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Abstract— We study the motion planning problem for planar
star-shapedmanipulators. These manipulators are formed by
joining k “legs” to a common point (like the thorax of an insect)
and then fixing the “feet” to the ground. The result is a planar
parallel manipulator with k − 1 independent closed loops. A
topological analysis is used to understand the global structure
the configuration space so that planning problem can be solved
exactly. The worst-case complexity of our algorithm isO(k3N3),
where N is the maximum number of links in a leg. Examples
illustrating our method are given.

I. I NTRODUCTION

The canonical robot motion planning problem is known
as the “piano movers’” problem. In this problem, one is
given initial and goal configurations of a “piano” (a rigid
body that is free to move in an environment with fixed rigid
obstacles) and geometric models of the piano and obstacles.
The goal is to find a continuous motion of the piano connecting
the initial and goal configurations. Lozano-Perez studied this
problem in configuration space, or C-space, a space in which
a configuration of the piano maps to a point, a motion maps
to a continuous curve, and the obstacles map to the C-
obstacle,i.e., the set corresponding to overlap between the
piano and an obstacle [3]. The dimension of C-space is equal
to the number of degrees of freedom of the system. The
free space, or C-free, is what remains after removing the
C-obstacle from C-space. In C-space, the motion planning
problem becomes a path planning problem. That is, one must
construct a continuous path connecting the initial and goal
configurations that lies entirely within C-free. Theoretical
results for the piano movers’ problem were first obtained by
Schwartz, Sharir, and Hopcroft [17], [15]. They found that the
problem is PSPACE hard, and proposed an algorithm based
on Collins’ decomposition to find a path. Since the worst-case
running time of Collins’ decomposition algorithm is doubly
exponential in the dimension of C-space, it is impractical.

The more complex generalized movers’ problem, is the
problem in which there are multiple rigid bodies moving
simultaneously in a workspace. The bodies are the links of one
or more robots, and thus may be required to obey constraints
corresponding to their kinematic structures and joint limits.
Given the importance of motion planning problem in robotics,
researchers worked to find more efficient algorithms despite
the depressing complexity results found earlier. The most
efficient exact method known is Canny’s algorithm, which
has time complexity that is only singly exponential in the
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Fig. 1. Star-shaped manipulator withk = 4.

dimension of C-space [24]. He also made the important
observation that this bound is worst-case optimal, since the
worst-case number of components in C-space is exponential in
its dimension. Canny’s algorithm is very difficult to implement
- to date no full implementation exists.

In the 1990’s, the intractability of exact motion planning for
general problems stimulated a paradigm shift to randomized
methods. The method of Barraquand and Latombe combined
potential field methods with random walk [13]. In essence, a
potential field method defines an artificial potential field on C-
space such that the goal configuration is the global minimum
of the potential function and no saddle points or other local
minima exist. When the function has this property, motion
planning can be done by any gradient following algorithm.
An important class of such functions are navigation functions
[2], [7], [9]. Ideally, the potential function will be a function of
the goal configuration, and the global minimum property will
hold for all possible goal configurations. Since such potential
functions can be difficult to design, Barraquand and Latombe
suggested the use of random walks to escape local minima
[13]. This modification yielded a method that is practically
effective and probabilistically complete.

When possibly many motion planning queries must be
handled for a single static environment, a different type of
randomized method has been found to be more efficient than
rerunning the Barraquand-Latombe algorithm for each query.
The probabilistic roadmap method (PRM) of Kavrakiet. al
[26], is an easy-to-implement randomized version of Canny’s
[24].

Because PRMs have been successful in solving problems in
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Fig. 2. Inverse kinematics of a three-link serial chain.

C-spaces with dimension approaching 100, many researchers
have worked to make the method more efficient (e.g., [19],
[20], [21]) and to modify it to solve more challenging types
of problems, such as those with closed kinematic loops,
nonholonomic constraints, dynamics, and intermittent contact
(e.g., [30], [18], [1], [22], [23], [16]).

In this paper, we are particularly interested in planarstar-
shaped manipulators. These manipulators are formed by join-
ing k planar “legs” to a common point (like the thorax of
an insect) and then fixing the “feet” to the ground. The
result is a planar parallel manipulator withk− 1 independent
closed loops. They are important because they arise in parallel
manipulators, walking robots, and dexterous manipulation, and
motion plans are difficult to obtain using PRMs. In such
systems, C-space is often most naturally viewed as a lower-
dimensional space embedded in an ambient space (typically
the joint space). The embedding results from equality con-
straints corresponding to kinematic loop closure. In such
settings, it is difficult to obtain an explicit description of
C-space with minimal number of parameters and a suitable
metric to guide sample generation. These problems make it
difficult to construct a roadmap with the requisite properties,
and hence difficult to solve motion planning problems for
systems with kinematic loops using PRMs. The RLG (random
loop generator) method [5], [6] improves the sampling tech-
niques through estimating the regions of sampling parameters.
However, its efficiency relies on the accuracy of the estimation,
which often varies case by case. Moreover, it ignores the global
structure of C-space, and may fail to sample globally important
regions.

The difficulties associated with applying randomized motion
planning methods to manipulators with closed chains and
the availability of new results in topology [12], [25], [28],
[10] have recently led to renewed interest in exact planning
algorithms. Trinkle and Milgram derived some topological

properties of the C-spaces (the number of components and the
structures of the components) of single-loop closed chains with
spherical joints in a workspacewithout obstacles [29], [28].
These properties drove the design of a complete, polynomial-
time motion planning algorithm that works roughly as follows.

1) Choose a subsetA of the links that can be positioned
arbitrarily, and yet the remaining links can close the
loop;

2) Move the links inA to their goal orientations along an
arbitrary path while maintaining loop closure;

3) Permanently fix the orientations of the links inA;
4) Repeat until all link orientations are fixed.

The main result that guided the algorithm’s design is Theo-
rem 2 in [29]. In generic cases, the C-space is the union of
manifolds that are products of spheres and intervals. The joint
coordinates corresponding to the spheres are those that can
contribute to the subsetA mentioned above and the structure
of the C-space suggests a local parametrization for each step.

Here, the previous methods for C-space connectivity analy-
sis are extended to planar star-shaped manipulators with
revolute joints. These manipulators have a common junc-
tion point andk (k > 0) legs connecting the junction to
the fixed base. So the manipulator is in general subject to
2(k − 1) independent nonlinear constraints, under which the
workspace of the thorax and the C-space of the manipulator
assume more complex combinatorial structures than single-
loop closed chains. Following a topological analysis of the
global structure of C-space (i.e., the structure of the inverse
kinematics of the manipulator), the motion planning problem
is solved completely in polynomial time. Furthermore since
we consider only a point end-effector, the direct kinematics is
straightforward while the inverse kinematics is more complex.
Thus, while for most parallel mechanisms using C-space as a
mean for path planning should be carefully considered, here
our approach is natural.
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Fig. 3. Left: The workspaceWj of a three-link open chainMj based at
oj . The critical setΣj of the kinematic mapfj is four concentric circles.
The small circles, figure eights, and points at 12 o’clock show the topology
of the C-spacẽCj(p) of the leg when its endpoint is fixed at a point in one
of the seven regions delineated by the critical circles (one of the four circles
or one of the three open annular regions between them).Right: The inverse
image of the curveγ - a “pair of pants.”
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Fig. 4. The workspaceWA of A for a star-shaped manipulator withk = 2
is the intersection of the workspaces ofA for each leg considered separately.
The critical setΣ is composed of the black circular arcs where they bound
or intersect the gray area.

Note that this paper is aimed at possibly more complex
macromolecules with non-covalent bonds (not just manipula-
tors) for which the number of legs and links in each leg may be
very large [4]. So such a polynomial-complex algorithm would
play a key role in several issues in structural biology, such as
structure prediction in protein folding and binding, and study
of protein mobility in folded states. In these applications, we
are interested in the robot motion planning problem without
considering the control and sensor issues.

The main contributions of this paper are two folds. First, we
establish the global connectivity of the C-space of star-shaped
manipulators via a combination of the cell decomposition of
workspace and the structure of the C-space at points in all
cells. Second, the global connectivity result of C-space only
suggests an exponential algorithm for path existence, which
makes the motion planning formidable for macromolecules
with a large number of links. In this paper we propose
novel techniques for path existence that avoids the exponential
complexity.

This paper is organized as follows. In Section III, kinematics
and singularities of the manipulator are analyzed. In Section

IV, necessary and sufficient conditions for C-space connectiv-
ity and path existence are derived, based on which a complete
polynomial-time algorithm is developed in Section V. Section
VI addresses path optimization and robustness issues. Section
VII shows simulation results that tests the effectiveness of our
algorithm. Section VIII discusses the key difference between
our algorithm and the others. Finally IX ends this paper with
a brief conclusion.

II. N OTATION

Manipulator Notation
M - Manipulator
A - Root junction or thorax ofM
oi - Grounding point of footi of M

Mj - Leg j of M with foot fixed atoj

and other end free,j = 1, ..., k
nj - Number of links inMj

lj,i - Length of link i of Mj ; i = 1, ..., nj

θj,i - Angle of link i relative to link i− 1
M̃j(p) - Leg j of M with foot fixed atoj

and other end fixed atp
M̃(p) - Manipulator withA fixed atp

Lj - Sum of lengths of links ofM̃j(p)
Lj,0 - Sum of lengths of links ofMj

Lj(p) - A set of long links ofM̃j(p)
|L∗j (p)| - Number of long links ofM̃j(p)

Workspace Notation
WA - Workspace ofA
dUi - Cell of dimensiond of WA

p - Point in the plane ofM
γ = p(t) - Curve in the plane ofM

f - Kinematic map ofA
fj - Kinematic map of endpoint ofMj

Σ - Critical set off in WA

Σj - Critical set offj

Configuration Space (C-space) Notation
C - C-space ofM

C̃(p) - C-space ofM̃(p)
Cj - C-space ofMj

C̃j(p) - C-space ofM̃j(p)
c - Point in C-space

III. PRELIMINARIES

A star-shaped manipulator is composed ofk serial chains
with all revolute joints (see Fig. 1). LegMj is composed of
nj links of lengthslj,i, i = 1, ..., nj and joint anglesθj,i, i =
1, ..., nj . At one end (the foot),Mj is connected to ground by
a revolute joint fixed at the pointoj . At the other end, it is
connected by another revolute joint to a junction point denoted
by A. Note that whenk is one, a star-shaped manipulator is
an open serial chain. Whenk is two, it is a single-loop closed
chain.

Assuming that the foot ofMj is fixed at oj , let
fj(Θj) = p denote the kinematic map ofMj , whereΘj =
(θj,1, · · · , θj,nj ) is the tuple of joint angles, andp is the
location of the endpoint of the leg (the thorax end). When



Mj is detached from the junctionA, the image of its joint
space is the reachable set of positions of the free end of the
leg, called the workspaceWj . In the absence of joint limits,
the workspaceWj is an annulus if and only if there exists one
link with length strictly greater than the sum of all the other
link lengths. Otherwise it is a disk. Clearly, the workspaceWA

of A when all the legs are connected toA is given by:

WA =
k⋂

j=1

Wj . (1)

In our study ofC, it will be convenient to refer to several
other C-spaces. The C-space of legMj when detached from
the rest of the manipulator will be denoted byCj . When the
endpoint is fixed at the pointp, leg j will be denoted by
M̃j(p), where the tilde is used to emphasize the fact that
the endpoint has been fixed. Note thatM̃j(p) is a single-loop
planar closed chain, about which much is known (see [29]),
including global structural properties of its C-space, denoted
by C̃j(p) = f−1

j (p). When the junctionA of a star-shaped
manipulator is fixed at pointp, its C-space will be denoted
by C̃(p). Since collisions are ignored, the motions of the legs
are independent, and therefore the C-space of the manipulator
(with fixed junction) is the product of the C-spaces of the legs
with all endpoints fixed atp:

C̃(p) = C̃1(p) × · · · × C̃k(p)

= f−1
1 (p) × · · · × f−1

k (p)

= f−1(p)





(2)

where by analogy,f is a total kinematic map of the star-shaped
manipulator. Loosely speaking, the union of the C-spacesC̃(p)
at each pointp in WA gives the C-space of a star-shaped
manipulator:

C =
⋃

p∈WA

C̃(p). (3)

Several properties of the C-spacesCj and C̃j(p) are highly
relevant and so are reviewed here before analyzing the C-
space of star-shaped manipulators. It is well known that the
C-space ofMj is a product of circles (i.e.,Cj = (S1)nj ) 1. The
workspaceWj contains a critical setΣj which is composed
of all pointsp in Wj for which the Jacobian of the kinematic
mapDfj(Θj) drops rank for someΘj ∈ f−1

j (p). These points
form concentric circles of radii|lj,1±lj,2±· · ·±lj,nj |, as shown
in Fig 3. WhenA coincides with a point inΣj , the links can
be arranged such that they are all colinear, in which case the
number of instantaneous degrees of freedom of the endpoint
of the leg is reduced from two to one.

Now consider the case where the endpoint of legj is fixed
to the pointp. In other words, we are interested in the C-space
C̃j(p) of M̃j(p), which amounts to calculating the inverse
kinematics (IK) f−1

j (p). The structure off−1
j (p) has been

established in [14] for four-link single-loop closed chains, and
in [29], [28] for chains with an arbitrary number of links.

Next, we computef−1
j (p) for a three-link serial chain to

explain the basic idea used in [29], [28] for analyzing the IK

1Recall the assumption of no joint limits.

map of a closed chain with an arbitrary number of links. As
shown in Fig. 2, we begin with the IK of a two-link serial
chain. Each point in the workspace could have 0,1,or 2 IK
solutions, and the set of points with constant number of IK
solutions forms annular regions separated by the critical set of
this chain. The IK of a three-link serial chain is then deduced
by breaking the chain into a two-link serial chain and a one-
link serial chain, and taking the union of the IK solutions of
the two-link chain for all points in the workspace of the one-
link chain. It is easy to check that for points in the outer most
annular region in the workspace of the three-link chain, the
workspace of the one-link chain (a circle) always intersects
with the outer-most critical circle of the two-link chain at
two points, indicating that the IK of this point is the union
of two curve segments with a pair of endpoints identified,
respectively, i.e., a circle. The inverse kinematics for points in
other regions can be derived similarly. The results are shown
in Fig. 3. In the 12 o’clock position, points, circles, and figure
eights are drawn to represent the global structures ofC̃j(p) in
the seven regions ofWj . Specifically, whenA is fixed to a
pointp on the outer-most critical circle,̃Cj(p) is a single point.
For p fixed to any point in the largest open annular region,
C-space is a single circle. Continuing inward, the possible C-
space types are a figure eight (on the second largest critical
circle), two disconnected circles, a figure eight again, a single
circle, and a single point (on the inner-most critical circle).

[29] summarizes several important properties aboutCj(p)
with an arbitrary number of links. Those that will be par-
ticularly useful in the analysis of star-shaped manipulators
follow. First, the connectivity of̃Cj(p) is uniquely determined
by the number of “long links.” Consider the augmented link
set composed of the links ofMj andojp, which will be called
the fixed base link with length denoted bylj,0. Let Lj be the
sum of all the link lengths including the fixed base link (i.e.,
Lj =

∑nj

i=0 lj,i). Further, letLj(p) be a subset of{0, 1, ..., nj}
such thatlj,α + lj,β > Lj/2; α, β ∈ Lj(p), α 6= β. Over all
such sets, letL∗j (p) be a set of maximal cardinality. Then the
number of long links ofM̃j(p) is defined as|L∗j (p)|, where
| · | denotes set cardinality.

Lemma 1: Kapovich and Milson [25], Trinkle and Mil-
gram [29]
The C-spacẽCj(p) = f−1

j (p) has two components if and only
if |L∗j (p)| = 3, and is connected if and only if|L∗j (p)| = 2 or
0. No other cardinality is possible.

Let us return to the discussion of Fig. 3. ViewingWj as
a base manifold and the C-space corresponding to each end
point location as a fibre, it is apparent that the critical set
Σj partitionsWj into regions over which the C-spaces̃Cj(p)
form a trivial fibration. The implications of this observation
are useful in determining the C-space of more complicated
mechanisms. Consider a modification tõMj(p) that allows the
endpoint to move along a one-dimensional curve segmentγ
within Wj . Then as long asγ is entirely contained in one of the
regions defined by the critical circles,C̃j(γ) = C̃j(p)×I, where
I is the interval. Ifγ crosses a critical circle transversally, then
C̃j(γ) = (C̃j(p1) × I)

⋃ C̃j(p3)
⋃

(C̃j(p2) × I), wherep1 is a
point in one of the two open annular regions containingγ, p2



is a point in the other, andp3 is a point on the critical circle
crossed byγ, and

⋃
denotes the standard “gluing” operation.

In Fig. 3, an exampleγ and the corresponding C-spaceC̃j(γ)
are shown.

IV. A NALYSIS OF STAR-SHAPED MANIPULATORS

For star-shaped manipulators with one or two legs, the
global topological properties of the C-spaceC are fully un-
derstood (for one, see [27]; for two, see [29], [28]). The
goals of this section are to study the global properties of
C when M has more than two legs and to derive necessary
and sufficient conditions for solution existence to the motion
planning problem.

1) Local Analysis:As a direct generalization of the critical
set of a single leg, we define the critical set of a star-shaped
manipulator as a subsetΣ of WA such that for everyp ∈ Σ,
there exists a configurationc such that at least one of the
Jacobians{Df1(c), · · · , Dfk(c)} drops rank. By definition we
have:

Σ =

(
k⋃

i=1

Σi

)⋂
WA. (4)

An advantage of this definition is thatΣ can be used to stratify
WA such that each stratum is trivially fibred. Figure 4 shows
a star-shaped manipulator with two legs. The critical setΣ
is the boundary of the lune formed by the intersection of the
outer critical circles of their individual workspaces. For every
point interior to the lune, the fibre is two circles (the direct
product of two points with one circle). The fibres associated
to the vertices of the lune are single points, which correspond
to simultaneous full extension of the two legs.

Fig. 5 shows a possible workspace for a star-shaped ma-
nipulator with three legs. The critical set defines 65 distinct
sets dUi of varying dimensiond, where i is an arbitrarily
assigned index that simply counts components. We will refer
to these sets aschambers. There are 12 two-dimensional, 32
one-dimensional, and 21 zero-dimensional chambers, each of
which is trivially fibred. Removing the0Ui from Σ partitions
it into open one-dimensional chambers1Ui, i = 1, · · · ,1m.
Removing0Ui and1Ui from WA yields open two-dimensional
sets2Ui, i = 1, · · · ,2m, for which the following relationships
hold:

Σ =




0m⋃

i=1

0Ui


⋃




1m⋃

i=1

1Ui


 (5)

WA − Σ =

2m⋃

i=1

2Ui. (6)

Proposition. 1: For all d = 0, 1, 2 and i, f−1(dUi) =
dUi× f−1(p), wherep is any point indUi and the operator×
denotes the direct product. Gluing thef−1(dUi) for all i and
d gives the total C-spaceC.

Proof: Whend = 0, 0Ui contains a single point, the result
follows. Whend = 1, 1Ui belongs to one critical circle of
one leg, sayM̃j . Any two pointsp1, p2 ∈ 1Ui are related by a

o
j

oj+1

oj+2

Fig. 5. Workspace (shaded gray) of a star-shaped manipulator with three legs.
The critical set partitionsWA into 12 two-dimensional, 32 one-dimensional,
and 21 zero-dimensional chambers.

Euclidean rotationp2−oj = R(p1−oj), indicating thatC̃j(p1)
and C̃j(p2) are homotopic. Thus̃Cj(p) for all p ∈ 1Ui have
equivalent topological structure. For the other legsM̃l, l 6= j,
according to [28] (Lemma6.1 and Corollary6.5) C̃l(p) for all
p ∈ 1Ui have equivalent topological structures as1Ui is free of
critical points ofM̃l(p). Thusf−1(p) = C̃1(p)× · · · × C̃k(p)
for all p ∈ 1Ui have equivalent topological structures. The
case whend = 2 can be proved by applying Lemma6.1 and
Corollary 6.5 of [28] to all legs. ¥

Proposition 1 and the fact thatdUi is a simply connected set,
reveal that each component off−1(dUi) is a direct product of
one component of̃Cj(p), j = 1, · · · , k, with a d-dimensional
disk. Using|L∗j (p)|, j = 1, · · · , k and Lemma 1, one can show
that the number of components off−1(dUi) is 2k0 , where
k0 ≤ k is the number of legs for which|L∗j (p)| = 3.

2) Local Path Existence:Before considering the global
path existence problem, consider motion planning between two
valid configurationscinit and cgoal for which the junctionA
lies in the same chamber. Since the fibre over every point
in dUi is equivalent, path existence amounts to checking the
component memberships of the configurationscinit andcgoal.

For a single legM̃j(p), if the number of long links|L∗j (p)|
is not three, then any two configurations of̃Mj(p) are in the
same component. When|L∗j (p)| = 3, choose any two long
links and test the sign of the angle between them (with full
extension taken as zero). There are two possible signs, one
corresponding toelbow-upand the other toelbow-down. If for
two distinct configurations of̃Mj , A lies in the same chamber,
there is a continuous motion between them while keepingA
in this chamber, if and only if the elbow sign is the same
at both configurations (naturally, one must perform the sign
test with the same two links and in the same order for both
configurations). Considering all the legs together, a continuous
motion of A in dUi exists if and only if a motion exists for
each leg individually. The previous discussion serves to prove
the following result.

Proposition. 2: Restricted tof−1(dUi), two configurations
c1, c2 ∈ f−1(dUi) are path connected if and only if for each



leg M̃j with |L∗j | = 3 in dUi, the elbow angle ofM̃j has the
same sign atc1 andc2.

Proposition 2 completely solves the path existence problem
if WA consists of a single chamber. However, things become
complex whenWA has more than one chamber.

3) Singular Set and Global C-space Analysis:Recall that
the C-spaceC is a union of f−1(dUi), d ∈ {0, 1, 2}, i =
1, · · · , dm and thatf−1(p), p ∈ dUi for d 6= 2 and all i is a
set containing at least a singularity off . Combining the local
C-space and singular set analysis yields the global structure
of C-space.

Proposition. 3: For all p ∈ Σj , f−1
j (p) is a singular set

containing isolated singularities. If a singularity separates its
neighborhoodV in f−1

j (p), then it is these singularities which
glue the two separated components inf−1

j (q) whereq ∈ WA−
Σj is a point sufficiently close top.

Proof: First it is obvious thatf−1
j (p) contains isolated

singularities for there are finite ways to colinearize all the
links of a close chain. Second, let

γ : (−ε, ε) → WA, γ(0) = p

be a curve that is transverse toΣj . According to Corollary
6.6 of [28], the distance functions(γ(t)) =

∫ t

0
|γ̇|dt defines a

Morse function onf−1
j (γ)

s ◦ fj : f−1
j (γ) → R.

Note that 0 is a singular value ofs ◦ fj and the isolated
singularities off−1

j (p) are also singularities ofs ◦ fj . The
result of Morse theory applying tos ◦ fj yields that (s ◦
fj)−1(0) = f−1

j (p) is given by attaching a handle to(s ◦
fj)−1(ε0) = f−1

j (q) for a sufficiently smallε0 and q a point
sufficiently close top. The Proposition follows. ¥

Next, we establish necessary and sufficient conditions for
the connectivity ofC. Let J be the index set such that for all
j ∈ J , |L∗j | = 3 for at least one chamberdUi. We prove the
following theorem.

Theorem 1: SupposeWA =
⋃2

d=0

(⋃dm
i=1

dUi

)
. ThenC =

f−1(WA) is connected if and only if:

1) WA is connected;
2) Σj

⋂
WA 6= ∅ for all j ∈ J .

Proof: (i) “Necessity:” SinceC is a fibration of the base
manifoldWA, it can have one component only whenWA has
one component. Thus item1 of Theorem 1 is required. Second,
in order thatC be connected, for each legMj restricted to
WA, the C-spaceC̃j(WA) = f−1

j (WA) must be connected.
By definition, for all j ∈ J , there exists a chamberdUi such
that |L∗j | = 3. The result of Proposition 3 means thatC̃j(WA)
is connected only ifWA

⋂
Σj 6= ∅.

(ii) “Sufficiency:” Item 1 and 2 imply that̃Cj(WA) are path
connected for allj. Moreover,C is a fibration overWA. The
result follows. ¥

Fig. 6 illustrates the global connectivity for an exampleWA

corresponding to a star-shaped manipulator with two legs and
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only the portion off−1(γ) is shown, whereγ is a continuous curve inWA

that visits all chambers.

a workspace for which there are two chambers2U1 and 2U3

where leg 1 has three long links and another chamber2U4

where both legs have three long links. Among these chambers,
1U1 and1U2 belong toΣ1, and1U3 belongs toΣ2. According
to Theorem 1, the C-space is path connected. In this example,
the C is the product of the two structures shown.

Corollary 1: Two configurationsc1 andc2 of a star-shaped
manipulator are in the same component if and only if

1) f(c1) andf(c2) are in the same component ofWA;
2) For each legj with |L∗j | = 3 for all chambersdUi in the

component ofWA which containsf(c1) andf(c2), the
elbow sign is same at bothc1 andc2.

Remark 1: As a matter of fact,Σ completely determines
the connectivity of C-space. When computing a path between
two given configurations, often motions of the junction to
points onΣ are incorporated to allow adjustment of leg-angle
signs. However, inevitable deviations of the junction fromΣ
caused by numerical errors, make it impossible to adjust the
sign of legs while fixing its end point. For these reasons, points
in 2D chambers are preferred for sign adjustment.

V. A POLYNOMIAL -TIME , EXACT, COMPLETE

ALGORITHM

Our algorithm consists of two main routines,PathExists
and ConstructPath . PathExists solves the path exis-
tence problem, i.e., determining if an initial and an goal config-
uration are path-connected, andConstructPath constructs
a path between them if there exists a path.

Notice that the C-space of a star-shaped manipulator could
be very complex. Even the simple planar five-link single-loop
closed chain, its C-space could be as complex as the connected
sum of four torii [28]. So determining the path existence
without using the C-space information is difficult. Our strategy
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is to solve the path existence based on the set of critical circles
Σj in the workspace, and then construct the path combining
our knowledge of the workspace and the structure of the C-
space of single-loop closed chains. We emphasize here that
the problem is not just moving the junction point between an
initial and a goal position, but moving the manipulator along
with all its legs from an initial configuration to a goal config-
uration. So, the workspace information will be insufficient for
path construction. InConstructPath , we employ a move
that changes the shape of a leg with its endpoint fixed in the
workspace. This move, called the sign-adjust move, uses the
knowledge of the C-space of a single-loop closed chain. Below
we will show that the overall complexity ofPathExists and
ConstructPath is O(k3N3), where N is the maximum
number of links in a leg andk is the number of legs. The
polynomial complexity is key to the applications like folding
of macromolecules, which can can be modeled as a closed
chain with largek andN .

The logical flow ofPathExists is illustrated in Figure 7.
Its input is the topology and link lengths of a star-shaped
manipulator and two valid configurations,cinit andcgoal. The
output is the answer to the path existence question.

The approach taken is to computeWA and then, for each
leg with its end point constrained to lie inWA, to determine if
its initial and goal configurations are path connected. Notice
that Wj is either a disk or an annular region,WA can be
constructed by calculating the intersections between no more
than 2n circles. So constructingWA is polynomial-complex.
The most difficult issue is to check the path existence.

Since the C-space of a leg is guaranteed to be connected if
one of its critical circlesΣj intersectsWA, the most straight
forward way to test connectivity is to explicitly perform the
intersections. However, since there are as many as2nj−1

critical circles, any algorithm based on this approach will
have worst-case complexity that is at least exponential in
N . The key contribution ofPathExists is a polynomial-
time algorithm for checking the existence of an intersection
betweenWA and a critical circles - even though there is
an exponential number of these circles. Recall that if a
leg has three long links, then it is impossible to move the
leg so that the three long links change from an elbow-up
configuration to an elbow-down configuration. The following
algorithm constructs a novel polynomial-complex method that
can determine if there is point inWA in which the number of
long links of a leg is not3 (see Step 4 inPathExists ).

1. ConstructWA We computeWA in three steps.
Step 1: Compute the boundary circles ofWj . In general,
Wj is an annulus. The radius of its outer boundary circle
is rmax =

∑nj

i=1 lj,i, while that of its inner boundary circle,
rmin, can be determined by comparinglmax := maxi lj,i and
rmax−lmax. If lmax > rmax−lmax, thenrmin = 2lmax−rmax,
else,rmin = 0;
Step 2: Decompose the whole plane into cells using all
boundary circles of all legs (e.g., the line sweeping algorithm
can do this), and construct the cell adjacency graph;
Step 3: Pick a point from the interior of each cell, compute
its distance from each base point, and compare the distance
with the radii of the two boundary circles ofWj . The set of
cells which can be reached by all legs constituteWA.
The complexity of this 2-D cell decomposition algorithm is
O(k2 + kN).

2. Are pinit andpgoal in same component ofWA? As an
immediate consequence of the cell decomposition, this can
be answered directly by searching the cell graph.

3. ComputeJ This step is used to filter out easy solution
existence checks, based on the cardinality and members of the
setsL∗j (pinit) andL∗j (pgoal). For each legM̃j(pinit), compute
Lj (see Section III) and find the three longest links of the
set{lj,0, ..., ljnj

}. Denote these links by(pinit; λj,1, λj,2, λj,3).
Do the same for(pgoal) and define(pgoal; λj,1, λj,2, λj,3).
This requiresO(N) work. Finally, |L∗j (p(·))| = 3 if and
only if λj,2 + λj,3 > Lj/2. If L∗j (pinit) = L∗j (pgoal) and
|L∗j (pinit)| = 3, and if the signs of the long links are different
at cinit andcgoal, then addj into J . ComputingJ is O(kN).

4. Does the set of long links vary for allj ∈ J? If and only
if q ∈ WA exists such thatL∗j (q) 6= L∗j (pinit), then it is
possible to make the long links colinear and thus change the
signs of their relative angles. This can be done by computing
a point q ∈ WA on the boundary of the cell that contains
pgoal and keeps the same setL∗j (p) for all p in this cell. This
boundary is characterized byλj,2 +λj,3 = Lj/2. Sincelj,0 is
the only link whose length varies along withp, this boundary
must be one or two circles (called inner and outer circles,
respectively) whose radii, denoteddmax anddmin, depend on
the link lengths of the leg. LetLj,0 =

∑nj

i=1 lj,i and suppose
the four longest links atpgoal are (λj,1 > λj,2 > λj,3 > λj,4)
with λj,2 +λj,3 > Lj/2, we deduce the radii of the boundary
circles for four different cases:
Case 1: iflj,0(pgoal) = λj,1, thendmax = 2(λj,2+λj,3)−Lj,0,



anddmin = max{Lj,0 − 2λj,3, 2(λj,3 + λj,4)− Lj,0}.
Case 2: iflj,0(pgoal) = λj,2, dmax = 2(λj,1 + λj,3) − Lj,0,
anddmin = max{Lj,0 − 2λj,3, 2(λj,3 + λj,4)− Lj,0}.
Case 3: iflj,0(pgoal) = λj,3, dmax = 2(λj,1 + λj,2) − Lj,0,
anddmin = max{Lj,0 − 2λj,2, 2(λj,2 + λj,4)− Lj,0}.
Case 4: Otherwise,dmax = min{2(λj,2 + λj,3)−Lj,0, Lj,0 −
2λj,2}, anddmin = 0.
If there is no overlap between the two boundary circles and
the component ofWA that containspinit and pgoal, then no
path exists betweencinit andcgoal. Otherwise, path exists and
we obtain way pointspj for all legsj ∈ J . Computingdmax,
dmin, and the way pointspj is O(kN).

The basic idea ofConstructPath is that when moving
from cinit to cgoal, those legsj ∈ J may require a change
in the signs of relative angles between long links, which is
always possible at the way pointpj or other critical points of
the corresponding leg. A natural approach then is to use two
motion generation primitives:accordion moveandsign-adjust
move. The former moves the thorax endpoint (atA) along
a specified path segment with all legs moving compliantly
so that all loop closures are maintained. The latter keeps the
endpoint fixed at a way pointqj ∈ Σj (e.g.,qj = pj or other
critical points) while moving legj into a singular configuration
and then to a nearby configuration with the sign of the relative
angle between a pair of long links in this leg chosen to match
those ofcgoal.

Note that thoughqj are in the critical setΣj , the configu-
ration at which legj approaches these points need not to be
aligned. Without considering the control issue, a leg can be
moved to a colinear configuration with the thorax fixed. Even
if control is considered for the sign-adjust move, the thorax
can still be maintained to be fixed by keeping all other legs
not aligned in the vicinity ofqj .

The input ofConstructPath is WA and its cell graph,
cinit, cgoal, and the set of way pointspj ∈ WA, j ∈ J
computed during the execution ofPathExist .
1. Construct an initial pathConstructPath explores the

cell graph ofWA, and constructs a path inWA connecting
pinit to pgoal and visiting all of the way points. Since there
are at mostk way points, this can be done inO(k3) time (the
path hask + 1 segments each withO(k2) arcs).
2. Constructguardsand insert the guards into the pathNo-

tice that when one accordion moves a leg in a cell in which
the number of long links is not3 (called one-component cell),
neither the signs of concatenating angles, nor the sign between
any pair of links in this leg will be kept invariant. Thus even
if the desired sign between a pair of long links is adjusted
at a way point, it still could change if the leg keeps moving
in a one-component cell. For this reason, we setguards for
legs which have three long links atpgoal. These are the set of
pointsqj , each of which is the last intersection point between
the above constructed path inWA and the boundary of the two-
component cell of legj containingpgoal. Thus the number of
guards (qj ’s) may be more than the number of way points
since the number of legs that have three long links atpgoal

may be more than the cardinality ofJ . Next theguardsare
inserted into the path. Later when we construct the path inC,

sign-adjust moves are only performed atguardsqj (but notpj)
for after that the thorax endpoint gets into the two-component
cell and the sign between a pair of long links will not change
during accordion moves, i.e., the leg will always remain in the
right component of its C-space. Assuming each arc in the path
is approximated by a fixed number of line segments, finding
guards isO(k3).
3. Accordion moves and sign-adjust movesThe path inC

then is produced by using accordion moves along the path and
sign-adjust moves at theguards. At eachguard, one checks
the sign between a pair of long links of the corresponding
leg. If it does not match the goal one, then the junction point
is fixed while a sign-adjust move is executed, otherwise, the
accordion move continues. OnceA is coincident withpgoal,
one is assured by the previous steps, that withA fixed at
pgoal, the configuration of each leg is in the same component
of its current C-spacẽCj(pgoal) as cgoal. The final move can
be accomplished using a special accordion move algorithm
found in [29]. At this stage, we remark that finding the set of
way pointspj and planning an initial path visiting allpj is
necessary for otherwise, an arbitrary path betweenpinit and
pgoal may not intersect the boundary of the two-component
cell of a leg that containspgoal.

The complexity of the accordion move algorithms reported
in [29] areO(N3). Since the path hasO(k3) line segments the
complexity of ConstructPath is O(k3N3). Note that ac-
cordion move algorithms with the required behavior can be de-
signed to beO(N2), so the complexity ofConstructPath
could be reduced.

Overall, our path planning algorithm isO(k3N3).

VI. PATH OPTIMIZATION AND ROBUSTNESS

If a path between two given configurations exists, it is
obvious that in our algorithm the choice of way points,
and thus the path between the two configurations, is not
unique. So a natural problem is path optimization with respect
to meaningful metrics such as path length and singularity
avoidance. Basically we say that many possible optimization
objectives are potentially useful, but we consider the shortest
path in this section. Notice that the way points are necessary
for successively constructing a path fromcinit to cgoal since
an arbitrary chosen path of the thorax frompinit to pgoal (like
the line connecting them) will either go out ofWA, or have
no intersection with the critical setΣj , in which a sign-adjust
move is required for a leg. Thus the optimization problem
arises in the choice of way points, the order of the way points,
and the path between two consecutive way points.

One may also take into consideration parallel singulari-
ties (cf. [31]) and try to avoid them as much as possible
by minimizing the number of singularity crossings. More
precisely this may be done for example by first clustering
singularity regions (see [32]) and then choosing the way
points for the corresponding path so that it has the minimal
number of crossings with these regions. Moreover, the paths
or trajectories (i.e. a path with temporal relations as well as the
geometrical ones) between the way points should be chosen
in the proper way (cf. [33]).
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Fig. 9. Motion of leg1: step 1.
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Fig. 10. Motion of leg1: step 2.
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Fig. 11. Motion of leg1: step 3.
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Fig. 12. Motion of leg1: step 4.
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Fig. 13. Motion of leg1: step 5.
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Fig. 14. Motion of leg1: step 6.
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Fig. 15. Motion of leg1: step 7.
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Fig. 16. Motion of leg2: step 1.
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Fig. 17. Motion of leg2: step 2.
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Fig. 18. Motion of leg2: step 3.
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Fig. 19. Motion of leg2: step 4.
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Fig. 20. Motion of leg2: step 5.
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Fig. 21. Motion of leg2: step 6.
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Fig. 22. Motion of leg2: step 7.
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Fig. 23. Motion of leg3: step 1.

SinceC is a fibration overWA, a meaningful metric forC
is

ds2 = a1dpT dp + a2

∑

j=1k

duT
j V T

j Vjduj , a1, a2 > 0, (7)

where a1 and a2 are two weights assigned todpT dp and∑
j=1k duT

j V T
j Vjduj , respectively for they are quantities with

different physical meaning. The column vectors ofVj ∈
Rnj×(nj−2) forms a basis for the null space of the Jacobian
Jj = ∂fj

∂Θj
of leg j, i.e.,

JjVj = 0.

duj denotes the incremental changes of the local coordinates
on C̃j(p). dp and Vjduj stands for the infinitesimal motion
along the base manifold and the fibre, respectively. The
shortest path problem is to find a path(p(t), Θ1(t), · · · ,Θk(t))
such that

∫ 1

t=0

ds (8)

is minimal. The optimal solution to (8) satisfies the geodesic
equation

v̈k + Γk
ij v̇iv̇j = 0 (9)

wherev = [pT , uT
1 , · · · , uT

k ]T , andΓk
ij denotes the Christoffel

symbol of the metric (7). Solving (9) exactly is difficult.
However, an approximation solution can be derived. Since
a path fromcinit to cgoal is globally optimal if and only if
this path is also locally optimal, we construct an approximate
shortest path in a way so that (i)p(t) connectspinit and
pgoal and visits allpi. Moreover,

∫ 1

t=0

√
dpT dp is minimal;

(ii) There is minimal number of accordion moves, and each
accordion move is minimal; (iii) Except for the accordion
moves, there is no other motions along the fibre.

Remark 2: The path constructed in this way is shortest
if no accordion moves are needed for we always achieve
minimal ds =

√
a1dpT dp infinitesimally, while it is only an

approximation if there is at least one accordion move.
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Fig. 24. Motion of leg3: step 2.
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Fig. 25. Motion of leg3: step 3.

(i) is generally a nonconvex and nonlinear optimization
problem, sinceWA could be nonconvex, and the objective
function (the distance function) as well as the constraints are
nonlinear. Mathematically, this problem can be described as

min
∫ 1

0
‖dp‖

p(t) ∈ WA,∀t ∈ [0, 1]
pi ∈ {p(t)}, ∀i

pi ∈ Aδ(i)

whereAj , j ∈ J is the boundary arcs of the two-component
cell of leg j that containspgoal. δ(J) is a permutation ofJ
with δ(J) = J . Solving this problem exactly is extremely
hard, but a random search method (for example, the Controlled
Random Search Method [34]) can be used to quickly find
a good approximate solution. Using the minimal number of
accordion moves has been solved inConstructPath , and
the minimal accordion move problem has been solved in [29].
Combining these two, (ii) is solved.

To solve (iii), we notice that for a local motiondp = [dx, dy]
of the thorax endpoint,dΘT

j dΘj is minimized if and only if.

dΘj = J+
j dp

whereJ+
j =JT

j (JjJ
T
j )−1.

Another important issue about our planning algorithm is
robustness. The sign-adjust move of legj performed at a guard
qj is only feasible whenCj(qj) is connected. Sinceqj ∈ Σj
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Fig. 26. Motion of leg3: step 4.
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Fig. 27. Motion of leg3: step 5.

which is only 1-D, a small perturbation of the junction point
in WA (e.g., due to numerical errors) will violate the condition
p ∈ Σj . Whenp moves into a two-component cell, then the
sign-adjust move may fail. A remedy to this is to modify the
path of the thorax in the neighborhood ofqj ∈ Σj so that a
point q′j in the interior of a one-component cell is reached.
After the sign of legj is adjusted to the desired one withp
fixing at q′j , we apply a constrained accordion move algorithm
to ensure that the legj stays in the right component ofCj(p)
just before its thorax endpoint enters the two-component cell
containingpgoal. This resulting algorithm will also be robust
to other errors such as the control and sensor errors if they
are taken into account.

VII. E XAMPLES

In this section, we demonstrate the correctness and com-
plexity of our algorithm through two examples: a manipulator
with three five-link legs (see Extension 1 for the video), and
a manipulator with three five-link legs (see Extension 2 for
the video). Movies of the motion plans are very helpful in
understanding the figures.

In the first example, two of the three legs of the manipulator
have three long links whenA is fixed atpgoal. Figure 8 shows
the manipulator in its starting and goal configurations. Our



−30 −20 −10 0 10 20 30
−15

−10

−5

0

5

10

15

20

25

30

35

40

x

y

Critical circles
Base point of a leg
Guards

Fig. 28. Motion of leg3: step 6.
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Fig. 29. Motion of leg3: step 7.

−30 −20 −10 0 10 20
−20

−15

−10

−5

0

5

10

15

20

25

30

35

x

y

Initial 

Goal 

Path of thorax
Initial and goal position of thorax
Guards

Fig. 30. Path of the thorax.

algorithm predictsJ = ∅. Then the algorithm constructs a path
in WA from pinit to pgoal, drawn as the dark solid lines in Fig.
30. This path intersects the boundary of the two-component
annular region of legj that containspgoal several times, among
which qj , j = 1, 2 are the last ones. These two points are
the guards (drawn as diamonds) where sign-adjust moves are
performed.

At qj , j = 1, 2, we check the sign of a pair of long links
of leg j and see if it matches its sign at the goal. If not, we
fix the other two legs and adjust the sign of the chosen long
links in leg j. In this particular example, we chose the two
longest links as the pair of long links,and we find that atq1

the sign of leg1 does not match that at the goal (while at
q2, leg 2 has the same sign as the goal). Before leavingqj

via the next accordion move, the pair of long links of leg
j was moved to the elbow-opposite configuration (recall that
there are two configurations for these two links, one is “elbow
up”, the other is “elbow down”), which has exactly the same
sign as the goal configuration. The Trinkle-Milgram algorithm
[29] is used to plan such a motion between the two elbow-
opposite configurations. Figures 9 - 29 show the progress of
the manipulation plan as the steps of the complete planning
algorithm are carried out.

A bit more complex example in which the star-shaped
manipulator has three five-link legs is shown in Extension
1. The computation time for path existence for star-shaped
manipulators with less than 10 legs, and legs of less than 10
links is typically from less than 1 second to a few seconds
when run in a Matlab, P4, WindowsXP system.

VIII. D ISCUSSION

Star-shaped manipulators are closed chain manipulators
subject to multiple loop closure constraints. The C-space of
these manipulators is often a lower-dimensional submanifold
with high genus2 embedded in the ambient space. Computing
the silhouette of this manifold requires solving the extreme
points of the manifold either in the ambient space whose
dimension is much higher than that of the manifold itself,
or in a set of local neighborhoods (local coordinate charts)
whose number grows exponentially along with the genus of
the submanifold. Although Canny’s algorithm is very efficient
in general, there is difficulty in implementation for star-shaped
manipulators. Second, the classical cylindrical decomposition
of C-space (e.g. collin’s decomposition) is a partition into
simple connected subsets of C-space called cells. However,
this algorithm requires a description of the C-space in terms
of a set of polynomials over its ambient space. Again because
the dimension of the ambient space could be very high, the
computation time of this algorithm could become formidable.

Our algorithm employs the special structural properties
(fibration over the workspace) of the C-space of star-shaped
manipulators. It avoids using the coordinates of the ambient
space as well as the local coordinate charts that covers the
C-space. In our algorithm the path existence and path con-
struction are solved in polynomial time by combining the cell

2The genus of a surface is defined as the largest number of nonintersecting
simple closed curves that can be drawn on the surface without separating it.



decomposition of the workspace (which is two dimensional
and with simple shape) and the structure of the C-space of
single-loop closed chains. The critical setΣj , which marks
the change of the topology of the C-space of each leg, plays
a key role in this algorithm.

IX. CONCLUSION

In this paper, we studied the global structural properties of
planar star-shaped manipulators. Via the analysis of the critical
set Σ, we derived the global connectivity of the C-space,
and necessary and sufficient conditions for path existence.
Based on these results, we devised a complete polynomial
algorithm for motion planning. Simulation examples were used
to illustrate the key ideas behind the motion planning problem
of planar star-shaped manipulators.

APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS

The multimedia extension page is found at http://www.
ijrr.org.

Table of Multimedia Extensions

Extension Type Description
1 Video A path planning simulation for three

legged star-shaped manipulators
having five links in each leg.

2 Video A path planning simulation for three
legged star-shaped manipulators
having three links in each leg.
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