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Abstract. This paper formally introduces several stability characterizations of systems of rigid
bodies initially at rest and in unilateral contact with dry friction. These characterizations, weak
stability and strong stability (and their complements), arise naturally from the dynamic model of the
system, formulated as a complementarity problem. Using the tools of complementarity theory, these
characterizations are studied in detail to understand their properties and to develop techniques to
identify the stability classifications of general systems subjected to known external loads.

1 Introduction

Many useful mechanical systems are composed of a number of bodies that interact through multiple,
unilateral frictional contacts. Examples include gears, cams, modular fixturing systems, and robot
grippers!. Designers of such systems rely heavily on the analyses of initial designs, which are often
carried out under the rigid body assumption. Nonetheless, significant holes in both the relevant
theory and computational tools remain. In this paper, motivated by applications in automated
fixture synthesis, we attempt to close one of those holes through a rigorous study of the stability
of a free rigid body (called a workpiece) initially at rest and in dry frictional contact with fixed
rigid bodies (called fixels) from the perspective of multi-rigid-body dynamics and complementarity
theory. Our primary objective is to develop a sound basis that will enable us to gain a thorough
understanding of the main issues involved with stability. Our secondary objective is to derive
theoretical results that will enable the development of tests that more accurately characterize
stability than the overly conservative tests in use today. The main results are presented in the form
of several new theorems which are illustrated with simple examples.
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1.1 Previous Work

There are two primary ways to stabilize a rigid workpiece. The first is known as form closure [10].
A workpiece is form-closed if it cannot move, even infinitesimally, without at least one fixel (a rigid
fixture element) penetrating the workpiece. This sort of stability does not rely on friction and is
easy to check (by solving a linear program [18]). A form-closed workpiece is completely constrained
kinematically and thus will remain stationary in the face of any applied external load. Several
automated design systems are based on form closure [1, 3, 4, 5, 7, 14, 21]2. However, because form
closure requires large numbers of contacts (at least 7 point contacts or 4 planar contacts on a single
workpiece), it can sometimes be impossible to design form-closed fixtures that also provide the
required access for machining tools or part insertions.

Recognizing the limitations of large numbers of contacts, Palmer [15] and several other authors
studied stability without form closure [2, 9, 12, 16, 17, 22]. For such situations, the stability of the
workpiece should be determined by examining the solution(s) to the dynamic model composed of
the Newton-Euler equations for the workpiece, the relevant kinematic constraints, and a dry friction
law. However, typically the dynamic equations are replaced by equilibrium equations, which can
lead to false positive stability conclusions. In order to prevent this problem, the results in this
paper are based on the dynamic equations.

Despite our beginning with a dynamic model, we do not adopt the usual stability definition
for dynamic systems. The reason is that we allow sliding at the contacts which results in an
irrecoverable loss of energy, and hence an arbitrarily perturbed workpiece will generally not return
to its initial equilibrium configuration. Instead, we will adopt Fourier’s inequality [11], which can
be stated as follows:

Definition 1: If the acceleration of the workpiece is zero (for all solutions of the dynamic model)
for given fixel locations and applied load, then the workpiece is said to be stable. Equivalently, a
workpiece is stable if the virtual work for every kinematically admissible virtual motion is nonpos-
itive. Note that for convenience, we will also refer to the load and the fixture as being stable when
this condition is met.

Palmer found that determining stability (which he referred to as “infinitesimal stability”) in the
presence of friction was extremely difficult (co-NP complete [8]) due to solution nonuniqueness of
the dynamic model, so he identified two other stability classifications that could be tested efficiently
by linear programming methods [15]. These classifications were:

e Potential Stability — A set of contact forces exists that satisfies the equilibrium equations of
the fixtured workpiece and Coulomb’s law at the contacts.

e Guaranteed Stability — A set of contact forces exists that satisfies the equilibrium equations
of the fixtured workpiece when friction is neglected.

The primary problems with these stability characterizations are that they are overly conservative
in one direction or the other, so their use in fixture design algorithms is limited. Figure 1 illustrates
the problem. For a given fixture and workpiece configuration, let SS(u) denote the set of strongly
stable external loads (i.e., those that satisfy the above stability Definition 1 in the presence of
friction, where p is the vector of friction coefficients at the contact points). Similarly, let SS(0)

*For an excellent review and bibliography of the fixture stability and synthesis literature, see [4].
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denote the set of loads that are strongly stable without friction (Palmer’s “guaranteed stability”)
and let WS(p) denote the set of weakly stable loads with friction (Palmer’s “potential stability”).
A load can be tested for membership in WS(u) or SS(0) using linear programming techniques, and
as will be demonstrated, one can identify all the external loads in these sets for a given fixture.
However, since there are loads in WS(u) that have multiple dynamic model solutions, some of
which correspond to instability (nonzero workpiece acceleration), fixture design using this set is
not recommended. On the other hand, the set of loads SS(0) is usually a small subset of SS(u), so
its use in design is also limited.

Weakly Stable Loads
WS(u)

Strongly Stable Loads
SS(w)

Frictionless Stable L oad

Figure 1: Important subsets of the set of all external loads.

Despite the limitations, Palmer’s stability characterizations have been the best available for rigid
fixture design without form closure. The results contained in this paper represent a significant step
toward stability tests which are not conservative, and hence could lead to better fixture design and
analysis tools.

2 Methodology

Our basic framework is the discrete-time dynamic model for multiple rigid bodies in contact pre-
sented in [20]. By setting the initial velocity of the free body (the workpiece) to zero and fixing
the positions of the actuated bodies (the fixels), this model represents a fixtured workpiece. Three
sets of conditions are imposed on the workpiece: (a) the Newton-Euler equation written in terms
of the relative accelerations at the contacts, (b) contact conditions on the normal contact forces,
and (c) dry friction constraints on the tangential contact forces. These are listed as follows. (See
Appendix A for an explanation of the notation used throughout the paper.)

The Newton-Euler equation:

an Cn

ai = A Ct + b, (1)
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where the subscripts n, ¢, 0 denote the normal (n) and two tangential directions (¢, 0) in the contact
coordinate systems,

A = jTM_lj and b = jTM_l Gext

with J being the system Jacobian matrix and M the system inertia matrix, the latter being
symmetric positive definite, and g, being the external load applied to the workpiece. The vector
a, = (am)?;l is composed of the relative normal accelerations at the contacts indexed by ¢, where
n. is the number of contact points among the bodies. The relative accelerations in the tangential
directions, ¢t and o, are defined analogously. The vectors of normal wrench intensities, ¢,, and
frictional wrench intensities, ¢; and ¢,, are defined similarly. In the case of the fixture stability
problem studied here, the system Jacobian matrix J is composed of wrench matrices W, (in the
normal direction), W; and W, (in the two tangential directions):

J =[W, W, W,].

These matrices simply map the contact forces into an inertial coordinate frame. The matrix A can
be written in partitioned form at follows:

Ann Ant Ano
A = Atn Att Ato )
Aon Aot Aoo

where for a,b € {n,t,0},
Ay = WIMtw,,

Similarly, the vector b can be written in partitioned form:

br

where for a € {n,t, 0},
by = WIM ' gey.

Normal contact conditions:

0<a, Lec, >0, (2)

where the notation | means perpendicularity. Note that this condition expresses the well-known
complementarity between the normal contact load and acceleration at each unilateral contact.
Specifically, if contact ¢ breaks (a;, > 0) then the normal load ¢;, must be zero. Similarly, if a
normal load is supported (c;, > 0), then the relative acceleration a;, must be zero.

Frictional constraints on tangential forces: for ¢ = 1,..., ng,

: ! !
(cit, Cio) € argmin Cipit + ChoQio

/ 3)

subject to (¢, ch,) € F(uicin),
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where F(-) is the Coulomb friction map and p; is the nonnegative friction coefficient at contact
point ¢; that is, for each nonnegative scalar ¢ > 0, F(¢) is a planar circular disk with center at the
origin and radius ¢:

F(¢) = {(a,b) € R : a® +0* < (*}. (4)

Note that in the context of the quadratic Coulomb law (4), the “argmin” condition in (3) implies
that the friction force opposes the direction of impending slip (we recall that the system is initially
at rest).

The results developed in this paper apply to more general friction laws (including some axi-
asymmetric laws); nevertheless, for simplicity, we focus on the above standard Coulomb friction
law. Later, we will also consider a variation of this law known as the friction pyramid law [20]

F(¢) = {(a,b) € ®* : max(|al, [b]) < ¢}. (5)

With this friction law the friction force points toward the edge of the pyramid that yields the greatest
power dissipation. Thus the relative motion is not exactly opposed, but energy is dissipated.

Definition 2: We call a solution (¢, ¢t, ¢,) to the dynamic rigid body problem (system (1-3)) a
dynamic intensity.

Every dynamic intensity ¢ = (ep, ¢4, €,) induces a vector of body accelerations g, as follows:
q = M_I(Jc+gext)' (6)

Letting @ = (ay, at, a,) denote the vector of relative accelerations at the contacts and using the
fact that the workpiece is initially at rest, we see that

a=JTg.

Based on the above dynamic rigid body contact model, we redefine our two stability charac-
terizations in terms of dynamic intensities and we introduce terminology for the complementary
characterizations for three-dimensional bodies with Coulomb friction laws:

Definition 3: For a given external load g.,; and fixel and workpiece configurations, the workpiece
(and fixture and load) is said to be:

e weakly stable — if a dynamic intensity exists that induces zero body accelerations;
e strongly stable — if every dynamic intensity induces zero body accelerations;

e weakly unstable (Palmer’s infinitesimal instability) — if it is not strongly stable; i.e., a dynamic
intensity exists that induces a nonzero vector of body accelerations;

e strongly unstable (Palmer’s guaranteed instability) — if it is not weakly stable; i.e., every
dynamic intensity induces a nonzero vector of body accelerations.

We summarize these four concepts in the following diagram:
strongly stable = weakly stable
{ negation { negation

weakly unstable < strongly unstable
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2.1 Weak stability

Clearly, the load g.,; is weakly stable if and only if there exists a contact force vector ¢ satisfying:

jc"i_gext =0

7
c € F(p), ()

where F(p) is the Coulomb friction cone; that is
Nc
F(p) = [[{(cin,citscio) : cin > 0, (cit, cio) € Flpicin) }
i=1

where p = (p;) is the vector of friction coefficients u; at the contacts and [] represents the Cartesian
product operation applied to the spaces of the contact forces. Note that the nonnegativity of the
normal contact force ¢, is guaranteed by the friction cone F(u). We should point out that for the
standard Coulomb friction laws (4) and (5), (7) is a convex inequality system; as such, determining
its consistency is in general not a difficult task. In particular, with the friction pyramid law (5), (7)
is a system of linear inequalities and its consistency can therefore be checked by linear programming
methods.

The above discussion suggests that the task of checking if a given applied load is weakly stable (or
equivalently strongly unstable) is not particularly difficult. Indeed, this task can be accomplished
in “polynomial time” by an interior point method [13], even in the case of the quadratic friction
cone. Practically, this method is expected to be highly efficient when applied to the system (7).

Geometrically, the system (7) defines the cone of weakly stable forces:

WS(p) = {gex : the system (7) is consistent }. (8)

Clearly, this cone is the image of the friction cone F () under the linear transformation defined by
the negative of the system Jacobian matrix J; that is,

As will be seen, the cone WS(u) will play a central role throughout our study. The complement of
WS(p) consists of the strongly unstable applied loads. Under a polyhedral friction law, such as the
friction pyramid law (5), the cone WS(u) is polyhedral. We illustrate this cone in two examples
below.

Example 1: Consider a uniform laminar disk (the workpiece) of mass m and radius R in the
plane in contact with two immovable fixels and external loading as shown in Figure 2. The fixels
are located by the angles #; and 83 measured in the counterclockwise directions about the origin
of an inertial coordinate frame centered at the center of the disk. The components of the contact
forces, ci1, and coy, are directed from the fixels toward the center of the disk. The corresponding
friction force components are tangent to the disk, with positive values of ¢;; assumed to produce
clockwise (negative) moments. We wish to examine conditions on the angles 6; € (0,7) and the
friction coefficients p; so that an applied load g.,; € R® is weakly stable.

The data for this problem are as follows. The problem is planar; thus there is only one tangential
direction (no “o” direction) at each contact. There are two contact points; thus n, = 2. Moreover
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Cz Fixel 2

Figure 2: A loaded laminar disk in contact with immovable fixels.

we have:
—cosf; —cos0, sin 6y sin 0,
W, =| —sinf; —sinfy |, W;= | —cosfy —cosb
0 0 —-R —-R
m 0 0 91
M=10 m 0 ; Gext = | 92
0 0 mR?/2 g3

Let r = sin(f2 —0;) and s = cos(f2 —61). Note that 7 = 0 when the fixels are diametrically opposed
or coincident. Since these special cases can be resolved easily, we will assume in what follows that
r # 0. By reordering the fixels if necessary, we may further take r to be positive.

The condition for the weak stability of g... is the existence of ¢ = (cin, con, C1t, c2t) satisfying
the following linear inequality system:

Jectgexy = 0 9)
‘ Cit | < WicCip, =12 (10)

A contact force ¢ satisfying the static equilibrium equation (9) can be solved in terms of the friction
force at the second contact:

Cin r~1 (g1 sinfy — go cos O + sg3/R) r1(1—s)
Con 771 (—g1sinf; + g cosH; — 93/ R) r1(1—s)

—= -l— C2t. (11)
cit g93/R -1

Cot 0 1
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Substituting this expression into the friction constraints (10) yields the following four inequalities:

—p1g18in6s + p1gacos s + (r — p1s)gs/R < (r+pi(l—s))cy (12)
—p1g18infs + pigacosb — (r+ p1s)gs/R < (—r+p1(l —s))can (13)
—p2g18in by + pagacosby — pags/R > (1 — p2(l—s))ca (14)
—p291 S0y + paga cosby — pags/R > —(r+ pa(l —s)) cau. (15)

Thus the cone WS(u) consists of all triples (g1, g2, g3) for which there exists a scalar co; such that
the above four inequalities hold. Figure 3 shows WS(u) on the unit sphere centered at the origin
of 3 for uy = 0.2, 2 = 0.5, §; = w/4, and 2 = 2.57/4. The generators of WS(u) are indicated by
four dark gray bubbles, which delimit the edges of the convex cone of weakly stable external loads.
Any external load passing through the interior or boundary of the “quadrilateral” formed by the
segments of the great circle shown (by the small black bubbles) has weak stability. Note that the
g3 direction (the moment direction) is indicated by the big black bubble on the top of the sphere.
The g, direction (the y-component direction of the external force) is marked by the black bubble
inside the quadrilateral.

Figure 3: The set of weakly stable external loads in ®3. The friction coefficients are taken as:
#1 =0.2 and ps =0.5

Figure 4 shows the two dimensional slice of WS(u) through the equator of the sphere shown in
Figure 3, thus corresponding to g3 = 0. With g3 = 0 in this Figure, the external loads in question
are those representable as pure forces passing through the center of the disk. Notice that the set
of weakly stable external forces are those contained in the convex cone formed by the radii to the
contact points.
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Figure 4: The set of weakly stable external loads in $2; g3 = 0. The friction coefficients are taken
as: u3 = 0.2 and po = 0.5

Simplification of inequalities (12-15) is possible by considering the signs of the two scalars
0 = —r+p(l—s) and ds = —r+ pz(l—s)

which pertain to the geometry and friction coefficients of the problem and are independent of the
load gey- We illustrate their simplification in two cases; other cases can be analyzed analogously.

Case 1. Both §; and d2 are positive; that is

T
1—s

min( p1, po) >

In this case WS(pu) = R3; that is, all loads g,,, are weakly stable. The reader should note that
d; is positive if and only if the friction cone at contact ¢ contains the other contact point. Thus
this case corresponds to the situation referred to as “force closed” by Nguyen [14]. Physically, the
result that all loads are weakly stable implies that every g.,; can be balanced by a combination of
normal and friction loads, provided that the normal components of the contact forces can be made
arbitrarily large. For this example, §; and o are positive if and only if the smaller of the friction
coefficients is greater than 1.4966. In terms of the unit sphere in Figure 3, increasing the friction
coefficients corresponds to separating the generators (the dark gray bubbles). Once the values of
both friction coefficients increase beyond 1.4966, the 4 generators positively span R3.

Case 2. 61 and Jo differ in sign, say

r
w1 > —— and pg <

1—s 1—3s’

in other words, the friction cone at contact 1 can “see” contact 2, but the converse is not true. In
this case, a load g, is weakly stable if and only if

o ( —p1g18in 60y + p1g2 cos O + (1 — p1s)g3/R —pagi sinfy + piga cos b + (r — p1s)gs/R )
—r+p1(l—3s) ’ r+p(l—s)
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< min ( 291 8in 01 — pags cos 01 + pags/ R pagr sin@y — pags cos 01 + uags/R ) ‘
- r—uz(l—s) ’ T+ p2(l —s)

Figure 5 shows the set of weakly stable loads for u; = 1.8, us = 0.5 with the other data
remaining the same as above, #; = 7/4 and 6y = 2.57/4. Again, the big black bubble on the top
of the sphere indicates the g3 direction while the one on the equator represents the y-component
of the external load. Note that increasing p; from 0.2 causes the two left-most generators in the
“quadrilateral” shown in Figure 3 to separate following their great circle. When p; reaches a value
of 1.4966 the left-most generator from the original quadrilateral reaches the great circle defined by
the two right-most generators, causing the “quadrilateral” to degenerate into a “triangle.” Further
increasing pq to 1.8 yields the triangular set shown, with one of the original generators (shown as
a gray dot) inside.

Figure 5: The set of weakly stable external loads in ®2. The friction coefficients are taken as:
p1 = 1.8 and py = 0.5.

Figure 6 shows the slice through the sphere corresponding to g3 = 0. Note that the set WS(u)
has grown (by 0.08 radians) to include loads outside the cone formed by the radii to the contact
points. O

Example 2. Figure 7 shows a block initially at rest on a fixed inclined plane. Representing the
contact force as a pair of point loads at the ends of the line segment of contact yields the following
wrench matrices:

—sinf@ —sin@ —cosf —cosf
W, = cos 6 cos @ and W; = | —sinf —sinf |,
1 -1 -1 -1
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Figure 6: The set of weakly stable external loads in $2; g3 = 0. The friction coefficients are taken
as: g1 = 1.8 and po = 0.5.

Cin
Gt

Figure 7: A block at rest on an inclined plane.




Draft submitted to ZAMM 6/10/98: Pang and Trinkle, “Stability Characterizations of Rigid Body Contact ...” 12

where 6 € (0,7/2). Proceeding as in Example 1, we see that for a force vector ¢ = (c1n, c2n, €1t, C2t)
satisfying the static equilibrium equation (9), the following must hold:

cin = 5[g1(sinf+cosh) + g2 (sinh — cos ) — g3 |

con = 3[91(sinf —cosf) — go (sin6 + cosf) + g3 (16)
c1t = g1 cos@ + go sinf — coy.

Substituting these equations into the friction constraints (10) yields the following four inequalities:

g1 ((2 — p1)cosf — pysin) + go ((2 — p1) sinf + py cos ) + p1gs < 2cx

(31 ((2+H1)COS€+/J:1 Sin9)+g2 ((2—I-,u1)sin9—plcosd9)—,ulgg > 262t
w291 (sin@ — cos 0) — pags (siné + cos0) + pags > 2co
—p2g1 (sin@ — cos 0) + p2gs (sinf + cos0) — p2gs < 2c9.

From these inequalities, we deduce that a load g.. = (91,92, 93) is weakly stable if and only if

91 (sin@ + cos @) + g2 (sinf — cosf) —g3 > 0 (17)

91 (sinf —cosf) —go(sinf +cosf)+g3 > 0 (18)

g1 [ (1 + p2)sind + (u1 — p2 —2) cos @] + ga [(p1 — p2 — 2)sin 6 — (p1 + p2) cos 8] (19)
+(p2—p1)gs >0

g1 [ (1 + po)sin€ + (u1 — p2 +2)cos @]+ go [ (1 — po + 2)sin — (uy + p2) cosb | 20)

+(p2 —p1)gs > 0.

The physical interpretation of these inequalities is as follows. Inequalities (17) and (18), represent
the constraint that the line of action of the external load must pass through the contact segment
and must have a component opposite the outward normal of the ramp. This ensures that the block
will not tip or spontaneously lift off the ramp. Inequalities (19) and (20), represent the constrains
the external load to lie inside the composite friction cone making sliding impossible. O

We close this section by noting that decreasing any coefficient of friction causes the set of weakly
stable loads to contract monotonically:

WS(p) CWS(pr)  if p < p.

3 Main Results

In this section, we present the main results pertaining to the stability concepts defined in the last
section. We begin with a preliminary result that gives an equivalent way of describing strong
stability. In essence, this result asserts that strong stability (i.e., zero body accelerations, ¢ = 0)
can be characterized as nonpositive virtual work (i.e., ('jTgext < 0) 3; this result is consistent with
the asserted equivalence in Definition 1 of stability. A proof of the following proposition is given in
Appendix B.

3Note that since the system begins at rest, the instantaneous acceleration g is proportional to the instantaneous
velocity g and hence the expression given is proportional to the virtual work.
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Proposition 1 Let g . be a given applied load. The following statements are equivalent:
() Geyxy 18 strongly stable;
(b) every dynamic intensity yields nonpositive virtual work.

(¢) Gext S weakly stable and every dynamic equilibrium intensity yields zero relative tangential
accelerations, a; and a,.

The distinction between weak stability and strong stability is clearly due to the nonuniqueness
of dynamic intensities. If the dynamic rigid body contact model has a unique solution, then these
two stability concepts are equivalent. Based on a uniqueness result obtained in [20], we state a
sufficient condition for this equivalence to hold. Subsequently, this result will be generalized.

Proposition 2 Suppose that the Jacobian matric J has full column rank. There exists a scalar
g > 0 such that if p; € [0,i] for all i = 1,...,n¢, Goyy 15 weakly (un)stable if and only if it is
strongly (un)stable.

The scalar i has to do with the preservation of the “P-property” of certain perturbations of
the matrix A (which is positive definite under the full rank assumption in the above proposition).
For more discussion on this scalar, see [19].

3.1 The role of the frictionless stability

The frictionless problem corresponds to g = 0. This case plays an important role in the frictional
problem. For one thing, the frictionless case provides another instance where weak and strong
stability are equivalent. This is part of the content of Theorem 1 below. Frictionless stability refers
to (weak or strong) stability in the frictionless problem. Besides establishing the equivalence of
weak and strong stability, this theorem also shows that frictionless stability is easy to check, namely,
by solving a linear program; furthermore, frictionless stability is actually equivalent to (weak or
strong) stability for all friction coefficients. Thus we see that frictionless stability is a very desirable
property. Note that while many have previously conjectured that frictionless stability implies strong
stability with friction, we were not aware of a formal proof until now (see Appendix B).

Unlike Proposition 2, the theorem below and all subsequent results do not require J to have
full column rank.

Theorem 1 Let g, be a given applied load. The following five statements are equivalent.

(a) There ezists a vector ¢, satisfying

Wpen +9es =0, ¢, > 0. (21)
(b) The load g, is weakly stable for all friction coefficients.
(c) The load g is strongly stable for all friction coefficients.

(d) The load g., is weakly stable for the frictionless problem.
(e) The load g. is strongly stable for the frictionless problem.
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With the above result, it is natural to ask what happens if frictionless stability is absent. The
next result asserts that if the workpiece possesses a certain “separation property”, then frictionless
instability implies strong instability in the case of small friction coeflicients; thus in this situation,
there must be sufficient friction at the contacts in order for strong, or even weak, stability to hold.

Theorem 2 Suppose that there exists a vector u,, satisfying W%un > 0. The following two state-
ments are equivalent:

() Gexy 18 (weakly or strongly) unstable for the frictionless problem;

(b) there exists a scalar i > 0 such that if p; € [0,] for all i = 1,... n¢, Gexe € WS(1); that is,
Gext 18 Strongly unstable for the problem with p = (u;).

The physical interpretation of the assumption of Theorem 2 (that is, the existence of the vector
u,) is as follows. If there exists a generalized acceleration (uy) of the fixtured workpiece that
would cause all contacts to separate simultaneously, then the external load is strongly unstable for
all friction coefficients sufficiently small if and only if it is strongly unstable when there is no friction.
Notice that the existence of such a separating acceleration u, depends entirely on geometry and
has nothing to do with the applied load. We say that the workpiece has the separation property if
such an acceleration exists.

From Theorems 1 and 2, it becomes evident that the most difficult case for analyzing strong
stability is when the load is not (strongly or weakly) stable in frictionless contact but becomes
strongly stable when friction is present. A critical value of the friction coefficients where the
transition from instability to (weak or strong) stability occurs (if it occurs at all) is unfortunately
not known and is expected to be very difficult to determine in general. Nevertheless, such a value
can be computed in special cases.

In order to illustrate Theorems 1 and 2, it will be useful to introduce the polyhedral cone defined
by all nonnegative combinations of the columns of the matrix —W,; that is,

WS(0) = —pos(W,,) = {gex: : the system (21) is consistent }.

Theorem 1 then says that this cone WS(0) is precisely the set of all applied loads g.,, that are
strongly stable for all friction coefficients; moreover, Theorem 2 implies that if the workpiece has
the separation property, then a load g, ¢ WS(0) is weakly (not necessarily strongly) stable only
if there is sufficient friction at the contacts. We illustrate Theorems 1 and 2 further using the two
examples from the last section.

Example 1 (continued): Setting pu; = po = 0, we conclude from (11) that the cone WS(0)
consists of all loads (g1, g2, 93) that satisfy g3 = 0,

gi18infs —gacosfy > 0 and — gisinfy + gocosfy > 0. (22)

This closed cone consists of all pure forces passing through the center of the disk and passing
between the two contacts or through one of them. It is the same set illustrated in Figure 4 as
WS(p).

With u,, = (0,—1,0), we clearly have W%un > 0. Thus the disk has the separation property.
To illustrate Theorem 2, consider a load g.y = (91,92,0) that fails one of the two conditions in
(22), and therefore lies outside of WS(0). Such a load is illustrated in Figure 6. In order for this
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load to be weakly stable in the frictional case, the previous analysis implies that there must exist
a scalar co; such that the four inequalities (12-15) hold. It is not difficult to verify that if

0 < max(p1,p2) < 1L — 1.4966 = fi

(i.e., neither contact’s friction cone sees the other contact point), then there cannot exist any co;
that balances g., ¢ WS(0). Theorem 2 is therefore verified. O

Example 2 (continued): Setting pu; = pz = 0, we conclude from (16) that the cone WS(0)
consists of all loads (g1, g2, 93) such that

g1 sinf — gy cos@ > |gs| and g; cos@ + go sinf = 0. (23)

These constraints preclude the possibility of initiating rotational motion and translational motion,
respectively.

Clearly with u,, = —(1,t,0)T where 0 < ¢t < tan#, we have WZu, > 0. Consider the vector
Fext = (0, —1,0)T which is easily seen to lie outside of WS(0). Tt is not difficult to show by (17-20)
that if

0 < max(py,p2) < % tan 6 = [,

then this load g, is not weakly stable for the frictional problem; again verifying Theorem 2. Note
that if i1 = po = p, then one obtains the well-known result, 0 < p < tan(6). The “3” arises from
the situations in which the friction coefficient at one contact is zero. O

3.2 The WUg sets

One of the primary goals of this paper is to identify the set of loads that are strongly stable (i.e.,
members of SS(u)) for a given friction coefficient. Since it is hard to identify such loads directly,
we are interested in identifying loads that are weakly unstable (WU(u) and therefore known to lie
outside SS(u)). By Theorem 1, we know that loads lying outside of SS(u) must also lie outside
of the cone SS(0). In order to motivate the main result in this subsection, Theorem 3, we state a
preliminary result pertaining to the frictionless problem. The next result is inspired by the concept
of a complementary cone in linear complementarity theory which we review in Appendix A.

Proposition 3 If W, has full row rank, an applied load g is (weakly or strongly) unstable for the
frictionless problem if and only if there exist a nonempty subset a of {1,...,n.} with complement
a and nonnegative vectors Gne and Cps With any # 0 such that

Wg/\/t_lgext = I.40pq — (Appn).aCna-

Here a and & are the index sets of the contacts that are to be separated and maintained,
respectively. The dot subscript following A, indicates that all rows of A,, are included. Notice
that Proposition 3 depends on the full row rank assumption of W,, to guarantee that if a,, = 0,
then g = 0 also. Since this rank condition is rather restrictive, this requirement is removed in the
next proposition. Without this restriction, the phrase “and only if” must be removed.
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Proposition 4 An applied load gey is (weakly or strongly) unstable for the frictionless problem if
there ezxists a nonempty subset a of {1,...,n.} with complement & and nonnegative vectors anq
and cpg with ane # 0 such that

Wg/\/t_lgext = I.40pq — (Anpn).aCna-

The equation in the above propositions can be easily derived from the original Newton Eu-
ler equation (1) by setting friction forces to zero and removing the equations corresponding to
the tangential components of the contact accelerations.? Applying all subsets a of {1,...,n.} to
the equation represents all possible combinations of breaking and maintained contacts. We will
henceforth refer to each such combination as a “contact mode.” Note that the set of external loads
corresponding to any particular contact mode is a convex cone. Thus we see that the set of applied
loads, denoted WUy, that are unstable for the frictionless problems can be described in terms of
the union of finitely many polyhedra (the subscript “fi” denotes “frictionless”).

Introducing friction into the problem, we define, for a given nonzero friction vector g = (p;),
the set WUR(p) consisting of all load vectors g..; for which there exist a nonempty subset a of

{1,...,n.} with complement &, nonnegative vectors anq and ¢ps with ane # 0, and (free) vectors
¢:q and c,5 such that
WiM™ g = ILaana— (Ann)acna — (Ant).acta — (Ano).aCoa
(WiM lgo)a = —(Atn)-atna — (Att)-aCta — (Ato)-aCoa
(WiM™goi)a = —(Aon)-aCna — (Aot)-acta — (Aoo)-aCoa
and

(cityCio) € Flpicin), Vi € a.

These equations define the set of external loads for which all contacts either separate or roll. Sliding
is not allowed, as indicated by the absence of a:, and a,q.

Of particular interest among these WUR(u) sets is WURg(0); this is clearly a subset of WUg;
moreover, because the set WUg () does not include external loads corresponding to sliding con-
tacts, we have

WUR(p) C WUR(p') ifp < g, (24)

In words, as the friction coefficient increases, the set of weakly unstable loads with no sliding
contacts grows.
The role of the WUR sets is formally established in the result below.

Theorem 3 If g, € WURr(ft) for some friction vectors fi, then g is weakly unstable for all
friction vectors p > fu. In particular, if . lies in WUR(0), then g. is weakly unstable (via a
non sliding contact mode) for all friction coefficients.

Example 1 (further continued). For convenience, we take the disk radius R = v/2 and the
mass m = 1; thus M becomes the identity matrix. Recalling the quantities:

r = sin(f; —60;) and s = cos(fs —61)

“Note that the “and only if” could be reinserted into Proposition 4 if one adds enough additional linearly inde-
pendent equations corresponding to nonzero values of the relative translational and relative angular accelerations at
the contacts. However, we restrict our attention here to the present propositions.
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we have
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Omitting the algebraic manipulations, we can obtain a complete description of the set WURg () as
three convex cones. For this purpose, we define several vectors

)
Il

and u3 = (0,0,1)7. We have

where

WUR1 (Il’)

WUR2 (l")

WUg,,

WUR ()

—sin 91
cos 61
0

sin 91
—cos b

1/v/2

cos 01

V2

= WUR, (p) U WUR,(p) U WU,

[ —sinf; ]

Y

sin 92
—cos 6y

0

cos 05

cos 05

V2

[ —sinfy ]

| —1/V2 ]

[ —sinfy ]

= { Gext € §R3 P Gext — ‘7"193 —I—CEg(Sgl +g2)+x3g5

for some (x1,x2,x3) such that z1 > 0, |z3| < pixe}

={ Goxt € R : Goxr = 719" + 22(g" + 59?) + 739"

for some (z1,x2, z3) such that z; > 0, |z3|

= { Gext € §R3 S Gext =
for some (z1, z2,x3) such that 0 # (x1,z2)

—z19" — 22 9% + x3u

<

>

p2T2 }

0}.

These sets are illustrated on the unit sphere in ®3 in Figure 8 for y; = 0.2 and ps = 0.5. The big
black bubble at the north pole is the positive g3 axis, while the big black bubble at the lower right
points in the y-direction. The 5/16 sector of the sphere toward the back corresponds to WUg,, and
is independent of the values of the friction coefficients. It becomes narrower as the contact points
separate on the disk. The triangular set in the front delineates the loads in WUg,. The short leg
of the triangle widens along its present great circle as p; increases, as predicted by Theorem 3. As
expected from the symmetry of this example, there is also a triangular set emanating from the other
side of WUg,, with a leg that extends with increasing values of pa. The leg dependent on s is
indicated by the small black dots on the right. It is interesting to note that the quadrilateral formed
by the convex combination of the two extensible legs of the triangular regions is exactly the set



Draft submitted to ZAMM 6/10/98: Pang and Trinkle, “Stability Characterizations of Rigid Body Contact ...” 18

WS(p) shown in Figure 3 (as long as both friction coefficients are less than 1.4966). The remaining
uncharted regions on the sphere correspond to external loads which induce contact modes with at
least one sliding contact. This is true until one of the friction coefficients exceeds 1.4966. At this
point, some loads correspond to more than one contact mode. O

Figure 8: The set of weakly unstable external forces in R3. The friction coefficients are taken as:
p1 = 0.2 and py = 0.5.

3.3 Strong stability for the friction pyramid law

Unlike the weakly stable loads, it is in general very difficult to test if an applied load g is strongly
stable. This subsection is concerned with an important special case of the rigid body contact model
with the friction pyramid (5). The main result herein, Theorem 4, identifies a class of rigid body
systems for which a load g is strongly stable if and only if it is weakly stable. Thus for such a
rigid body system, the task of identifying all the strongly stable loads becomes very easy.

The cornerstone of the main result in this subsection is the fact that rigid body contact problems
with friction pyramid laws can be formulated as linear complementarity problems (LCPs); see [20,
Section 3.2]. There are several such formulations; the basic one is as follows:

[ cn ]| [ an | [ cn ] [ by ]
s a; s b;
0 |st | L|laf | =M|st|+]0b | >0, (25)
a; s a; 0
| a, | | s, | a, | | 0
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where
[ Mp, At Apo 0 0]
My, Ay Ap I 0
M=| M, A, A, 0 I
2diag(p) —I 0 0 O
| 2diag(p) 0 —-I 0 O |
with
M, Apy At + Apo
My, | = | Awm | — | Au+ Agp | diag(p).
Mo Aon Ay + Ay
In the above formulation, we have
a; = max(0,a), a; = max(0, —a),
s; = diag(pu)en + ¢, s, = diag(p) e, — ¢, (26)
st = diag(pu)cn +co, s, = diag(p)cn — co. (27)

The development that follows makes extensive use of LCP methodology; a summary of the relevant
LCP results is contained in Appendix A.
By interchanging the roles of certain components of

o

+ gt

a,, a,, S, S

with the corresponding components of their respective complementary partners,

32—7 S:’ at_’ a'0_3

we obtain various equivalent formulations of the basic LCP (25). In LCP terminology, the latter
formulations are “principal transforms” of (25) obtained by performing certain principal pivots
corresponding to the above interchange of variables. The matrices defining the resulting equivalent
LCPs have a structure similar to the above matrix M. In order to give the explicit expressions for
these matrices, we define a “signed vector” o € R™ to be a vector such that for each i = 1,...,n,,
o; € {1,—1}. For any such signed vector o, we let ¥ = diag(o); furthermore, for any two signed
vectors o; and o (and corresponding signed diagonal matrices ¥; and X,), we define

[ M, (0,0,)  AptX: AX, 0 07
My, (01,0,) ZiAuX: A%, I 0
M(o,0,) = | Mon(01,00) ToAnX: XoAnX, 0 I
2diag(p) —I 0 00
2diag(p) 0 —I 0 0|
with
M (0, 00) Ann AnXi + AnoXo
My (01,00) | = | TeAm | — | BedAuDi + 34,5, | diag(p).

Mon(a'ta 0'0) YoAom YA+ 3,A,,%,
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Each matrix M (o, 0,) corresponds to a principal transform of (25). For instance, the basic LCP
(25) corresponds to oyt = 0, =1 for alli = 1,...,n., The following transformed LCP:

(cn' [ ap ] [ cn ] (bn'
s; a; s —by
0< | s, | L]|a; | =M(64,60) | s, |+ | —bo | >0,
a; sf a; 0
Lo ] L] lag] Lo
corresponds to G5 = G5, = —1 for all ¢ = 1,...,n.. In general, for an arbitrary pair of signed
vectors (o, 0,), letting
af ={i:ou =1}, o ={i:o4 =1}, (28)
and
af ={i:ou=1}, o ={i:op=-1}, (29)
we obtain the following equivalent LCP:
[ ¢, ] [ a, ] [ e, 1 [ b, ]
(57 )ar (af )y (57 )a (b0)os
(5 )a (@ )o- () | | ~®0a
(85)at (@g)ot (83 )at (Bo) o
0< | (85)ey | L] (@)y; | = M(ot,00) | (85)a; |+ | —(bo)yz | = 0. (30)
(a7 )t (57 )ar (a7 )ap 0
(a7 ) (58 ). (@ )a, 0
(@5 )t (86 ot (@0 )oy 0
| (@d)e; | | (89)as | | @)y | L O]

In order to state the main result, recall that SS(p) denotes the set of all applied loads g, that

are strongly stable. Thus we have
SS(p) S WS(). (31)

We also let
Mnn(a't,a'o) Antzt Anozo
M(O’t, 0'0) = Mtn(o'ta 0'0) ZtAttZt EtAtOEO € §R3nCX3nC
M,, (o'ta 0'0) oA XpA00,
denote the leading principal submatrix of M (o4, 0,) € 5" *5 with the last two columns and rows
deleted. It turns out these submatrices for various pairs of signed vectors (o7, o,) play a central role

in Theorem 4 below which identifies a class of rigid body geometries for which equality holds in the
expression (31). As one can expect, this class of “favorable” fixture geometries is rather complex;
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yet the description provides a constructive (albeit not necessarily practically efficient) scheme for
one to check the equality in (31). The basis of the theorem is the concept of a column quasi-
adequate matrix introduced in Appendix A, particularly the inequality system (36) in Theorem 5.
The proof of Theorem 4 is given in Appendix B.

Theorem 4 Assume the friction pyramid law (5). The following two statements are equivalent.

(a) For every pair of signed vectors (o, 0,), and every nonempty subset v C {1,...,3n.} with
complement v, the system of linear inequalities below is inconsistent:

[ u, — v,
M (o, Oo)y. | ug—vg | >0 (32)
| Uo — Vo |
o — vy ]
M(a’t, 0o)y. | ug—vy | =0 (33)
| Uo — Vo
Unp Un Un
U = O, Ut > 0, V¢ > 0 (34)
Uo oy Uo 5 Vo

2diag(p) w, > max(u, u,)
2diag(p) v, > max( vy, v,);
(b) equality holds in (31).

Admittedly, the condition (a) in the above theorem is by no means easy to check. In fact
the number of linear inequality systems involved is exponential in the number of contacts. More
precisely, we need to examine all pairs of signed vectors; and for each such pair, we need to
consider the inequality system (32-35) for each nonempty subset of {1,...,3n.}. Although the
computational task of testing the inconsistency of all these systems is rather daunting, it allows
us to make one of two important conclusions. If all systems are inconsistent, then we can safely
conclude from the above theorem that the only strongly stable loads are those that are weakly
stable. If a particular system is consistent, then we can obtain a load that is weakly stable but not
strongly stable. The way to construct such a load is as follows. Suppose that for some pair of signed
vectors (o, 0,) and some nonempty subset y of {1,...,m}, the system (32-35) has a solution. We
will use the vector v to construct a desired weakly but not strongly stable load. Indeed define
¢n = vy, and let o and o be given by (28) and (29) respectively. Furthermore, let

vjt — pjcin if j € a;" vjo— Mjcin i jEaf
cjt = o i and cj, = o -
Wjcin — v if § € o Wjcin — Vjo if j € ag,
and set g. = —J ¢ where ¢ = (¢, ¢, C,) is the so-defined intensity. The following result formally

states that this load g.,, is weakly but not strongly stable.
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Proposition 5 Let

Un Un
U and vy
Uo Vo

be a solution pair of (32-35) corresponding to some pair of signed vectors (o, 0,) and a nonempty
subset v of {1,...,3n.}. The load gy constructed above is weakly but not strongly stable.

We illustrate the application of Theorem 4 and Proposition 5 to the disk example with 2 contact
points.

Example 1 (final analysis). As before we set

T 25w
91 = Z and 02 = T
which yield r = 0.9239, s = 0.3827 and 7/(1 — s) = 1.4966. There are four signed vectors (recall

that this is a planar problem),

o € {(17 1)7 (17_1)7 (_1a1)a (_17_1) }

For each one of these four vector o, there are 15 linear inequality systems (32-35) to be checked.
We wrote a MATLAB program to check all 60 (= 4 x 15) systems for many values of the friction
coeflicients 1 and ps which we took to be the same, say u. These systems are all inconsistent
for pu not exceeding 1.4966, implying that all weakly stable loads are strongly stable corresponding
to such friction coefficients. This experimental result agrees with Figure 5 which shows among
other things that at the critical value of 1.4966, the two cone WS and SS do not exactly coincide,
implying that there exist weakly stable loads that are not strongly stable.

Experimentally, we ran our MATLAB code with ¢ = 0.1 + /(1 — s) and with the value u =
0.1+ 7/(1 — s) and with ¢ = (1,1), of the 15 systems, 7 are consistent, implying that there are
weakly but not strongly stable loads. For instance, with v = {1,2,3,4}, we obtain the following
solution to the system (32-35):

155.62764
155.19384
u=0 v=
0

467.6318

Setting
155.62764 q —934.46950
= | 155.10384 | NG T VT HEOS T 93381503 |0

we obtain

0.4324728

Goy = —Jc = | —1.8466864

0.9242900
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To see that this load is not strongly stable, it suffices to note that (recall that M is the identity
matrix with the above data)
1

1.871616
2.918752
1

b= jTgext =

which implies that the zero vector is a dynamic intensity with nonzero relative accelerations equal
to the components of b. O

4 Conclusion

Motivated by the problem of fixture synthesis, we have studied the stability of a moveable rigid
body (a workpiece) in dry frictional contact with several fixed rigid bodies (fixels). We have
introduced the terms weak stability and strong stability to characterize two types of “stability” of
a fixtured workpiece. These classifications are particularly relevant to the situation in which the
contact forces of the workpiece cannot be uniquely determined from Newton’s Laws, the relevant
kinematic constraints, and a dry friction law. Strong stability exists (for a given external load)
when all admissible contact forces imply zero workpiece acceleration. This is the most desirable
type of stability, because it provides absolute assurance that the workpiece will remain in place
despite unknown in internal stresses, however, it is difficult to test.

The primary contribution of this paper is new insight into the stability problem derived from
four theorems that provide ways to test for strong stability. While we have focused on the case of
one workpiece, the extension to multiple workpieces is trivial. Specifically, the dimensions of the
vectors and matrices appearing in the various equations increase, but the results and conclusions
still hold. The four theorems are summarized below and illustrated in Figure 9 in the context of a
disk in the plane in contact with two fixels (Example 1). For simplicity, the figure only applies to
external loads which are pure forces passing through the center of the disk.

1. Theorem 1 presents (for the first time known to the authors) a formal proof that if a workpiece
is (weakly or strongly) stable without friction, then it is strongly stable for all (positive) values
of the friction coefficients. For the disk example summarized in Figure 9, the external forces
in the convex cone labeled “Theorem 1” are stable without friction. Theorem 1 implies that
this cone is at least a subset of the set of all strongly stable loads for any (nonnegative)
friction coefficients.

2. Theorem 2 implies that weak and strong instability are equivalent when the coefficients of
friction are below some bound. In general, this bound is expected to be difficult to find, but
in some special cases, it can be computed easily. Returning to Figure 9, all external forces
lying strictly outside the cone identified by Theorem 1 are strongly and weakly unstable as
long as the friction coefficients are less than 1.4966.

3. Theorem 3 indicates (perhaps counter-intuitively at first glance) that if for some external
loading and friction coefficients, the workpiece has a solution with a nonzero acceleration
with all contacts rolling or breaking, then the workpiece is guaranteed to have a solution
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with the same contact mode if the friction coefficients are increased. Figure 9 shows external
loads corresponding to Theorem 3 as two convex cones bounding the Theorem 1 cone. The
cones as drawn correspond approximately to friction coefficients, py; = 0.5 and ps = 0.8
With no friction, the cones degenerate to the edges of the cone of Theorem 1. As the friction
coefficients go to infinity, the edges of the cones move monotonically to the dashed lines (these
are the edges of the normal cone of the SS(0)).

4. Theorem 4 provides an exponential-time algorithm to test the equivalence of the sets of
strongly and weakly stable external loads using the friction pryamid law. Since the disk
example is planar, the quadratic friction cone degenerates into a planar cone, thus making
Theorem 4 applicable. It can be shown that the set of weakly stable loads is identical to the
set of strongly stable loads as long as the friction coefficients are less than 1.4966. This result
is complementary to the implication of Theorem 2.

Theorem 2
SU(W) =SU(0)
0 < <1.4966

Theorem 3
Theorem 3 WUR((.), 0.8)

WUR(0.5, (.)J

O

Theorem 4

WS(l) = SS()
0 < |1 <1.4966

Figure 9: Summary of the stability sets of a disk in contact with two fixels.

The results presented here leave several open questions for future study. Perhaps the most



Draft submitted to ZAMM 6/10/98: Pang and Trinkle, “Stability Characterizations of Rigid Body Contact ...” 25

important questions relate to the computation of the friction bound appearing in Theorem 2 and
the use of all the results in this paper in an effective fixture design and analysis system. We intend
to address these questions in future work.
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Appendix A : Notation and LCP Theory

Let M € R"*" be a given matrix. For any two subsets o and § of {1,...,n}, we let Mg
denote the submatrix of M whose rows and columns are indexed by a and (3 respectively. The
rows of M indexed by « are denoted M ,.; similarly, the columns of M indexed by ( are denoted
M . For two vectors a and b of the same dimension, a L b means that a is perpendicular to b;
a o b denotes the Hadamard product of @ and b, i.e., the i-th component of a o b is equal to the
product of the i-components of @ and b. For an arbitrary matrix IN, we denote by pos(IN) the
nonnegative cone generated by the columns of N, that is,

pos(N) = {Nu : u > 0}.

For a vector a, we let diag(a) denote the diagonal matrix with diagonal entries given by the
components of a.

We give a summary of some LCP results [6] relevant to this study. To begin, given a vector
g € R" and a matrix M € R™*", the linear complementarity problem, denoted LCP (g, M), is to
find a vector z € R" such that

0<zlw=q+Mz>0.

If M, is a nonsingular principal submatrix of M, where « is a subset of {1,...,n} with com-
plement @, then by “pivoting” on this submatrix (i.e., interchanging the roles of the (nonbasic)
variables z, and the (basic) variables w,), we obtain the following principal transform of the LCP

(g, M):
oglw"‘ 1 z“]zz\“/_rlw“ > 0,
Za Wg Za
where M is the “principal pivot transform” of M given by
N — l (Maa)™ ~(Maa)™ Mg ]
Mao(Mao )™ Mas — Mao(Maq ) Mg

In essence, this is how the equivalent LCP (30) is obtained.

Geometrically, the LCP (g, M) can be described in terms of “complementary cones” that are
defined as follows. For any subset a of {1,...,n} with complement &, we let C, denote the
nonnegative cone spanned by the columns I., and —M .5; that is

Co = pos([I.q —M.)).

Clearly, the union of all these cones C, for a ranging over all subsets of {1,...,n} is equal to the
set of vectors g for which the LCP (g, M) has a solution. For each nonempty o C {1,...,n}, the
subcone

C., = {Iows— Mszs : (Wa,25) >0, wy # 0}

consists of all vectors g for which the LCP (g, M) has a solution z with w = q + M z not equal
to the zero vector. In essence, the consideration of these subcones C, lead to the definition of the
WUg sets.
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Several classes of matrices M have played an important role in the study of rigid body contact;
see [20]. In particular, the class of symmetric positive semidefinite matrices is especially relevant
for the frictionless contact problem; the class of column adequate matrices serves as the prime
motivation for the strongly stable results in Subsection 3.3. Specifically, a matrix M is column
adequate if for each a C {1,...,n},

[det My = 0] = [ M., has linearly dependent columns |.

It is known that the class of symmetric positive semidefinite matrices is a proper subclass of the
column adequate matrices. Moreover, one can check if a given matrix M is column adequate in
finite time. The following result presents an important property of the column adequate matrices
relative to the solutions of the LCP.

Proposition 6 Let M € R"*™ be a column adequate matriz. For every q € R, if z' and 2% are
any two solutions of the LCP (q, M), then M z' = M z2.

It turns out that the class of column adequate matrices itself is not broad enough to treat the
strong stability issue in rigid body contact. Instead we need to introduce a new class of matrices
that is based on an equivalent definition of a column adequate matrix. Namely, a matrix M is
column adequate if and only if

[zoMz < 0] = [Mz = 0].

Definition: A real square matrix M is said to be column quasi-adequate if

zoMz <0
= Mz = 0.
Mz >0

Clearly every column adequate matrix is column quasi-adequate; but as the following matrix
shows, the converse is not true. Indeed the matrix:

-1 1
M =
1 -1
is easily seen to be column quasi-adequate but not column adequate. The fundamental role of the
column quasi-adequate matrices in LCP theory is contained in the following result. This result also
shows that computationally the property of column quasi-adequacy can be checked in finite time.

Since this matrix class has not appeared in the LCP literature, we give a complete proof of the
result.

Theorem 5 Let M € R™"*" be a given matriz. The following statements are equivalent.
(a) M is column quasi-adequate.

(b) For every q € —pos(M), every solution z of the LCP (g, M) must satisfy ¢ + Mz = 0.

(c) For every nonempty indezx set o C {1,...,n} with complement &, the system of linear inequal-
ities below s inconsistent:

M,z > 0

Mgz = 0 (36)

IN

Za 0.
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Proof. (a) = (b). Suppose that M is column quasi-adequate. Let g be an element in —pos(M)
and let z be an arbitrary solution of the LCP (g, M). We have

0<zlw=q+Mz2>0.
Let 2z > 0 be such that g + Mz = 0. We have

w=M(z—%2)>0, and (z—2)ow < 0.
By column quasi-adequacy, it follows that Mz = M 2; thus w = 0 and (b) holds.
(b) = (a). Suppose that (b) holds but M is not column quasi-adequate. There exists a vector
z = (z;) such that
zoMz <0 and 0 # Mz > 0. (37)

Let z™ and z~ be the nonnegative and nonpositive part of z respectively and define g = —Mz".
Then g € —pos(M) and
0+#4w=q+Mz"=Mz>0.

We claim that 2™ | w. Indeed if z; > 0, then 0 > (M z);. Consequently, w; = 0 and the claim is
established. Since w is nonzero, we obtain a contradiction to (b).

(a) = (c). This is obvious.

(c) = (a). If (c) holds but there exists a vector z satisfying (37), let a be the (nonempty) index
set consisting of those indices i for which (Mz); > 0. This index set a will contradict (c), thus
completing the proof of the theorem. O
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Appendix B : Proofs of Main Stability Results.

Proposition 1. Both [(a) = (b)] and [(a) = (c)] are obvious. To show that (b) implies (a), let
¢ = (en, ¢t, ¢o) be a dynamic intensity. By (b), we have go 7§ < 0. Thus

0>a’c=¢g"M'g—g.Tg>0.
Thus equality holds throughout; in particular, it follows that
0=¢"M'gq

which implies, by the positive definiteness of M~! that ¢ = 0 as desired. Thus (a) holds.
To show that (c) implies (a), let ¢ = (en,c€t,¢,) be a dynamic intensity. By (c), we have
a; = a, = 0. Thus,
an

0 [ = Ac+b.
0
Since gy is weakly stable, let ¢ > 0 be such that J¢' + goy = 0. It follows that

an
0 | = A(c—-¢)
0
Premultiplying this equation by
; 4T
c, —c,
c—c =| c—c ,
co—c)

and using the fact that cla, = 0 and (c,,a,) > 0 and the positive semidefiniteness of A, we
deduce

¢, —c, a,
0> | ca—c 0 | =(c—c)A(c-¢) >0
co—c) 0

Thus equality holds throughout the last expression. By the special structure of A, it then follows
that
j( Cc — cl ) = 07

or equivalently, Jc + gy = 0, as desired. O

Theorem 1. (a) = (b). Let &, satisfy (21) and let ¢ = (en,ct,¢,) be an arbitrary dynamic
intensity. It suffices to show that Jc + g., = 0. We have

anp cp — Cy
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Premultiplying this equation by

using the following facts:

(i) (an,cn,€,) > 0 and alc, =0,

(i) ¢l as + cL'ag < 0 because the friction cone contains the origin, and
(iii) A is positive semidefinite,

and proceeding as in the proof of Proposition 1, we easily conclude Jc+ g, = 0, as desired. Thus
(b) holds.
The following implications are all obvious:

[(b) = (c)and (d) [; [(c)or (d) = (e) & (a) ]

Combining these implications with (a) = (b), we conclude that all five statements are equivalent.
a

Theorem 2. It suffices to prove (b) = (a). Assume by way of contradiction that there exists a
sequence of nonnegative friction coefficients {u*} converging to zero such that for each k, g.y; is
weakly stable for the rigid body problem corresponding to u* = (u¥). Hence for each k, there exists

(ck, ek, ck) satisfying
Woek + Wiek + Wock + goy = 0
ch >0
(Ci'ct’ Ci'co) € f(/"fcfn)a fori=1,...,n.

There are two cases: either the sequence {ct} is bounded or it is unbounded. In the former case,
we must have
lim (cf,c¥) = (0,0)
k—o0
and every accumulation point of the sequence {cF} (at least one of which must exist), say ¢2°, must
satisfy
Wpel + gext =0 and ¢° > 0.

By Theorem 1, this implies that g, is stable for the frictionless problem, a contradiction. In the
latter case, that is, the sequence {ck} is unbounded, the normalized sequence {ck /||ck ||} much have
at least one accumulation point and any such point, say cj,, must satisfy

Wee, =0 and 0 # ¢, > 0.
This contradicts the existence of the vector u,, satisfying Wg;un > 0. O

Theorem 3. From the definition of the elements in WUR(ft), it is easy to see that if g, is an such
an element, then g, is weakly unstable corresponding to fi. This observation together with the
inclusion (24) implies that if g ., belongs to WUR(ft), then g, is weakly unstable corresponding
to all u > fu. The assertion regarding WURg(0) is obvious. |
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Theorem 4. (a) = (b). Suppose that for every pair of signed vectors (o, o,) and every nonempty
index subset v of {1,...,3n.}, the displayed system of linear inequalities (32-35) is inconsistent.
Assume by way of contradiction that some load vector g.., € WS(p) is not strongly stable. By
Proposition 1, it follows that there exists a dynamic intensity (&, €, €,) with induced accelerations
(G, Gy, @) such that (@, a,) # 0. Let (8F,3F) be the slack variables in the friction constraints;
see (26) and (27) for the definition of these variables. Define several index sets:

op ={i:ay >0} and a = {i:a; <0},

. . (38)
ap ={i 1 Gjpo >0} and a, = {i : G40 < 0},
and a pair (o, 0,) of signed vectors as follows: for j =1,...,n,,
1 ifi e oy 1 ifi€aq
oit = and o0y, =
—1 ifieay -1 ifi € ap.

Consider the LCP (30) corresponding to the index sets (??); setting the variables

(@7 )as (a)gmr (ag)ors (@)

o

equal to zero, we obtain the following linear system:

[ en ] [ an ] [ e [ by ]
(87 e (@7 )a (8¢ )ax 1 (bt)ay
0< | ()a | L | (@)a | = M(ot,00) | (57)a | + | —(ba, | =0
(85 )ao (@d)ao (83 )ao (bo)as
L (85)a, | (a4 )a, L (85 )ao J [ —(bo)a, |

+ +
8 8
2diag(p) cn, > max<[ ( t_)at ], [ ( i)at ])
('st )Iit (so )@t
On the one hand, since g, is weakly stable, the above LCP has a solution with
( (af)at, (a‘t_)dtv (a(_)|_)007 (a’t_)do )
equal to zero. On the other hand, the same LCP has a solution
(én’ (‘g‘?—)at’ (ét_)dta (éj)aoa (éo_)ao )

that induces a nonzero ((@; )a,, (@} )ay, (@7 )a,, (@; )a, ). These two solutions provide the vectors

Un Un
Uy and V¢
Uo Vo

that violate the inequality system in the assumption of the theorem. A contradiction is thus
obtained and (b) therefore must hold.
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(b) = (a). This follows from Proposition 5 whose proof is given next. O

Proposition 5. Let ¢ and g, be as defined. By (35), it follows that for all j =1,...,n,,
max(|cjt |, [cij[) < g Cjn-

Thus g,y is weakly stable. To show that g., is not strongly stable, we use the vector u to define
a dynamic intensity ¢ with nonzero relative accelerations. The definition of ¢ is similar to that of
¢ from the vector v. Specifically, let ¢, = u,, and

) ujt — pjCjn if j € a?’ . Ujo — Pj éjn 1f j € af
Cjt = X o - and ¢j, = R o ~

My Cin — uje  if § € of Wi Cin — Ujo if j € ag;
or equivalently,

¢ = X (uy —diag(p)uy, ), and &, = X, (u, — diag(p) uy, ).

The verification of the so-defined ¢ being a dynamic intensity with nonzero relative accelerations
is fairly straightforward; it amounts to a backward derivation from the transformed LCP (30) to
the basic LCP (25). We omit the algebraic details. O



