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Abstract

This paper describes an interactive dynamic simula-

tor for virtual environments which allows user interaction

via a haptic interface. The interactive simulation is per-

formed in our testbed dynamic simulator I-GMS, which has

been developed in an object-oriented framework for simu-

lating motions of free bodies and complex linkages such as

those needed for robotic systems or human body simulation.

User-interaction is achieved by performing push and pull

operations via the PHANToM haptic device which runs as

an integrated part of I-GMS. We demonstrate the user-

interaction capability of I-GMS through on-line editing of

trajectories for a 6-dof robot manipulator.

Keywords: Dynamic Simulation, Haptic Interaction,
Human Body Model, Object-Oriented Design, Inter-
active Simulation.

1 Introduction

Dynamic motion simulation arises in many engi-
neering application domains such as virtual reality
(VR), graphics, robot motion simulators, and com-
puter games. Interaction with the virtual environ-
ment by the user in real-time is becoming increas-
ingly important in computer games. This interaction
is achieved not only via the user's textual input, but
also via direct touch of an object in the virtual scene.
The addition of force and touch (haptic feedback) to
dynamic simulation increases the simulation realism
when the virtual objects are manipulated by the user
during a simulation. In particular, this sensory modal-
ity is highly desirable when the graphics are corrupted
due to partial occlusion of manipulated objects during
simulation or when the environment is dark.

In general, a simulation environment contains
multi-rigid-body systems, each of which consists of a
number of passive bodies, called free bodies, that move
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in response to external forces or forces arising from
contacts, and a number of active bodies which are ac-
tuated. Dynamic simulation predicts the accelerations
(and contact forces of rigid bodies in contact) of the
multi-rigid-body systems in the environment.

Adding haptic interaction to the dynamic simula-
tion has the e�ect of exerting user-applied external
forces to the active bodies in the scene to change
their dynamic behavior. In other words, it changes
the course of simulation trajectories by keeping track
of changes in dynamics due to outside disturbances
such as contact. This has many applications such as
teleoperation of robots for remote inspection, virtual
training, etc.

In this paper, we present two methods of realizing
interactive dynamic simulation via haptic feedback,
push and pull modes. We performed the interactive
simulation in our testbed dynamic simulator I-GMS
[10], which can simulate dynamic motions of multi-
rigid-bodies in virtual environments. In particular,
the use of user interaction is focused on on-line editing
and modi�cation of trajectories of articulated robots.

2 Related Work

Early work on haptic interaction has focused on
haptic rendering of graphical environments, and has
used force feedback coupled with the visual display to
realize surface shading, friction and texture [8] [12].

There are some dynamic simulators with haptic in-
teraction capability. The use of an impulse-based sim-
ulation as a general purpose multi-body simulator for
haptic display is presented in [2]. Haptic interaction
for a point contact for rigid body dynamics is stud-
ied in [11]. Berkelman et al.[1] provides a tool-based
haptic interaction where the user feels and interacts
with the simulation environment through a rigid tool
of a given shape rather than directly with the hand
or �ngers. A haptic interaction method for a virtual
hand was presented for grasping dynamic objects and
physical modeling of plasticity [7].

More sophisticated work which uses haptics to
browse and edit abstract representations of animation



trajectories is given in [4]. This approach uses a vector
�eld method to allow the user to manipulate motion-
captured data.

3 I-GMS System Overview

3.1 Object-Oriented Framework

I-GMS is implemented in the C++ programming
language and is comprised of object classes represent-
ing geometric entities in the virtual environment: En-
vironment, MultiBody, Body, FixedBody, and Free-

Body. It also contains abstract classes: Transfor-

mation, Orientation, DHparameters, Connection, etc.
Each geometric class contains its own kinematic and
dynamic functions as core member functions. Ab-
stract classes support the geometric classes in that
they characterize the connections among the compo-
nent bodies and determine their positions and orien-
tations via appropriate kinematic linkages.

Common functions such as kinematics and dynam-
ics for di�erent multi-rigid-body systems are handled
internally through virtual functions. An application
programmer needs to specify only high-level functions
such as ComputeKinematics and ComputeDynamics

in the driver routine. The underlying Body class prop-
agates its basic properties to its derived classes (e.g.,
FreeBody and FixedBody). This is illustrated in Fig-
ure 1. Other classes can be derived from each of these,
such as attFixedBody and attFreeBody, respectively,
where att is shorthand for 'attributed'. For our dy-
namic simulation purposes, they are named RigidDyn-
FixedBody and RigidDynFreeBody to indicate that all
the bodies are used for rigid-body dynamic simulation.
A more detailed description of the design of I-GMS can
be found in [10].

3.2 Interactive Simulation via Haptics

I-GMS supports interactive simulation via haptic
interaction. Through real-time user interaction, we
are able to modify an existing path or generate an
arbitrary trajectory during simulation. Generating a
trajectory can be a tedious o�-line job if the code must
be modi�ed every time we need a modi�ed (or new)
trajectory for a robot to follow. With interactive sim-
ulation, we can adjust or create trajectories during the
simulation. The PHANToM haptic device [6] is used
as a means for achieving interactive simulation in two
modes in I-GMS: push and pull operations.

A push operation occurs at the point of contact be-
tween the PHANToM and the virtual object, which
triggers the contact force at the contact point and is
incorporated as an external disturbance into the for-
ward dynamics (see Equation (2) in Section 4.2). In
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Figure 1: Class hierarchy within the I-GMS
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Figure 2: Interactive simulation as a sequence of in-
terleaved operations with GMS

this way, a new acceleration is computed whenever
haptic interaction occurs. This new acceleration de-
termines the new starting state of the system from
which trajectory generation is resumed (or integration
is performed using the new acceleration) and contin-
ued until the occurrence of the next haptic interaction
event. The change in the trajectory after the haptic
touch occurs in real-time.

A pull operation occurs by attaching the PHAN-
ToM to the body and allowing the user to drag it
around the workspace. For example, the PHANToM
can be attached to the end-e�ector of an articulated
structure in the workspace so that the joint motion can
be followed dynamically as the user intends. Since we
attach the PHANToM to the end-e�ector, the user is
also able to feel the dragging force which corresponds
to the dynamic motion of the robot. Since the op-
eration occurs in the Cartesian space, this operation
allows a more intuitive interaction for the user. This
is explained in detail in Section 4.2.

Since a user usually performs haptic interaction
in a sporadic manner, computations of the new sys-
tem state and the ensuing trajectory generation are
repeated in an interleaved fashion during simulation.
This situation is illustrated in Figure 2. This simple
scheme of modifying a trajectory in real-time can be



incorporated into the usual simulation steps as follows:

Simulation Steps for Interactive Simulation

1. WHILE (not stopped) DO
2. IF there is a haptic input (push/pull)

3. THEN

4. Compute joint accelerations using
equation (2) or equation (5);

5. ELSE

6. Compute joint trajectory to follow;
7. Compute the joint torques using

inverse dynamics;

8. Compute joint accelerations using
forward dynamics;

9. Update system's state;

4 Dynamic Models in I-GMS

Our objective is to deal with haptic interaction for
articulated structures. We achieve this by incorpo-
rating the point contact as an external force into the
exact dynamics of the articulated structures.

4.1 Multi-Branch Articulated Structure
with a Floating Base

An articulated structure with a multi-branch link-
age and a 
oating-base can be used to model very
complex structures such as a human body model. The
recursive Newton-Euler dynamics algorithm [3] (used
for the �xed-base case) has been extended to describe
the dynamics.

Here, the base is considered as a free-falling body
in deriving the equations. Thus, we have attached
a moving frame to the base, which results in an ad-
ditional 6-dof for representing its position and orien-
tation. Thus, we add the following equations to the
outward iteration of the �xed-base case, so that the
positional and angular acceleration of every link is
propagated starting from the moving base link. (The
notation is adopted from [3].)
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Multiple-branch linkage connections are taken into
consideration during the inward iteration as follows:
Inward iterations: i : n! 1
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Here, iPj ,
i
Rj , and

i
PCi refer to the position, orienta-

tion of the jth body, and the center of mass of the ith

body in the ith body frame, and the center of mass of
the ith body respectively, i refers to the set of all in-
dices of branching links of the ith link body, fEj refers

to j
th external force in the set of all external forces

(Mj) acting on the link indexed by i, and Oi refers to
the set of indices corresponding to all the branch-outs
from the ith body. The boldfaced terms account for
the e�ects due to multi-branch links on the incident
links and external forces acting on a link, respectively.

To write all these equations in a state-space repre-
sentation, we introduce the following notation:
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where

pB : (3� 1) vector specifying base-link position

AB : (3� 3) matrix specifying base-link attitude

� : (N � 1) vector specifying joint angle

vB : (3� 1) vector specifying base-link velocity

!B : (3� 1) vector specifying angular velocity

of base-link

! : (N � 1) vector specifying joint angular

velocity

fB : (3� 1) force vector acting on base-link

nB : (3� 1) torque vector acting on base-link

� : (N � 1) torque vector acting on joints

N : number of joints in the system

Recall that we have extended the system's state
vector with an additional 6-dof for representing the
position and orientation of the base. Thus, the state-
space representation of the dynamics is:

H(X) _V � C(X;V )V +G(X) = U � UE ; (1)

where

H(X) : (N + 6)� (N + 6) inertia matrix



C(X;V ) : (N + 6)� (N + 6) matrix specifying

centrifugal and Coriolis's e�ects

G(X) : (N + 6)� 1 vector specifying gravity e�ect

UE : (N + 6)� 1 vector specifying generalized

force generated by external forces

Note that the above extended recursive Newton-
Euler equations naturally accommodate the tradi-
tional single-branch articulated bodies such as robot
manipulators.

4.2 Dynamics with Haptic Interaction

Push operation:

For the case of push operation, I-GMS considers the
haptic interaction on a multi-rigid-body system as an
external force applied to it by the user, acting at a con-
tact point on the body surface. For instance, haptic
touch on a robot manipulator is regarded as an exter-
nal contact force (by the haptic device) acting on it,
which leads to a modi�cation of the forward dynamic
equation (derived from Equation (1)):

_V = H
�1

(X)[U�UE +C(X;V)�G(X)] (2)

UE accounts for the joint torque vector corresponding
to the contact force, c, due to collision as follows:

UE = J
T
c; c = kp dpenetration (3)

This induces accelerations on the system in response
to the haptic touch. The contact force at the contact
point due to the haptic interaction is computed by a
lumped spring model, where kp is the position gain
and dpenetration is the penetration distance between
the haptic device and the virtual object.

Pull operation:

For the pull operation, I-GMS uses an impedance
controller approach introduced by [5]. The impedance
controller calculates the force f from the virtual spring
and damper. In particular, the virtual force f is com-
puted by attaching a virtual spring and damper from
the end-e�ector position (Xendeff ) to the PHANToM
position (Xph), as in Equation (4).

F = k(Xph �Xendeff )� b( _Xph �
_Xendeff ) (4)

where Xendeff and Xph are 6-D vectors de�ning the
actual and desired position/orientation of the end-

e�ector in the cartesian space, and _Xendeff and
_Xendeff are 6-D vectors representing the actual and
desired velocities of the positions/orientations of the
end-e�ector, respectively. Also, k and b are sti�-
ness and damping matrices, respectively. These last
two tunable parameters a�ect the sense of contact
the operator feels through the haptic device. Then,
the desired force is produced by applying torque �
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Figure 3: Overall system architecture of I-GMS

at the joints, which are calculated using the Jacobian
J(�endeff ) as in the following relation:

� = J(�endeff )
T
F (5)

This � in turn is fed into Equation (1) to compute the
corresponding joint motions for the articulated struc-
ture.

5 Integration of I-GMS with PHAN-

ToM

Our prototype hardware system for performing
haptic interaction consists of a 3-dof PHANTOM hap-
tic device [6], an SGI O2 graphics workstation (graph-
ics display) and an SGI Octane (dynamic computation
server). The graphics keeps track of the position up-
dates of the PHANTOM �nger tip. The PHANTOM
generates force-feedback using collision/penetration
information between the �nger tip and the body. The
operator can use the PHANTOM to touch a rigid ob-
ject in the virtual scene. Currently, we have inte-
grated I-GMS's manipulator dynamics into our haptic-
interaction application which was developed using the
C++ General Haptic Open Software Toolkit (GHOST
SDK) [9]. Both haptic and dynamic computations oc-
cur in the same servo cycle to enable us to re
ect the
appropriate I-GMS state change within the GHOST
application. The overall system architecture is de-
picted in Figure 3.

To achieve realistic feedback of approximately 1
kHz frequency, we have used two techniques: one is
the distribution of computations over the network and
the other is the use of an interpolation of the system's
state between network relays. For the distribution of
computations, we have divided the two major tasks
(haptics and dynamics) into separate processors us-
ing socket programming over the UDP/IP layer on
the Ethernet. The UDP protocol is a connectionless
client/server communication mechanism, which facili-
tates faster transmission of data than TCP. But this is



Figure 4: 6-dof robot manipulator and a wall

with less reliable transmission of data packets. How-
ever, for us, transmitting data at a faster servo rate
is more crucial than the possible minimal loss of data.
To maintain a high servo rate, the client (haptic com-
putation) uses the results computed at a previous time
cycle if the remote server does not return the dynam-
ics results after a certain pre-set time. The preset time
interval is adjustable within I-GMS; setting it close to
1 ms gave reasonable haptic interaction in our exper-
iments.

6 Simulation Examples

We have demonstrated interactive simulations on
a 6-dof robot manipulator through on-line editing of
pre-planned trajectories.

6.1 Push for 6-dof robot manipulator

We consider a simple scenario where a 6-dof robot
manipulator (see Figure 4) is supposed to follow a
straight-line trajectory from its starting point until it
reaches a wall. An obstacle is introduced in the way of
the pre-planned trajectory, which is shown in Figure 5.
The user is supposed to use visual cues to edit the pre-
planned trajectory using the haptic interaction push
mode to avoid the collision. The resulting trajectory
is a path modi�ed by the change in dynamic motion
of the manipulator via haptic touch. Here, we have
tried to push the second link of the manipulator away
from the obstacle, since it was touching the obstacle
while nominally following the pre-planned (straight-
line) trajectory.

The initial steps in Figure 6 (top) show the portion
of the original pre-planned trajectory. This lasts until
there is the �rst haptic touch by the user, which is
indicated by the force calculation at step 11 in Fig-
ure 6 (bottom). Then modi�ed trajectories resulting
from real-time haptic interaction by the user are fol-
lowed. The forces computed by haptic touches are
also given in Figure 6 (bottom). Note that there is
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Figure 6: The trajectory disturbed by push operation

some instantaneous change of accelerations due to the
user's haptic interaction. These changes in accelera-
tions correspond to the starts of new states to be used
for subsequent dynamic update (refer to Section 3.2)
during the interleaved operations. Once a haptic inter-
action occurs, the joint accelerations are maintained
until subsequent user interaction, which is evident in
the plot. The external forces acting at the contact
points are computed by Equation (3) at time steps 11
and 23 (the magnitude unit is N:cm).

This example shows that just a few haptic pushes
at appropriate points on the manipulator bodies could
change the pre-planned trajectory to avoid colliding
with an obstacle.

6.2 Pull for 6-dof robot manipulator

We also performed pull operations on a 6-dof robot
manipulator. We used the same scenario as in the
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Figure 7: The trajectory disturbed by pulling opera-
tion

push mode example. This time, to avoid the collision,
the user dragged the end-e�ector around the obstacle,
which required some care to ensure that the second
link was not placed in collision.

The plots in Figure 7 show the same information as
in the push mode example. The di�erence here is that
the force is computed by a virtual spring connecting
the PHANToM and the robot's end e�ector, as op-
posed to the contact e�ect for the push mode.

We note that relatively greater forces are required
for the dragging operation than the push operation
and this is considered reasonable. Generally, we ob-
served that it was easier for the user to use pull mode
than the push mode to change trajectories.

7 Discussion and Future Work

The user-interaction capability of I-GMS allows the
user to adjust the behaviors of articulated structures
in real-time. This shows promise for user-interaction
of fairly complex articulated structures, too, once per-
formance issues can be resolved to ensure stable haptic
interaction.

Currently, we are working on incorporating haptic
interaction for free bodies in contact with an environ-
ment. For example, we can consider a ball rolling and
sliding on a 
at surface. We regard the contact where
the haptics occurs as the primary one and the one be-
tween the ball and the surface as secondary. Our goal
is to implement correct haptic interaction even in the
presence of the secondary contact. This is a compli-
cated problem which requires exact contact mechan-
ics to predict physically-correct contact mode at the
secondary contact whose e�ect is in turn propagated
to the primary contact for the appropriate haptic in-

teraction. This exact haptic interaction will support
more sophisticated user interaction in general simula-
tion environments which include free bodies in contact
as well as articulated structures.
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