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Abstract

Manipulation tasks are those that cannot be accomplished
without making and breaking contacts. A common require-
ment of planning algorithms is an ability to hypothesize con-
trol actions and then predict the evolution of the system using
a mathematical model. This model must capture the physics
relevant to the task being planned and do so at an appro-
priate level of details. In this paper, a collection of time-
stepping models suitable for manipulation planning are pro-
posed. The model with the highest fidelity is one that incor-
porates rigid body dynamics, joint constraints, and contacts
with local compliance and Coulomb friction. The idea is to
plan tasks starting with the simplest model, upgrading the
model and replanning each time a plan is found, until a plan
is obtained with the model of desired fidelity. This approach
is illustrated through a two-finger grasp acquisition problem.

1 Introduction

One long-standing goal of the robotics research commu-
nity is to develop robots capable of planning and executing
manipulation and grasping tasks with objects of different ge-
ometric and material properties. Over 25 years ago several
articulated hands were built [1, 2], followed by extensive
research on control and planning [3]. Despite this, robot
hands have found limited application in service and indus-
trial robotics. The lack of adequate actuator and sensor tech-
nologies may have been one reason for this failure. Yet, sev-
eral recent efforts to build hands [4] have demonstrated how
technological limitations can be overcome, without a signif-
icant increase in applications. We maintain that the main
reason for the lack of progress is our poor understanding of
the complexity of mathematical models of manipulation with
intermittent contact, and the lack of analytical and computa-
tional tools.

Analysis, simulation, and planning of systems with fric-
tional, intermittent contacts are challenging because of the
non-smooth nature of the underlying mechanics and because
of the “curse of dimensionality” that is associated with me-
chanical systems with a large number of degrees of freedom.
In this paper, we build on the recent results in the analy-
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sis and simulation of non-smooth dynamical systems by the
authors of this paper [5, 6, 7, 8] and others [9, 10], and de-
velop a hierarchy of task models including quasistatic, and
second-order models, with and without local contact com-
pliance. We compare the feasible sets in an augmented state
space suggested by these models through a two-finger ma-
nipulation example.

2 Modeling

The system under consideration is composed of bodies,
called “robots,” that can be directly controlled, bodies called
“objects,” that move in response to uncontrollable external
forces and contact forces, and bodies called “obstacles,”’
whose configurations are specified functions of time (of-
ten obstacle configuration functions are constant). At times
during planning it will be necessary to explicitly describe
contacts and their transitions from separation to contact and
rolling to sliding and vice versa. Thus it is essential to un-
derstand the stratified nature of the configuration space.

2.1 Configuration space

Denote by ¢, the configuration of the system, and by C,
the space of all configurations ignoring nonpenetration con-
straints. The subset Cg, is the geometrically accessible por-
tion of C; the set of configurations for which the bodies do
not overlap, but could be in contact. If all bodies are smooth,
the set of all configurations for which a single contact ex-
ists between a given pair of bodies, defines a codimension
one variety, or stratum, Cfiree. This stratum is the zero level
set of the distance function v;(q) between that pair of bod-
ies. Similarly, a contact between a different pair of bodies
defines another stratum ij‘ree’ while the simultaneous pres-
ence of both contacts defines a codimension two stratum
Cel . = ChooNCl.o, formed by the intersection of the two
codimension one strata. Thus we see that Cg.e iS a strati-
fied set. Generically, the lowest-dimensional stratum (zero-
dimensional) corresponds to contact at m points, where m
is the dimension of the ambient C-space. As each contact
breaks, the dimension of the corresponding stratum increases
by one.

2.2 State space modeling

Denote by = (g, ¢), the state of the system, and by X
the space of all states. The strata of Cgee naturally induce



a partition of X' into n; non-overlapping operating modes.
A mode corresponds to a particular choice of interactions
at the contacts (sliding, rolling, breaking) and the dynamics
in that mode is governed by by distinct set of differential
algebraic equations (DAEs). We define an augmented state
space Z = X x P, where P represents the space of the
design parameters p, and the the symbol x denotes the direct
product and elements of Z are given by z = (z,p). The
evolution of this extended state variable with an input w is
given by

= filz,u,p) (1)
= 0 )

Note that we may have variability in (or the ability) to
vary initial conditions, zo = (zg, p) € Zo = Xy X P, where
r9 € Xy C X. Each mode [ corresponds to a particular
assignment of contact conditions (rolling, sliding, or no con-
tact) to each contact. Thus, for a system with n,. potential
contacts, there are 3¢ discrete modes, each characterized by
a set of conditions in state space.

Zy

Figure 1: A schematic of the goal set Zg, the undesirable
or unsafe set Zy, the set Z4 consisting of points that are
guaranteed (regardless of the applied inputs) to lead to the
unsafe set, and the feasible set Z consisting of points from
which appropriate inputs can steer the system to the goal set.

A generalized manipulation plan consists of actuator in-
put histories and design parameters. The design parameters
consist of initial conditions and other parameters that may
characterize the system. We are interested in two disjoint
sets of points in Z that characterize significant states of the
system. The first set Z¢ is the set of all goal states and pa-
rameter values. The second set Zy; is the set of points that
the system must avoid for the successful completion of the
task. This is the unsafe set. In addition, we are also interested
in determining two disjoint sets of initial conditions and pa-
rameters, Zg, that can be associated with these sets in the
following way. The feasible set Zr consists of points from
which appropriate inputs can steer the system to the goal set
Za. The set Z 4, are those for which no trajectory passing
through them can be steered to Z5. See Figure 1. It may be
difficult to obtain an exhaustive description of Z4, Zr, and
Zy. However, even partial knowledge of these sets (inset

with light shading in the figure) can be important for plan-
ning and executing manipulation tasks. This leads to the idea
of using a model hierarchy to generate motion plans with dif-
ferent levels of refinement such that the partial knowledge of
the sets can be obtained more efficiently using the reduced
models in the hierarchy. In the next Section, we present
a family of discrete-time models, ranging from the simple,
kinematic models to the more complicated, dynamic models
with distributed contact compliance.

3 Discrete-Time Models

We derive the dynamic model and then the special cases
of the kinematic, and quasistatic models. Instead of writing
differential equations for each mode, or discrete state, as in
Equations (1) and (2), we will write the model for all modes
in a unified framework as a Dynamic Complementarity Prob-
lem (DCP) in the spirit of [5, 8].

3.1 Dynamic models

Our full dynamic model uses a distributed compliance
for frictional contacts. The key idea of this model is to al-
low local compliance at the contact patch between nominally
rigid bodies. Unlike some penalty methods, the compli-
ant model relies on both normal and tangential compliances
to model contact forces and can resolve the inconsistencies
with uniqueness and existence.
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where ¢ is the ng-dimensional vector of generalized coor-
dinates, v is the n,-dimensional vector of generalized ve-
locities, M (q) is the n, X n, symmetric positive definite
mass-inertia matrix, f(¢,q,v) is the n,-dimensional vector
containing all non-contact and non-inertial forces, k(t, ¢, v/)
is the inertial terms that are nonlinear functions of velocity,
h is the time step, A, ¢, are the contact force vectors in the
normal direction (labelled n) and the two tangential direc-
tions (labelled t and o), s, are the relative tangential ve-
locities between contacting objects, ¢ is the vector of local
deformations at the contact points, and K (q) and C(q) are
the stiffness and damping matrices, respectively. A detailed

explanation of this model can be found in [5].
The symbol L indicates the perpendicularity which
means the normal forces at contact 4, \;,, can only be non-



zero when the two bodies are in contact which means the
normal separation at that contact is zero. In the tangential
direction, the contact conditions are formulated by requiring
that friction forces maximize the energy dissipation rate over
the sets of admissible contact forces computed based on the
Coulomb’s friction cone model given by

Fi(pidin) = {Nits Xio) 1 A + A% S A2}, D)

W t,0 are the Jacobian matrices defined as

)

T
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where G(q) is a ny X n, parametrization matrix relating the

system velocity v to the time-derivative of the system con-

figuration ¢ and ¢, ¢ ,(q) are the constraint functions for all

possible contacts in the directions n,t,o0, respectively.

Note that we use a positive scalar ¢ € [0, 1] as a scal-
ing parameter for the inertial terms M (q) and k(¢, q,v). As
€ — 0, the inertial effects are relinquished, and the model de-
generates into a quasistatic model. For the dynamic model,
e=1

Under the assumption of positive linear independence,
the dynamic rigid body model can be obtained, as discussed
in [5], by letting the stiffness of the local compliance go to
infinity and at same time the local deformations § — 0):
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For dynamic, rigid-body models, A,:, are nc-
dimensional vectors, and W), 1 ,(q) are n, X n. matrices,
where 7. is the total number of contacts. For compliant con-
tact models, the dimensions of these forces and Jacobians
are related to the compliance model being used. The right-
hand expressions in the model are approximated by a semi-
implicit scheme. We can also employ a 6-rule, whereby the
differential variables ¢ and v are evaluated at some interme-
diate time instances in the respective subintervals determined
by the scalar 6 € [0, 1], with # = 1 indicating a fully implicit
time-stepping scheme.

3.2 Quasistatic models

A quasistatic model is naturally obtained by allowing the
scaling parameter of inertial terms € — 0.
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The quasistatic model without compliance can also be ob-
tained in a similar manner by letting by letting the stiffness

of the local compliance go to infinity:
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3.3 Kinematic and Geometric models

The kinematic model can be generated by eliminating
f(t,q,v) and \. We have to decompose v into controllable
speeds (i.e. the control inputs), u, and speeds that are deter-
mined by the kinematic constraints.

¢t — ¢ = hG(g )t
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Note that for the dynamic models (both rigid and com-
pliant), the inputs u are forces. In the kinematic model, u
are the controllable speeds. We use a minimum principle to
determine the speeds that are passive. For quasistatic mod-
els (both rigid and compliant), the inputs are the controllable
speeds that determine the evolution of motion, similar to the
kinematic model.

The geometric models are simply described by a set of
non-penetration constraints that depends only on the geom-
etry. Globally they are represented semi-algebraic sets con-
structed with distance functions. However when simulating
a system over a small time step starting from a geometrically
generic configuration, the non-penetration conditions can be
expressed as a conjunction of non-negativity constraints on
the relevant distance function:

Ua(g) > 0. 9)



4 Grasp Acquisition Planning

In order to illustrate our hierarchical modeling approach,
consider the grasp acquisition for the triangular part shown
in Figure 2. The two frames of action on the top of Figure 2
show grasp acquisition of the part via the simple strategy of
surrounding the object with four fingers (left frame), holding
the bottom two fingers fixed, and moving the top two fin-
gers downward until they achieve contact on opposite sides
of the triangle’s peak. As the fingers continue to move, they
force the triangle to contact the two fixed fingers. If exe-
cuted accurately, a form closure grasp is achieved (middle
frame). However, as shown in the bottom two frames, dy-
namic effects (impact, friction) and uncertainty (positioning
and control errors) can cause this simple grasp acquisition
plan to fail (right frame).

b9

O @)

Figure 2: Successful (middle frame) and unsuccessful (right
frame) grasp acquisition attempts.

@)

Consider the similar grasp acquisition planning problem
with two moveable fingers and a fixed “palm” of infinite
length (appearing as finite length) in Figure 3. The simplest
model is a geometric model that allows all motions except
those that cause interpenetration of rigid bodies. Given that
the fingers are small discs and the palm is fixed, the ambient
C-space (configuration space) is a stratified space embedded
in N2 x N? x SE(2) (the fingers are treated as particles).
Since the fingers and triangle can move independently under
a geometric model (the triangle need not be pushed by a fin-
ger to move), it is possible to find a deterministic plan using,
for example, a randomized motion planner to achieve a form
closure grasp from any initial configuration.

One can refine the plan by restricting the set of valid
plans with a more accurate model. In this example, a kine-
matic model imposes the restriction that the two fingers
can only move vertically; from their fully raised positions
(x1 = x2 = 0) to contact with the palm (1 = x5 = lg).
For simplicity, let us also assume that the triangle may only
translate horizontally (—oo < x3 < ©0). Under this kine-
matic model (and if the fingers are modeled as points), the
ambient C-space is 72 and Cycc is a solid of infinite length
along the x3-axis with constant square cross section in planes
perpendicular to the zgz-axis. Only in the region drawn in
Figure 4 (—1.5 < x3 < 1.5) is the cross section not square.
In this picture, each of the facets of polyhedron bounding
Ciree 1S a stratum of codimension one. Some of the strata
correspond to finger motion limits, but four of them corre-
spond to contact between the fingers and the two upper faces
of the triangle. The codimension two stratum highlighted as
a blue edge (solid line joining (1,2, —0.5) to (2, 1,0.5)) cor-

responds to fingers contacting the triangle’s edges on either
side of the peak. For this geometry, the blue codimension
two stratum is the goal set projected onto C-space, the set
of all form closure grasps. Since the kinematic model incor-
porates no contact mechanics, form closure acquisition plans
exist for arbitrary initial configurations, since the triangle can
move without being pushed.

Figure 3: An example of using two fingers to manipulate a
triangle sitting on the horizontal plane.

We next refine again, upgrading from a kinematic to a
quasistatic model, which in addition to requiring satisfaction
of the kinematic constraints, also imposes equilibrium con-
ditions at every point along any motion trajectory. This dra-
matically prunes the space of feasible plans, since now con-
tact is required to move the triangle. The family of trajecto-
ries shown in Figure 4 (a) were generated using a quasistatic
model assuming no friction on the palm and Coulomb fric-
tion at the other contacts, with coefficient y less than 1. The
quasistatic controller was assumed to move the fingers down-
ward at constant, but not necessarily equal, speeds. Start-
ing from the origin of C-space, we see that form closure is
guaranteed as long as the ratio of the fingers’ speeds is be-
tween approximately 0.7 and 1.4. If the speed ratio is out-
side these bounds, then the grasp acquisition attempts fail.
In Figure 4(a) these trajectories (dotted lines) move to the
edges defined by the circled vertices and eventually halt at
either the point (2,2, 1.5) or (2,2, —1.5) indicating that the
fingers have moved down to the palm, but the triangle has
slipped out to the left or right.

We now consider a further refinement with full dynamics
and with local contact compliance (implicitly defining a fric-
tional impact law with a non-zero coefficient of restitution).
The fingers are position-controlled with a proportional con-
troller. The resulting trajectories using the dynamic model
with inelastic and elastic impact behavior are given in Fig-
ures 4(b) and (c), respectively. The similarity between Fig-
ure 4(a) and (b) suggests that in this particular example, if
impacts between the fingers and the triangle can be ignored,
then the quasistatic model is a good approximation of the
dynamic model. When the effective coefficient of restitution
is nonzero, the feasible set shown in Figures 4(c) becomes
smaller comparing with Figure 4(a,b). This is because when
one finger contacts the triangle first at high speed, the impact
would cause the triangle jump quickly to the other side, es-
caping the grasp before the second finger could stop it, thus



narrowing the feasible region(as seen in Figure 4(c)). How-
ever, this is only true if we ignore the dynamics of the fin-
gers. If we expand the dynamic model to include dynam-
ics of the two fingers, then, due to significant compliance
and friction, the finger that makes contact first gets slowed
down or bounced backwards after the collision. So the sec-
ond finger has more time to reach the other side of the tri-
angle. In this case, the feasible set actually gets expanded
comparing with that of using the quasistatic model, as seen
in Figure 4(d). In this case, the fingers moved under a force
control scheme derived from a quadratic, attractive-well type
of potential field centered on the edge of the triangle.

(©) (d)

Figure 4: Trajectories and Cyc. of the triangle computed by
using (a) the quasistatic model; (b) the dynamics model with
plastic impacts; (c) the dynamics model with elastic impacts;
(d) the complete dynamic model including the dynamics of
the two fingers. The following parameters are used in the
computation: I; = ls =13 =1,14 =15 = 0.5, lg = 2. The
initial conditions are given by x19 = z29 = 30 = 0 and the
triangle begins at rest.

Figure 4(b) and (c) are generated by using the dynamic
model (3) with different damping coefficients C' to achieve
different post-impact behaviors. Figure4(a) is generated us-
ing the corresponding quasistatic, rigid contact model (7).

For this 2D problem, the dynamic model 3 can be for-
mulated into the following Mixed Linear Complementarity
Problem (MLCP) with

V2 V2 V2 V2
Wn[2 21 and thQ 2].

The generalized coordinate ¢ = (x3). Other constant param-
eters include M = 1, h = 107%, and p1» = 0.5. Kisa
4 x 4 diagonal matrix with all the diagonal entries equal to
108. For plastic impacts, C'is a 4 x 4 diagonal matrices with
all the diagonal entries set to be 10* and C is a zero matrix
for elastic impacts. The Jacobian matrices given here only
represent the situation where the finger 1 is directly above
the left edge of the triangle and finger 2 is above the right
one. In this example, because of the geometry of the trian-
gle, the constraint 1, (q) is a piecewise linear function of q.
In general, ¥, (g) is piecewise smooth.

Figure 5 illustrates Zr and Zy in the space of finger
speed set points (21, 22) and finger friction coefficients (u).
For the quasistatic model with finger control as specified
above, friction coefficients less than 1, and initial state at the
origin, Zp is the set of the finger velocity ratios bounded
roughly by 0.7 and 1.4 (the green planes). For values of
u > 1, the feasible set widens to include the entire first
quadrant of the ©1-25 plane. For the reason explained in the
previous paragraph, the feasible set Zp gets expanded when
we use the dynamic models that consider the dynamics of
both the object and the two fingers. As friction increases,
the motion of the triangle to the side is further slowed, fur-
ther expanding the feasible region until it sticks. For larger
values of friction, the feasible sets of the quasistatic and dy-
namic models match (shown in Figure 5). In this case, the
set Z4 can be determined by inspection to be a superset of
all points satisfying x3 > 0.5 or z3 < —0.5.

FEASIBLE SET

Figure 5: The feasible set Zr and the set Z4 for the qua-
sistatic and dynamic models.

5 Disscussion

Section 3 contains DCP formulations of a collection of
models ranging from the simple, kinematic model to the full
dynamic, compliant contact model, and more importantly,
shows that all of these models sharing a common formalism
given by Equation (3). The question to ask is whether they
admit a model hierarchy. The following are two possible
definitions for model reduction in a hierarchy consisting of
all five discrete-time models described in Section 3.



Definition 1 Consider two systems S and So defined as:
&= f(z,u) (10)

and
v =g(y,v) (11)

respectively, where x and y are states, and u and v are inputs.
Further, suppose there is a transformation « that maps x to
y:
y = k(x).
S is a simplification of Sy (or an approximation of Sy) if
for any o > 0 and for all inputs v(t), there exists a u(t) such
that
k(™ (t) —yT= ()l < o

forallt € [0,T).
Definition 2 A second definition of hierarchy comes from

singular perturbation theory in the spirit of [11]. Let x be
defined by:

r = “” (12)
R I R

Let the solution to f2(y, w) = 0 be given by w = £(y), so
that

y = g(yvv) = fl(ya k(y)vv)

If the reduced-order model S5 is stable, then S5 can be con-
sidered to be a reduction of \S; as the perturbation parameter
€ goes to zero.

Table 1 shows which definition of model reduction or ap-
proximation the most relevant model pairs satisfy. Some of
the simplifications seem to satisfy either Definition 1 or Def-
inition 2, and some neither.

Table 1: Model reduction and approximation

From To Hierarchy
Compliant, Dynamic | Rigid, Dynamic Def. 2
Compliant, Dynamic | Rigid, Quasistatic Def. 2

Rigid, Dynamic Rigid, Quasistatic Def. 2
Rigid, Quasistatic Kinematic Def. 1

Definition 1 provides an efficient way of manipulation
planning. It allows us to generate an initial plan quickly
based on the simplified dynamics of Ss with the assurance
that this plan can be refined in successive iterations by up-
grading the model to S2 with a higher resolution along the
hierarchy. In general, theoretical guarantees of such a re-
duction is hard to come by. We leave this for future investi-
gations. Definition 2 is very helpful and sometimes critical
[11] in establishing conditions under which solution trajecto-
ries from a more complicated, higher-resolution model con-
verges to a simplified, reduced model solution.

6 Summary

The ultimate goal of our research is to be able to auto-
matically generate motion plans (inputs) and designs (initial
conditions and parameters) for grasp acquisition, dexterous
manipulation, and assembly operations. In this paper, we
present a family of models that lend themselves to planning
of manipulation tasks. Our approach, which is illustrated by
the example in Section 4, is to boot-strap the process with a
low-resolution model what will allow us to obtain an initial
plan quickly and then refine this plan in successive iterations
by upgrading to models with higher resolution and fidelity.
In Section 5, we presented two formal definitions that sug-
gest a hierarchical organization of dynamic models for ma-
nipulation planning. More importantly, all these models are
shown to admit a unified DCP framework, from the simple
kinematic model to the full dynamic, rigid contact model,
all of which are special cases of an “exact” high-resolution
model given by the DCP formulation (3). We are currently
working on automated generation of plans for planar micro-
assembly tasks and the design of part feeders for automated
assembly.
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