,n,,

(c;t)2 + (c;'o)2 S /L?C%n.

Clearly, K (c, c,) contains the origin of R*". Moreover, by the convexity of
SOL(ct, ¢o), it is not hard to show that K (¢, c,) is convex.

As defined in [5], the quasi-variational inequality (QVI) associated with
the pair (K, F') is the problem of finding a pair (¢, ¢,) € K(ct, ¢g) such that

¢ — ¢

F(ey, o)t l >0, forall(c,c) e K(ct,co)-

/
Co — Co

The relation between the QVI and the all-rolling problem is summarized in
the following result.
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Theorem 3 If (ct,¢,) solves the QVI (K, F), then there is (an, cn,a, ao)
such that (an,cp,ay, ao,ct, o) solves the all-rolling dynamic 3-dimensional
multi-rigid-body contact problem with Coulomb friction cones; conversely if
the matriz (38) has full column rank and if (an, cn,at,ao, ct, Co) solves the
all-rolling contact problem, then (ct,c,) solves the QVI (K, F).

Proof. Let (¢, ¢o) solve the QVI (K, F'). Since (ct, ¢o) € K(ct, cg), it follows
that there exists ¢, € SOL(ct, ¢,) such that the friction cone constraints (7)
are satisfied by the triple (¢, ct, ¢o). Let (at,a,) = F(ct, ¢o), and

ap = Apncy + Apicr + Anoco + by

In order for (ay, ¢y, at, aq, ct, co) to solve the all-rolling problem, it remains
to verify that (10) holds. Clearly, we need to consider only those contacts i
for which ¢;, > 0.

Consider the following minimization problem in the variables (c},c),
with (cp, ag, ao, ¢, ¢o) fixed:

/
(2

minimize (a;)? ¢} + (a,)¢c
subject to (39)
(ch)? + (ch,)? < p2ct,, for all i such that c;, > 0.
By the fact that (¢, ¢,) solves the QVI (K, F), it follows that (¢, co) solves
the above problem whose constraints satisfy the Slater constraint qualifica-
tion. Thus by the Karush-Kuhn-Tucker (KKT) optimality conditions, there
exists a multiplier o; > 0 for each ¢ with ¢;;, > 0 such that

ajt + oicig =0, o + 0iCio =0

oi [(cit)? + (cio)? — pics,] = 0.

It is easy to show that each
2 2
@it ag,

oi =
HiCin
Thus (10) follows.

Conversely, if (38) has full column rank, then SOL(c¢, ¢,) is a singleton
for all pairs (¢, ¢,). Hence the optimization problem (39) is equivalent to

minimize (at)TCé + (ao)TCIu

subject to (¢}, c)) € K(ct,¢o)-
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Since this is a convex program satisfying a constraint qualification, the KKT
conditions are sufficient for optimality. Thus, by reversing the above argu-
ment, the converse assertion of the theorem follows. Q.E.D.

Besides establishing the claimed relationship between the QVI (K, F)
and the all-rolling contact problem, the above proof also reveals an inter-
esting interpretation of the rolling restriction (10) in a variational context.
This interpretation is evidently not new as previous work [13, 14] has already
made use of a variational inequality formulation of the Coulomb friction law.

Existence results

With the aid of Theorem 3, we can now proceed to derive some existence
results for the all-rolling contact problem. We shall first treat the case
where the matrix A is positive definite. As noted in the proof of Theorem 3,
SOL(¢t, ¢,) is a singleton, which we denote {c, (¢, ¢o)}- According to Lemma
7.3.10 in [6], cn(ct, o) is Lipschitz continuous in the argument (¢, ¢,).

For each positive scalar p, define the restricted set-valued map K, :
R — R as follows: for each (cy,c,) € R*™e, K,(ct,c,) consists of all
vectors (c},c)) € R*e such that for all i = 1,...,n,,

(ch)? + (cho)? < min (pfcin (s, o), 7))

For a reference on a comprehensive theory of set-valued maps, we cite [2].
The range of K, is
U Kp(Ct, Co).

(ct,Co)E R21e

Proposition 2 If the matriz A is positive definite, then for every scalar
p >0, the set-valued map K, has a compact range and is closed-valued and
continuous.

Proof. By definition, K,(ct, c,) is the Cartesian product of n. 2-dimensional
balls, each with center at the origin (in the plane) and the i-ball with radius
min(p;cin(ct, ), p). (Incidentally, if ¢;,(ct, o) = 0 for some i, then the i-th
ball degenerates to just the origin.) Consequently, the range K, is compact.
Since each set K,(c, c,) is clearly closed, K, is closed-valued.

Having a compact range and being closed-valued, the continuity of K|,
at a pair (¢, c,) is therefore equivalent to two properties:
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(a) K, is closed at (ct,c,); that is
{(C:t/aCZ)} - (Ctaco)
{(e

Y, (&, ¢5) € Kp(ct, c)

ét7éZ)} - (éhéo) = (étaéo) € Kﬂ(ctaco);

(b) K, is lower semicontinuous at (ct, cp); that is

{(ctua CZ)} — (ct, o)

o = H{(&,¢5)} — (&, Co) and Vo, (&, 65) € Ky(ci, cg)
(ch CO) € Kp(ct7 Co)

Property (a) is easily seen to be valid because of the continuity of the
function ¢, (-,+). To show (b), let the left-hand side hold. For an arbitrary
index 7, we have

(60)?* + (€i0)* < min (pidein (ci, co)?, p?) - (40)
If strict inequality holds for some index j, then clearly
(&) + (¢jo)? < min (pdejn(ch,ch)?, p?)

for all v sufficiently large. Thus for such an index j, we may define (éJVt, é]”o) =

(¢jt, ¢jo) for all v. Suppose equality holds in (40) for some index k. If
ckn(ct, €o) = 0, then éx = éx, = 0; define for all v,

(Ckt» Co) = 0.
Then clearly
(&) + (&) < min (pfcka(cl, ) p?) - (41)
Suppose now cg,(ct, co) > 0. Write
ckn(cf,ch) = cnlct, Co) + ks

for all v sufficiently large such that

1 22 a2
|€k,l/‘1/2 <min _,M s
2 Mkckn(cta co)
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define
(Crts Cho) = vV 1- 2\€k,u|l/2(ékt, Cro)-

We have
min (i cgn(ct, ¢5)?, p°)
> min (3 cn(ct; €0)?, 0°) = 2lenulpticen(ct, o)
=(1- 2|5k,u|1/2)(é]2¢ +&,) + 2|5k,u|1/2 (élzct + &, — |€k,,,|1/2u,%ckn(ct, CO))

Z (ézt)2 + (6%0)2'

Consequently, for any index i, we have defined (¢}, é/)) which converges to
(Git, ¢io) as ¥ — 00; moreover, (41) holds for all indices £k = 1,...,7n, and

all v. Hence K, is lower semicontinuous, and thus continuous, at (¢, c,).
Q.E.D.

Applying Corollary 4.1 in [5], we have our first existence result for the
all-rolling contact problem with Coulomb friction cones.

Theorem 4 If the matriz A is positive definite, then the QVI (K, F) has a
solution; thus so does the all-rolling 3-dimensional multi-rigid-body contact
problem with Coulomb friction cone constraints.

Proof. In order to apply the cited corollary, it suffices to observe three
things: (i) for all (c,c,) € R*™, the set K(c,c,) contains the origin, (ii)
the function F'(cy,c,) is continuous and strongly monotone, and (iii) the
set-valued map K|, is continuous for all p > 0. This corollary implies that
the QVI (K, F') has a solution which, by Theorem 3, is a desired solution of
the all-rolling problem. Q.E.D.

Our next goal is to show that the same existence conclusion about the
contact problem is valid when the positive definiteness assumption on A is
replaced by the weaker assumption (35). To this end, we point out that in
Theorem 4, the existence of a solution to the QVI (K, F') does not depend
on the particular structure (21) of the matrix A; instead, it is the positive
definiteness of A that matters.

Theorem 5 Under assumption (35), the all-rolling 3-dimensional multi-

rigid-body contact problem with Coulomb friction cone constraints has a so-
lution.
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Proof. The matrix A is positive semidefinite; hence for every scalar £ >
0, A+¢l is positive definite. Choose an arbitrary sequence of positive scalars
{e,} that converges to zero. By Theorem 4, the subsequent remark, and the
proof of Theorem 3, it follows that for each v, the following system has a
solution (a¥,c’,af,ay,cf,cq):

an Cn bn

ag = (A + 6,,] ) Ct + bt

2 Co b,

(an,cn) >0, an

picin(@it, aio) + A/ Cbzt + aw Cit, Cio) =

2
Zt +czo S :u‘z m

O

If the sequence

{ (an>cn7at7aZ>ctyacg) }
is bounded, then any one of its accumulation points can be shown to be
a desired solution of the all-rolling problem. So let us assume that this

sequence is unbounded. Without loss of generality, we may assume that the
normalized sequence

{ (an; ¢y 0, ag; ¢f , )
|

(azd C"I”L? atu’ az? Ctuﬂ Cs)”

converges to a nonzero vector (a, ¢}, af,a}, cf,c}). Clearly, this limit vector

satisfies the homogenized system:

* L
a'fl C'fl
af | =A| ¢
g c

“’ic:n(a;‘b a;‘()) + (a’;'k?f)2 + (a;o)2(c;<t7 c;‘o) =0

Vi=1,...,nc.
(c)® + (chp)? < pi(chy)?

Clearly, we have
k * X *
max(cj;a5, Ciols,) < 0,
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for all ;. Consequently,
« 717 * T

cn ap Cn Cn
* * _ * *
0> ¢ ai | =| ¢ Al g | 20
k * k *
CO aO CO CO

Hence it follows that (c,cf,ct) € N. Since (c:,cf,ct) € F, by assump-
tion (35), we deduce that

c, br,
c; by | >0. (42)
c, b,

We claim that the following relations hold for all ¢+ and all v sufficiently
large:
Cintin =0,  cipcin 20
ciagy <0, cely 20

Cioio < 0, CjoCip 2 0.
Indeed, suppose cj,, > 0. Then we must have ¢}, > 0 for all v sufficiently
large, which implies, by complementarity, that af, = 0. Thus the first two
relations hold. The other four relations can be proved in a similar way.

Consequently, we have,

T T
c, ay c, cr bn,
0> ¢ al | =1 ¢ (A+e )| ¢ |+ | b . (43)
% ag o < by

Since (ck, cf, ct) € N, it follows that

_ STT 1

c, bn

C: bt S 0
Lo 1 | b,

- ~Tr 7
c bn
C: bt =0
sk
L CO . bo



Hence from (43), we deduce

T v
c, Cn
0> e | ||,
%
CO CV

which yields, by a normalization followed by a limit argument, (¢, ¢}, c}) =
0. This in turn implies (a},af,a;) = 0. But this contradicts the fact that
(ay,ch,af,ab, ct,cy) is a nonzero vector. Q.E.D.

Corollary 1 When

Wl J, .
- . . q
Wroj,

is an element of the column space of A, then the all-rolling 3-dimensional
multi-rigid-body contact problem with Coulomb friction cone constraints has
a solution.

Proof. Indeed, under the stated assumption of the vector b, condition (35)
is trivially satisfied. Specifically, the only vectors, ¢ = (cn, ct, ¢,), that are of
interest in condition (35) lie in the null space of A. Thus b7¢c = 0. Q.E.D.

An important consequence of this Corollary is that a solution always
exists when the system is initially at rest (i.e., ¢ = § = 0). One application
area where this consequence is relevant is automated fixture planning. In
automated fixture planning, one is provided with the positions and orien-
tations of a set of parts in contact. The objective is to determine where to
place fixture elements (each of which provides an additional contact on a
part), so that when the parts are assembled in the fixture and released, they
do not collapse. If one can show that every solution to the corresponding
multi-rigid-body contact problem has § = 0 (by definition, fixture elements
are not actuated, so § = 0), then the fixture stabilizes the parts and thereby
represents a valid fixture.

By suitably modifying the above argument, in particular, by recognizing
that (19) is related to the pyramid constraint (18) just like (10) is to the
cone constraint (7), we can establish the following existence result for the
friction pyramid model. The details are omitted.
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Theorem 6 Under assumption (35) with F referring to the friction pyra-
mid defined by the constraints

max(|cit|, |Cio|) < picin, foralli=1,...,nc, (45)

the all-rolling 3-dimensional multi-rigid-body contact problem with Coulomb
friction pyramid constraints has a solution.

Besides yielding an existence result for the contact problem, Theorem 6
is interesting from the point of view of LCP theory. Indeed, as we saw in the
last section, the all-rolling 3-dimensional multi-rigid-body contact problem
with Coulomb friction pyramid constraints can be formulated as a standard
LCP. Yet the proof of Theorem 6 relies on QVI theory; this is different from
the way many known LCP existence results are derived, namely, from the
theory of variational inequalities [6, Chapter 3].

5 The Rolling-Sliding Case

When some contacts are initially sliding, that is, when & # 0, the multi-
rigid-body contact problem, with either the friction cone or friction pyramid
constraints, need not have a solution. Examples can be constructed for
the one-contact problem with sliding (n, = 1 and R = () to illustrate
this no-solution phenomenon [17]. This is a failing of the model, because
any physical system and situation that we are interested in has a solution
in the real world. The non-existence of a solution is usually attributed
to the simultaneous assumptions that the bodies are rigid and that the
friction forces obey Coulomb’s Law. However, our study suggests that a
possible culprit is the restrictiveness of Coulomb’s Law for sliding contact.
Specifically, the source of the difficulty appears to be the constraints (9),
which define the magnitude of each friction force to be p;cs, and its direction
to be exactly opposite the relative sliding velocity (or acceleration, if the
contact is initially rolling) at the contact.

In what follows, we propose a relaxed friction model similar to those used
by Lotstedt and Baraff [3], and study the question of existence of solution.
In particular, the relaxed model is formed by replacing equation (9), by the
inequality: v;zcit +vi0Cio < 0. This inequality ensures that the friction forces
in the relaxed model cannot produce energy, and it provides some latitude
in the direction and magnitude of the friction force at each sliding contact.
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The relaxed friction model can be formulated as the following constrained
least-squares problem:

minimize f(CSna CSt, CSO)
subject to  (20), (6), (7), (8), (10), (12), (46)
and VitCit + VioCio < 0, foralli € S,

where

f(csn, cst, cso) =

dies ((Mivitcz'n + \/vE + v cit)? + (LivioCin + (/v + vfocz'o)Q)

is the residual of the sliding constraints (9). Notice that the 3-dimensional
multi-rigid-body contact problem with Coulomb friction cone constraints
has a solution if and only if the least-squares problem has an optimal solu-
tion with zero objective value. When the objective value is non-zero, then
the contact forces lie inside or on the half cones defined by inequalities (7)
and the new constraints in the least-squares problem (46). Since the objec-
tive function represents the error between the friction forces of the relaxed
friction model and Coulomb’s friction law, the solution found is as close to
obeying Coulomb’s law as possible.

In the problem (46), we may replace the friction cone constraints (7)
and the rolling restrictions (10) by, respectively, the friction pyramid con-
straints (45) and the modified rolling conditions (19). It turns out the
resulting least-squares friction pyramid model will always have a solution,
provided that it is feasible.

Theorem 7 If the least-squares friction pyramid problem:

minimize f(CSna CSt, CSO)
subject to  (20), (6), (45), (8), (19), (12), (47)
and VitCit + VioCio < 0, for alli € S,

has a feasible solution, then it has an optimal solution.
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Proof. Define the matrix M by

[ (Ann)ss  (Mup)sr  (And)sr (Ano)sr 0 0 (Andss (Ano)ss ]
(Apn)rs (Mpp)rr  (Ant)RR (Ano)rr 0 0 (An)rs (Ano)rs
(Am)rs  (Mim)rr  (Aw)rr  (Aw)rr I 0 (Aw)rs (Aw)rs
(Aom)rs (Mom)rr  (Aot)rr (doo)rr 0 I (Ao)rs (Aso)rs |
0 2UR —I 0 0 0 0 0
L 0 2UR 0 -1 00 0 0 i
where
(Mpn)swr | (Ann)sr (Ant)sr (Ano)sr
(Mpn)rR | Ann)rr (Ant)RR _— (Ano)RR U
(My)rr |~ (Am)rR - (Aw)rR " (Ato)rRR *
(Mon)rR (Aon)rRR (Aot)RR (Aoo)RR
According to Lemma 1, by introducing the variables (sj;,sff),azit, ;'f)) for
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i € R, the problem (47) can be equivalently stated as:

minimize  f(csn, Cst, CSo)

subject to
o ]
[ asp ]| CRn ( bsn |
_|_
ARn SRt bRn
+ +
ARy . SRo bRt
+ | =M |+
ARo ARy bro (48)
87_31& a7_€o 0
5Ro cst L 0
CSo
(an,cn) >0 (-a)Tc-:(]
nyvn) — Y n n
+ + + +
(SRt» SRo» ARE> IRo) = 0
FANT o+ (=T = — («F \Tgt — (o= YTg= —
(ske)" are = (SRe)" gy = (SRo)" ARp = (SR0)" AR, =0
and VitCit + VipCio < 0, foralli € S.

Note that the equations that correspond to the variables as; and as, have
been removed from the above formulation. The constraints of the prob-
lem (48) consist of linear inequalities and the following complementarity
conditions:

(a")Tcn = (57—§t)Ta7—;t = (37_2t)Ta’7_2t = (S£0)Ta7_;o = (87_20)Ta7_20 = 0.

As such, the feasible region of (48) is the union of finitely many convex
polyhedra. Since the objective function f is always nonnegative, it follows
from the well-known Frank-Wolfe theorem of quadratic programming [10]
that (48) must have an optimal solution, provided that it has a feasible
solution. Q.E.D.

The problem (48) belongs to the class of mathematical programs with
equilibrium constraints (MPEC). The recent paper [19] develops a compre-
hensive theory for an optimization problem of this type.
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The feasibility issue

Theorem 7 raises the question of when the problem (47) or (46) has a feasible
solution. Consistent with our treatment in Section 4, we shall treat this issue
only for the latter problem.

Define the cone

Frs = {(cnsctyco) € Fr 1 visCit + vioCio < 0, for all i € S}.

We postulate that

0 [ W W W >0, ) € F (49)
. . . . Ct = U, Cn;Ct, C0) € S RS-
0 Jrogr T "

Co

Proposition 3 Under assumption (49), the problem (46) has a feasible so-
lution.

Proof. We claim that (46) has a feasible solution with cs; = cs, = 0.
With these sliding force variables set at zero (and ignoring the equations
corresponding to the sliding accelerations ags; and as,), we can define a
modified QVI whose solution will yield a desired feasible solution satisfying
the remaining constraints in (46). In what follows, we give a very brief
definition of this modified QVI and skip the rest of the proof, which is
similar to that of Theorem 5.

The previous QVI (K, F) was defined in the space R?>" with the full
set of variables (ct, ¢,). The modified QVTI is defined exactly as before with
the following changes: (i) the sliding variables (cs¢, cs,) are set equal to
zero in defining SOL, (ii) the function F is defined without the (as:, as,)
components, and (iii) the set-valued map K is defined without the (cs¢, cso)
components.

We leave the remaining details to the reader. Q.E.D.

6 Concluding Remarks

In this paper, we have introduced several complementarity formulations of
the dynamic 3-dimensional multi-rigid-body contact problem with Coulomb
friction. We have studied in some detail the issue of the existence of solution
in the all-rolling case and proposed a least-squares model for the rolling-
sliding case. The tool for the existence proof was QVI theory. We have
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also used a friction pyramid model and have shown that the least-squares
problem with Coulomb friction pyramid constraints always has an optimal
solution if feasible.

We point out that existence results subsume all previous results known
to us. Specifically, Baraff has proved that a 3-dimensional system with one
contact point that is rolling has a solution [3]. Also, specializing our results
to the planar case yields results consistent with and more general than the
results given by Rajan et al. [28] and Erdmann [8] who studied a single
moving object in contact with immovable objects. Also, our results are less
restrictive than the existence results given by Lotstedt for multiple moving
objects.

Several theoretical questions remain open. One of these is the existence
of an optimal solution to the least-squares model (46). In this paper, we
have not discussed any numerical aspect of the models; these and other
engineering issues as well as further existence results are discussed in the
paper [31].
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