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Abstract—We study the motion planning problem for planar
star-shapedmanipulators. These manipulators are formed by
joining & “legs” to a common point (like the thorax of an insect)
and then fixing the “feet” to the ground. The result is a planar
parallel manipulator with k& — 1 independent closed loops. A
topological analysis is used to understand the global structure
the configuration space so that planning problem can be solved
exactly. The worst-case complexity of our algorithm isO(k3N?),
where N is the maximum number of links in a leg. Examples
illustrating our method are given.

I. INTRODUCTION

The canonical robot motion planning problem is known
as the “piano movers™ problem. In this problem, one i§ig- 1. Star-shaped manipulator with= 4.
given initial and goal configurations of a “piano” (a rigid
body that is free to move in an environment with fixed rigid
obstacles) and geometric models of the piano and obstaciigiension of C-space [24]. He also made the important
The goal is to find a continuous motion of the piano connectirdservation that this bound is worst-case optimal, since the
the initial and goal configurations. Lozano-Perez studied th#prst-case number of components in C-space is exponential in
problem in configuration space, or C-space, a space in whighdimension. Canny’s algorithm is very difficult to implement
a configuration of the piano maps to a point, a motion mapg0 date no full implementation exists.
to a continuous curve, and the obstacles map to the Cdn the 1990's, the intractability of exact motion planning for
obstacle,i.e., the set corresponding to overlap between tt@eneral problems stimulated a paradigm shift to randomized
piano and an obstacle [3]. The dimension of C-space is eqi¢thods. The method of Barraquand and Latombe combined
to the number of degrees of freedom of the system. Thetential field methods with random walk [13]. In essence, a
free space, or C-free, is what remains after removing tig@tential field method defines an artificial potential field on C-
C-obstacle from C-space. In C-space, the motion plannifgace such that the goal configuration is the global minimum
problem becomes a path planning problem. That is, one m@étthe potential function and no saddle points or other local
construct a continuous path connecting the initial and goainima exist. When the function has this property, motion
configurations that lies entirely within C-free. Theoreticaplanning can be done by any gradient following algorithm.
results for the piano movers’ problem were first obtained B important class of such functions are navigation functions
Schwartz, Sharir, and Hopcroft [17], [15]. They found that th], [7], [9]. Ideally, the potential function will be a function of
problem is PSPACE hard, and proposed an algorithm bagbé goal configuration, and the global minimum property will
on Collins’ decomposition to find a path. Since the worst-ca$@ld for all possible goal configurations. Since such potential
running time of Collins’ decomposition algorithm is doublyfunctions can be difficult to design, Barraquand and Latombe
exponential in the dimension of C-space, it is impractical. suggested the use of random walks to escape local minima
The more complex generalized movers’ problem, is tH&3]. This modification yielded a method that is practically
problem in which there are multiple rigid bodies movingffective and probabilistically complete.
simultaneously in a workspace. The bodies are the links of onéWhen possibly many motion planning queries must be
or more robots, and thus may be required to obey constraihandled for a single static environment, a different type of
corresponding to their kinematic structures and joint limitsandomized method has been found to be more efficient than
Given the importance of motion planning problem in roboticserunning the Barraquand-Latombe algorithm for each query.
researchers worked to find more efficient algorithms despitéie probabilistic roadmap method (PRM) of Kavraki al
the depressing complexity results found earlier. The md®&6], is an easy-to-implement randomized version of Canny’s
efficient exact method known is Canny’s algorithm, whic24].
has time complexity that is only singly exponential in the Because PRMs have been successful in solving problems in
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Fig. 2. Inverse kinematics of a three-link serial chain.

C-spaces with dimension approaching 100, many researchemsperties of the C-spaces (the number of components and the
have worked to make the method more efficiemg(,[19], structures of the components) of single-loop closed chains with
[20], [21]) and to modify it to solve more challenging typespherical joints in a workspaogithout obstacles [29], [28].

of problems, such as those with closed kinematic loopEhese properties drove the design of a complete, polynomial-
nonholonomic constraints, dynamics, and intermittent contaaghe motion planning algorithm that works roughly as follows.

(e.9.,[30], [18], [1], [22], [23], [16]). 1)
In this paper, we are particularly interested in plastar-

shaped manipulatar¥hese manipulators are formed by join-

ing k£ planar “legs” to a common point (like the thorax of 2)

an insect) and then fixing the “feet” to the ground. The

result is a planar parallel manipulator with— 1 independent  3)

closed loops. They are important because they arise in parallef)

Choose a subsetl of the links that can be positioned
arbitrarily, and yet the remaining links can close the
loop;

Move the links inA to their goal orientations along an
arbitrary path while maintaining loop closure;
Permanently fix the orientations of the links i1

Repeat until all link orientations are fixed.

manipulators, walking robots, and dexterous manipulation, amfle main result that guided the algorithm’s design is Theo-
motion plans are difficult to obtain using PRMs. In suchem 2 in [29]. In generic cases, the C-space is the union of
systems, C-space is often most naturally viewed as a lowgfanifolds that are products of spheres and intervals. The joint
dimensional space embedded in an ambient space (typicaiordinates corresponding to the spheres are those that can
the joint space). The embedding results from equality cogontribute to the subsed mentioned above and the structure
straints corresponding to kinematic loop closure. In su@f the C-space suggests a local parametrization for each step.
Settings, it is difficult to obtain an eXp”Cit deSCfiption of Here, the previous methods for C_space Connectivity anaiy_
C-space with minimal number of parameters and a suitald are extended to planar star-shaped manipulators with
metric to guide sample generation. These problems makediolute joints. These manipulators have a common junc-
difficult to construct a roadmap with the requisite propertiegon point and & (k > 0) legs connecting the junction to
and hence difficult to solve motion planning problems fohe fixed base. So the manipulator is in general subject to
systems with kinematic loops using PRMs. The RLG (randonjj — 1) independent nonlinear constraints, under which the
loop generator) method [5], [6] improves the sampling tecRyorkspace of the thorax and the C-space of the manipulator
niques through estimating the regions of sampling parameteigsume more complex combinatorial structures than single-
However, its efficiency relies on the accuracy of the estimatiogop closed chains. Following a topological analysis of the
which often varies case by case. Moreover, it ignores the globgdbal structure of C-space (i.e., the structure of the inverse
structure of C-space, and may fail to sample globally importagiematics of the manipulator), the motion planning problem
regions. is solved completely in polynomial time. Furthermore since

The difficulties associated with applying randomized motiowe consider only a point end-effector, the direct kinematics is
planning methods to manipulators with closed chains astraightforward while the inverse kinematics is more complex.
the availability of new results in topology [12], [25], [28], Thus, while for most parallel mechanisms using C-space as a
[10] have recently led to renewed interest in exact plannimgean for path planning should be carefully considered, here
algorithms. Trinkle and Milgram derived some topologicabur approach is natural.



IV, necessary and sufficient conditions for C-space connectiv-
ity and path existence are derived, based on which a complete
polynomial-time algorithm is developed in Section V. Section
VI addresses path optimization and robustness issues. Section
VII shows simulation results that tests the effectiveness of our
algorithm. Section VIII discusses the key difference between
our algorithm and the others. Finally IX ends this paper with

a brief conclusion.

II. NOTATION

Manipulator Notation
M - Manipulator

Fig. 3. Left: The workspacdV; of a three-link open chai/; based at A - Root jUQCtlon .Or thoraX_CﬂM

0;. The critical set¥; of the kinematic mapf; is four concentric circles. o; - Grounding point of foot of M
The small circles, figure eights, and points at 12 o’clock show the topology M; - Legj of M with foot fixed ato,
of the C—spacefj (p) of the leg when its endpoint is fixed at a point in one J and other end freei — 1 L J
of the seven regions delineated by the critical circles (one of the four circles = L

or one of the three open annular regions between thRight: The inverse n; - Number of links inMj
image of the curvey - a “pair of pants.” l(m‘ - Length of link: of Mi; i=1,.., n;
0;:; - Angle of link ¢ relative to linki — 1

M;(p) - Legj of M with foot fixed ato;
and other end fixed at
M(p) - Manipulator with A fixed atp
L; - Sum of lengths of links of\Z;(p)
L;o - Sum of lengths of links of\/;
Li(p) - A set of long links of M;(p)
|L%(p)| - Number of long links of0; (p)

Workspace Notation
W4 - Workspace ofA
a7, - Cell of dimensiond of W4
p - Point in the plane of\/
~=p(t) - Curve in the plane of\/

Fig. 4. The workspacé&V 4 of A for a star-shaped manipulator with= 2 K :

is the intersection of the workspaces 4ffor each leg considered separately. f K!nemat!c map ofA .

The critical set® is composed of the black circular arcs where they bound fi - Kinematic map of endpoint ol/;
or intersect the gray area. Y, - Critical set of f in W4

Y; - Critical set of f;

. . . Configuration Space (C-space) Notation
Note that this paper is aimed at possibly more complex C - C-space ofif

macromolepules with non-covalent bopds (not just manipula- C(p) - C-space off(p)

tors) for which the number of legs and links in each leg may be ¢, - C-space ofM;

very large [4]. So such a polynomial-complex algorithm would 5 7 -7

play a key role in several issues in structural biology, such as Cj(p) - C-space ofM;(p)

structure prediction in protein folding and binding, and study ¢ - Pointin C-space

of protein mobility in folded states. In these applications, we

are interested in the robot motion planning problem without lll. PRELIMINARIES

considering the control and sensor issues. A star-shaped manipulator is composedko$erial chains
The main contributions of this paper are two folds. First, with all revolute joints (see Fig. 1). Lef/; is composed of

establish the global connectivity of the C-space of star-shapeglinks of lengthsi; ;. = 1,...,n; and joint angle9); ;,i =

manipulators via a combination of the cell decomposition df ..., n,. At one end (the foot))/; is connected to ground by

workspace and the structure of the C-space at points in alkevolute joint fixed at the point;. At the other end, it is

cells. Second, the global connectivity result of C-space ontpnnected by another revolute joint to a junction point denoted

suggests an exponential algorithm for path existence, whioh A. Note that wherk is one, a star-shaped manipulator is

makes the motion planning formidable for macromoleculesm open serial chain. Whéhnis two, it is a single-loop closed

with a large number of links. In this paper we proposehain.

novel techniques for path existence that avoids the exponentiahssuming that the foot ofM; is fixed at o;, let

complexity. f;(©;) = p denote the kinematic map d¥/;, where®,; =
This paper is organized as follows. In Section Ill, kinematic®; ;,--- ,0;.,,) is the tuple of joint angles, ang is the

and singularities of the manipulator are analyzed. In Sectitotation of the endpoint of the leg (the thorax end). When




M; is detached from the junctiod, the image of its joint map of a closed chain with an arbitrary number of links. As
space is the reachable set of positions of the free end of 8f®wn in Fig. 2, we begin with the IK of a two-link serial
leg, called the workspacl’;. In the absence of joint limits, chain. Each point in the workspace could have 0,1,or 2 IK
the workspacéV; is an annulus if and only if there exists onesolutions, and the set of points with constant number of IK
link with length strictly greater than the sum of all the othesolutions forms annular regions separated by the critical set of
link lengths. Otherwise it is a disk. Clearly, the worksp&igg this chain. The IK of a three-link serial chain is then deduced

of A when all the legs are connected Aois given by: by breaking the chain into a two-link serial chain and a one-
k link serial chain, and taking the union of the IK solutions of
Wy = n W, 1) the two-link chain for all points in the workspace of the one-

link chain. It is easy to check that for points in the outer most

L ) annular region in the workspace of the three-link chain, the
In our study ofC, it will be convenient to refer to severaly,kspace of the one-link chain (a circle) always intersects

other C-spaces. The C-space of [efy when detached from i the outer-most critical circle of the two-link chain at

the rest of the manipulator will be denoted By. When the 4 noints, indicating that the IK of this point is the union
endpoint is fixed at the poinp, leg j will be denoted by o tvo curve segments with a pair of endpoints identified,
M;(p), where the filde is used to emphasize the fact thalghectively, i.e., a circle. The inverse kinematics for points in
the endpoint has been fixed. Note thj(p) is a single-Ioop wher regions can be derived similarly. The results are shown
planar closed chain, about which much is known (see [29)) kg 3. In the 12 o'clock position, points, circles, and figure
including globall structural properties of its C-space, denotgthhis are drawn to represent the global structure@ 6f) in

by C;(p) = ;" (p). When the junctiond of a star-shaped e seven regions of;. Specifically, whend is fixed to a
manipulator is fixed at poinp, its C-space will be denoted yint;, on the outer-most critical circl€; (p) is a single point.

by Q(p). Since collisions are ignored, the motions of thg qugorp fixed to any point in the largest open annular region,
are independent, and therefore the C-space of the manipulgfogyace is a single circle. Continuing inward, the possible C-

(with fixed junction) is the product of the C-spaces of the legg,,ce types are a figure eight (on the second largest critical
with all endpoints fixed ap: circle), two disconnected circles, a figure eight again, a single

Jj=1

Clp) = Cip) x---x ék(p) circle, and a single point (on the inner-most critical circle).
. . [29] summarizes several important properties abOup)
= fitlp) x--x fi (p) @) with an arbitrary number of links. Those that will be par-
= fp) ticularly useful in the analysis of star-shaped manipulators

, ) . follow. First, the connectivity ot (p) is uniquely determined
where by analogyf is a total kinematic map of the star-shapegy the number of “long links.” Consider the augmented link

manipulator. Loosely speaking, the union of the C-spae$ oo composed of the links @#; ando;p, which will be called

at each pointp in Wy gives the C-space of a star-shapefq fixeqd pase link with length denoted byy. Let L; be the

manipulator: sum of all the link lengths including the fixed base lirile

c= U co () L; =X7,1;,). Further, let; (p) be a subset of0, 1, ..., }
pEWA such thatl o + 15 > L;/2; o, € L;(p), o # . Over all
Several properties of the C-spaa@sand @j (p) are highly such sets, le; (p_) be a set of maX|maI cardinality. Then the
relevant and so are reviewed here before analyzing the @imber of long links ofM;(p) is defined ag.j(p)|, where
space of star-shaped manipulators. It is well known that the| denotes set cardinality.
C-space of\/; is a product of circlesif.,C; = (S')™) *. The | emma 1: Kapovich and Milson [25], Trinkle and Mil-
workspacelV; contains a critical seE; which is composed gram [29]
of all pointsp in W; for which the Jacotii?n of the kinematic The C—spacéj (p) = f]ﬂ(p) has two components if and only
mapDf;(®;) drops rank for somé; € f;~"(p). These points it | £+ (;,)| = 3,"and is connected if and only £ (p)| = 2 or
form concentric circles of radji;j71ilj72_ﬂ_L- i, B asshown  No other cardinality is possible.
in Fig 3. WhenA coincides with a point ir2;, the links can ] . ] .
be arranged such that they are all colinear, in which case thé-€t Us return to the discussion of Fig. 3. Viewiriy; as
number of instantaneous degrees of freedom of the endpdinp@se manifold and the C-space corresponding to each end
of the leg is reduced from two to one. point location as a fibre, it is apparent that the critical set
Now consider the case where the endpoint of jeg fixed > PartitionsIV; into regions over which the C-spacés(p)
to the pointp. In other words, we are interested in the C-spatf@rm a trivial fibration. The implications of this observation
Cj(p) of M;(p), which amounts to calculating the inversé'® useful in deter_mining thg C-space of more complicated
kinematics (IK) fj_l(p)- The structure off;(p) has been mechqnlsms. Con5|deramod|f|ca_1t|on2\tg(p) that allows the
established in [14] for four-link single-loop closed chains, arf@NdpPoint to move along a one-dimensional curve segment
in [29], [28] for chains with an arbitrary number of links. ~ Within W;. Then as long as is entirely contained in one of the
Next, we computef.!(p) for a three-link serial chain to "€gions defined by the critical circle$;(y) = C;(p) <1, where
explain the basic ideaj used in [29], [28] for analyzing the 1 is the interval. Ify crosses a critical circle transversally, then
Ci(v) = (Cj(pr) x DHUC;(p3) U(C;(p2) x I), wherep; is a
Recall the assumption of no joint limits. point in one of the two open annular regions containing-



is a point in the other, angs is a point on the critical circle
crossed byy, and|J denotes the standard “gluing” operation.
In Fig. 3, an exampley and the corresponding C-spaéf:(y)
are shown.

IV. ANALYSIS OF STAR-SHAPED MANIPULATORS

For star-shaped manipulators with one or two legs, the
global topological properties of the C-spa€eare fully un-
derstood (for one, see [27]; for two, see [29], [28]). The
goals of this section are to study the global properties of
C when M has more than two legs and to derive necessary
and sufficient conditions for solution existence to the motion
planning problem.
1) Local Analysis:As a direct generalization of the critical
set of a single leg, we define the critical set of a star-shapgd. 5. Workspace (shaded gray) of a star-shaped manipulator with three legs.
manipulator as a subs&t of W, such that for every € ¥, The critical set partitiond}4 into 12 two-dimensional, 32 one-dimensional,
. . . and 21 zero-dimensional chambers.
there exists a configuration such that at least one of the
Jacobiang D fi(c),- -+, D fr(c)} drops rank. By definition we

have: Euclidean rotatiom, —o; = R(p1 —o;), indicating that; (p;)
k and C;(p2) are homotopic. Thug;(p) for all p € 'U; have

Y= (U Zi) ﬂ Wy. (4)  equivalent topological structure. For the other léds [ # 3,

i=1 according to [28] (Lemma&.1 and Corollarys.5) C;(p) for all

An advantage of this definition is thatcan be used to stratify p € 'U; have equivalent topological structures'8s is free of
W4 such that each stratum is trivially fibred. Figure 4 showgitical points of M;(p). Thus f~!(p) = C1(p) x --- x Ci(p)
a star-shaped manipulator with two legs. The critical Set for all p € 'U; have equivalent topological structures. The
is the boundary of the lune formed by the intersection of t@se wheni = 2 can be proved by applying Lemngal and
outer critical circles of their individual workspaces. For evergorollary 6.5 of [28] to all legs. n

point interior to the lune, the fibre is two circles (the direct Proposition 1 and the fact thd; is a simply connected set,

product of two points with one circle). The fibres associatq%vem that each component $f ' (U;) is a direct product of
to the vertices of the lune are single points, which correspogqe component of

) . of;(p), j=1,---,k, with a d-dimensional

to sllmultaneous full extgnsmn of the two legs. disk. Using|£:(p)],j = 1,--- , k and Lemma 1, one can show

_F|g. 5 sh_ows a possible Work_s_pace for a _star-shap_ed_ at the number of components ¢gf!(%;) is 2%, where
nlpulc?tor with th_ree Ie_gs. T_he critical sgt _defmes 6_5 d|_st|n%t0 < k is the number of legs for whichC (p)| = 3.
sets “U; of varying dimensiond, where i is an arbitrarily ) 7
assigned index that simply counts components. We will refer2) Local Path Existence:Before considering the global
to these sets ashambersThere are 12 two-dimensional, 32Path existence problem, consider motion planning between two
one-dimensional, and 21 zero-dimensional chambers, each/@fd configurationsci,i; and cgonr for which the junctionA
which is trivially fibred. Removing th&U; from % partitions !lesd in the same chamber. Since the fibre over every point
it into open one-dimensional chambefg;, i = 1,--- ,lm. N U, is equivalent, path existence amounts to checking the

Removing®U; and'U; from W, yields open two-dimensional COMPonent memberships of the configurations, and cgoal-
sets?;, i = 1,--- ,2m, for which the following relationships 0" @ single legV/;(p), if the number of long links 5 (p))|
hold: is not three, then any two configurations &f; (p) are in the
same component. WhejL?(p)| = 3, choose any two long
1 links and test the sign of the angle between them (with full
X = Z_iloUi U H Ui ) extension taken as zero). There are two possible signs, one
h corresponding t@/bow-upand the other tel/bow-down If for
two distinct configurations al/;, A lies in the same chamber,
Wi—% = U,. (6) there is a continuous motion between them while keeping
in this chamber, if and only if the elbow sign is the same
at both configurations (naturally, one must perform the sign
Proposition. 1: For all d = 0,1,2 andi, f~'(;) = test with the same two links and in the same order for both
U; x f~1(p), wherep is any point in?J; and the operatox  configurations). Considering all the legs together, a continuous
denotes the direct product. Gluing tife’* (U;) for all i and motion of A in 4U; exists if and only if a motion exists for
d gives the total C-spacé. each leg individually. The previous discussion serves to prove
tthe following result.

07", lm

31\:

I
—

%

Proof: Whend = 0, “U; contains a single point, the resul
follows. Whend = 1, 1U; belongs to one critical circle of  Proposition. 2: Restricted tof ~* (%), two configurations
one leg, sayV/,. Any two pointsp;, p» € 'U; are related by a ¢;,c2 € f~1(U;) are path connected if and only if for each



leg M; with |£%| = 3 in U;, the elbow angle ofi/; has the
same sign at; andcs.

Proposition 2 completely solves the path existence problem M, f(y)
if W4 consists of a single chamber. However, things become
complex wheni¥4 has more than one chamber.
3) Singular Set and Global C-space AnalysRecall that
the C-spaceC is a union of f~Y(;), d € {0,1,2}, i =
1,---,%m and thatf~1(p), p € W, for d # 2 and alli is a
set containing at least a singularity 6f Combining the local
C-space and singular set analysis yields the global structure )
of C-space. M, £y

Proposition. 3: For all p € 3, f;l(p) is a singular set
containing isolated singularities. If a singularity separates its
neighborhood/ in fj_l(p), then it is these singularities which
glue the two separated componentgf}‘h‘(q) whereq € W4 —
¥, is a point sufficiently close t@.

Proof: First it is obvious thatf]fl(p) contains isolated

singularities for there are finite ways to colinearize all the Y
links of a close chain. Second, let Fig. 6. C-space of a star-shape manipulator with two legs. For simplicity,
only the portion off ~1(v) is shown, wherey is a continuous curve if 4

v:(—e,e) = Wy, v(0)=p that visits all chambers.

be a curve that is transverse 1o,. According to Corollary
6.6 of [28], the distance function(y(t)) = fot ||dt defines a a workspace for which there are two chamb&ig and2U;

Morse function onf;l(y) where leg 1 has three long links and another chantibgr
. where both legs have three long links. Among these chambers,
sofj:fi (v) =R 177, and U, belong toX;, and'U; belongs toX,. According

Note that0 is a singular value ofs o f; and the isolated to Theorem 1, the C-space is path connected. In this example,

singularities Offj_l(p) are also singularities of o f;. The the C is the product of the two structures shown.

result of Morse theory applying te o f; yields that(s o Corollary 1: Two configurations:; andc, of a star-shaped
)7H0) = fj_l(p) is given by attaching a handle t@& o manipulator are in the same component if and only if
fi) " teo) = f;l(q) for a sufficiently smallsg andg a point 1) f(c1) and f(cq) are in the same component Bf4;
sufficiently close top. The Proposition follows. | 2) For each legi with [£%| = 3 for all chambersU; in the
component ofi4 which containsf(c;) and f(cz), the

Next, we establish necessary and sufficient conditions for elbow sign is same at both and cs.

the connectivity ofC. Let J be the index set such that for all
j € J,|L;| = 3 for at least one chambét/;. We prove the  Remark 1: As a matter of factyX completely determines

following theorem. the connectivity of C-space. When computing a path between
_ 9 by g two given configurations, often motions of the junction to
Theorem 1: SupposeW = U;_, (U, Ui)- ThenC = points onX. are incorporated to allow adjustment of leg-angle
f~1(W,) is connected if and only if: signs. However, inevitable deviations of the junction fraim
1) Wy is connected; caused by numerical errors, make it impossible to adjust the
2) S, Wa#0forall jeJ. sign of legs while fixing its end point. For these reasons, points

. . ) ) L in 2D chambers are preferred for sign adjustment.
Proof: (i) “Necessity:” SinceC is a fibration of the base

manifold 14, it can have one component only wh&n, has
one component. Thus iteinof Theorem 1 is required. Second,
in order thatC be connected, for each ley; restricted to
Wy, the C—spacdfj(WA) = f;l(WA) must be connected.
By definition, for all j € J, there exists a chambé¥/; such
that|L%| = 3. The result of Proposition 3 means thg(W4)
is connected only itV 4 (X, # 0.

(ii) “Sufficiency:” Item 1 and 2 imply that; (W) are path
connected for allj. Moreover,C is a fibration oved’ 4. The
result follows. |

V. A POLYNOMIAL -TIME, EXACT, COMPLETE
ALGORITHM

Our algorithm consists of two main routindzathExists
and ConstructPath . PathExists  solves the path exis-
tence problem, i.e., determining if an initial and an goal config-
uration are path-connected, a@dnstructPath constructs
a path between them if there exists a path.

Notice that the C-space of a star-shaped manipulator could
be very complex. Even the simple planar five-link single-loop
closed chain, its C-space could be as complex as the connected

Fig. 6 illustrates the global connectivity for an examplley, sum of four torii [28]. So determining the path existence
corresponding to a star-shaped manipulator with two legs awithout using the C-space information is difficult. Our strategy



O(K2+kN) critical circles, any algorithm based on this approach will

—————————————————————————————— have worst-case complexity that is at least exponential in
N. The key contribution ofPathExists is a polynomial-

0(K?) time algorithm for checking the existence of an intersection

betweenW, and a critical circles - even though there is

an exponential number of these circles. Recall that if a

leg has three long links, then it is impossible to move the

no solution

o) leg so that the three long links change from an elbow-up
"""""""""""""""" configuration to an elbow-down configuration. The following
algorithm constructs a novel polynomial-complex method that
exists can determine if there is point i/4 in which the number of
No long links of a leg is noB (see Step 4 iPathExists ).
compute V(V)‘;‘li‘ll’t";‘elltl p; on boundary of | 0a+NK) ] 1. Constructi?4 ‘ We computelV 4 in three steps.
= BPgod | Step 1. Compute the boundary circles Bf;. In general,
W; is an annulus. The radius of its outer boundary circle
wolution IS Tmax = Y221 Lji» While that of its inner boundary circle,
exists 0k) Tmin, Can be determined by comparifg,y := max; /;; and

Tmax_lmax- lf lmax > Tmax_lmaxa thenrmin = 2lmax_'r‘maxa
else,rmin = 0;

Step 2: Decompose the whole plane into cells using all
boundary circles of all legs (e.g., the line sweeping algorithm
can do this), and construct the cell adjacency graph;

Step 3: Pick a point from the interior of each cell, compute
its distance from each base point, and compare the distance

is to solve the path existence based on the set of critical circyg'stih the_radu of the two boundary circles (Wi' The set of
. ..cells which can be reached by all legs constititg.

¥, in the workspace, and then construct the path combini . . . . .

- e complexity of this 2-D cell decomposition algorithm is

our knowledge of the workspace and the structure of the C- -, +EN)

space of single-loop closed chains. We emphasize here t zﬂf '

the problem is not just moving the junction point between a. Are pinix andpg.a1 In S@Me component dﬂ/A?‘ As an

initial and a goal position, but moving the manipulator alongnmediate consequence of the cell decomposition, this can

with all its legs from an initial configuration to a goal configbe answered directly by searching the cell graph.

uration. So, the workspace information will be insufficient fo 3. ComputeJ | This step is used to filter out easy solution
X

path construction. IrfConstructPath , we employ a move S
o e . istence checks, based on the cardinality and members of the
that changes the shape of a leg with its endpoint fixed in thia ; N ~
workspace. This move, called the sign-adjust move, uses €ISL; (Pinie) and L3 (pgoar). FOT €ach leg; (pinit), compute
' ' ' (see Section Ill) and find the three longest links of the

knowlledge of the C-space of a smgle_—loop closgd chain. Belosve\?t{l oron L5 }. Denote these links bipmic: A 1, A 2, A ).
we will show that the overall complexity ¢fathExists  and 7> Inj . D2 E T
ConstructPath  is O(k*N?), where N is the maximum Do the same for(pgo.) and def'ne(ggoal;)‘j’l’)‘j’Q’.)‘jvg)'
number of links in a leg and: is the number of legs. The This requiresO(N) work. Fmall;:, 1£5(p))] » 3 if and
polynomial complexity is key to the applications like foldingonly it Xj2 4+ Ajs > Lj/2. I L5 (pinie) = L](pgou) and
of macromolecules, which can can be modeled as a cloﬁé:d (Pinic)| = 3, and if the signs of the Iong_ Ilnks_ are different
chain with largek and N at cinit aNdcgoar, then addj into J. ComputingJ is O(kN).
The logical flow ofPathExists s illustrated in Figure 7. | 4. Does the set of long links vary for alle J?‘ If and only
Its input is the topology and link lengths of a star-shap&fi ¢ € W, exists such that./;;f(q) + ,C;f(pinit), then it is
manipulator and two valid configurations,,;; andcg..1- The possible to make the long links colinear and thus change the
output is the answer to the path existence question. signs of their relative angles. This can be done by computing
The approach taken is to comput€, and then, for each a pointq € W, on the boundary of the cell that contains
leg with its end point constrained to lie IV 4, to determine if p,.,; and keeps the same sé;(p) for all p in this cell. This
its initial and goal configurations are path connected. Notit®undary is characterized by, » + \; 3 = L, /2. Sincel;  is
that IW; is either a disk or an annular regioiily4 can be the only link whose length varies along with this boundary
constructed by calculating the intersections between no meoneist be one or two circles (called inner and outer circles,
than 2n circles. So constructingl’4 is polynomial-complex. respectively) whose radii, denotelg,,. andd,,;,, depend on
The most difficult issue is to check the path existence. the link lengths of the leg. Lekt; o = >_;7, [;; and suppose
Since the C-space of a leg is guaranteed to be connecteth# four longest links apgoar are (Aj1 > Aj2 > Aj3 > Aj4)
one of its critical circless; intersectsi4, the most straight with \; > + ;3 > L;/2, we deduce the radii of the boundary
forward way to test connectivity is to explicitly perform thecircles for four different cases:
intersections. However, since there are as many2’as' Case 1:ifl; o(pgoa) = Aj1, theNdmax = 2(A\j24+X;.3)—Lj.o,

Fig. 7. Logical flow and complexity of the major stepsRédthExists




anddy,in = max{L;o — 2X;3,2(A\j3 + Aja) — Ljo} sign-adjust moves are only performecyatardsg; (but notp;)
Case 2: iflj 0(Pgoal) = Aj 2, dmax = 2(A\j1 + Aj3) — Lo, for after that the thorax endpoint gets into the two-component

anddmin = max{L;o — 2X;3,2(Xj 3+ Aja) — Lo} cell and the sign between a pair of long links will not change

Case 3: iflj0(pgoal) = Aj.3, dmax = 2(\j;1 + \j2) — Ljo, during accordion moves, i.e., the leg will always remain in the

and dpin = max{L;o — 2\, 2,2(Aj2+ A1) — Lo} right component of its C-space. Assuming each arc in the path
Case 4: Otherwisel,ax = min{2(\j 2 + A;3) — Ljo, Lo — is approximated by a fixed number of line segments, finding

22}, anddpi, = 0. guards isO(k?).

If there is no overlap between the two boundary circles ang. Accordion moves and sign-adjust mo*/e'she path inC

the component ofV4 that containsp;,;; and pg..1, then no  then is produced by using accordion moves along the path and
path exists between),;; andcg..1. Otherwise, path exists andsign-adjust moves at thguards At eachguard one checks

we obtain way pointg; for all legs;j € J. Computingdm.x, the sign between a pair of long links of the corresponding

dmin, @nd the way pointg; is O(kN). leg. If it does not match the goal one, then the junction point

.. . . is fixed while a sign-adjust move is executed, otherwise, the
The basic idea oConstructPath is that when moving accordion move continues. Onek is coincident withpgai,

from cinit 10 Cgoal, those legsj € J may require a change .o o oo e by the previous steps, that witHixed at
in the signs of relative angles between long links, which IS

. . el . al, th nfiguration of h leg is in th m mponen
always possible at the way poipt or other critical points of Pgoal, the configuration of each leg is In the same component

. . of its current C-spac€’;(pgoa1) @S czoal. The final move can
the corresponding leg. A natural approach then is to use t\g/o . pace; (Pgoat) > Cgoal ; .
. . o, : . : € accomplished using a special accordion move algorithm
motion generation primitivesaccordion movend sign-adjust

: found in [29]. At this stage, we remark that finding the set of
move The former moves the thorax endpoint (a) along way pointsp; and planning an initial path visiting aj; is

a specified path segment with all legs moving compliantl ecessary for otherwise, an arbitrary path between and
so that all loop closures are maintained. The latter keeps the . ’h boundary of the two-component
endpoint fixed at a way point; € 3; (e.g.,q; = p; or other pg‘ﬁ‘l fmaBI/ nothlntersecF the y P
critical points) while moving leg into a singular configuration Ce_”? a eglt a’t[ COfn';f]llnpgom. di loorith ted
and then to a nearby configuration with the sign of the relati\llﬁ [29? ;roerr(l)p(zevﬂ)y ginc:tﬁgcsgtr:ohn ag(z\;? I%gosnegrrrr::nrtz pttr)]ree
angle between a pair of long links in this leg chosen to match . ’ . 33
those ofcyoy. complexny ofConsFructPat_h is O(k_ N3). Not_e that ac-

eoa . . . cordion move algorithms with the required behavior can be de-

Note that thoughy; are in the critical set;, the configu- signed to beD(N2), so the complexity o€onstructPath

ration at which legj approaches these points need not to bceould be reduced '
aligned. Without considering the control issue, a leg can beOveraII our pat.h planning algorithm @(k*N?)
moved to a colinear configuration with the thorax fixed. Even ' '
if control is considered for the sign-adjust move, the thorax

can still be maintained to be fixed by keeping all other legs VI. PATH OPTIMIZATION AND ROBUSTNESS

not aligned in the vicinity of;. If a path between two given configurations exists, it is
The input ofConstructPath is W, and its cell graph, opvious that in our algorithm the choice of way points,
Cinit, Cgoal, @Nd the set of way points; € Wa,j € J and thus the path between the two configurations, is not
computed during the execution BathExist . unique. So a natural problem is path optimization with respect
1. Construct an initial pathConstructPath explores the to meaningful metrics such as path length and singularity
cell graph of W4, and constructs a path W4 connecting avoidance. Basically we say that many possible optimization
Pinit 10 pgoar @nd visiting all of the way points. Since therepbjectives are potentially useful, but we consider the shortest
are at mosk way points, this can be done @\(k*) time (the path in this section. Notice that the way points are necessary
path hask + 1 segments each with(k?) arcs). for successively constructing a path fram;; t0 cgoa SiNce
2. Construciguardsand insert the guards into the p@mo— an arbitrary chosen path of the thorax fr@m; t0 pgoar (like
tice that when one accordion moves a leg in a cell in whidhe line connecting them) will either go out & 4, or have
the number of long links is nct (called one-component cell), no intersection with the critical sét;, in which a sign-adjust
neither the signs of concatenating angles, nor the sign betwa@aove is required for a leg. Thus the optimization problem
any pair of links in this leg will be kept invariant. Thus everarises in the choice of way points, the order of the way points,
if the desired sign between a pair of long links is adjusteahd the path between two consecutive way points.
at a way point, it still could change if the leg keeps moving One may also take into consideration parallel singulari-
in a one-component cell. For this reason, we geardsfor ties (cf. [31]) and try to avoid them as much as possible
legs which have three long links af..;. These are the set ofby minimizing the number of singularity crossings. More
pointsg;, each of which is the last intersection point betweeprecisely this may be done for example by first clustering
the above constructed pathliiy and the boundary of the two- singularity regions (see [32]) and then choosing the way
component cell of leg containingpg.a;. Thus the number of points for the corresponding path so that it has the minimal
guards ¢;'s) may be more than the number of way pointeumber of crossings with these regions. Moreover, the paths
since the number of legs that have three long link®af  or trajectories (i.e. a path with temporal relations as well as the
may be more than the cardinality of Next theguardsare geometrical ones) between the way points should be chosen
inserted into the path. Later when we construct the path, inin the proper way (cf. [33]).
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Fig. 23. Motion of leg3: step 1.

Since( is a fibration overl/ 4, a meaningful metric fo€
is
ds® = a1dp”dp + as Z dujTVjTdeuj, ai,az >0, (7)

j=1*

where a; and a, are two weights assigned tép” dp and

> ;—1x duj VI'V;du,, respectively for they are quantities with
different physical meaning. The column vectors Bf <
R™*("i=2) forms a basis for the null space of the Jacobian

OFf: I
Jj = acf); of leg j, i.e.,

J;V; = 0.

du; denotes the incremental changes of the local coordinates
on C;(p). dp and V;du; stands for the infinitesimal motion
along the base manifold and the fibre, respectively. The
shortest path problem is to find a pagt), ©1(t), - - , Ok (t))

such that
1
/ ds (8)
t=0

is minimal. The optimal solution to (8) satisfies the geodesic
equation

By, + 050, = 0 )

wherev = [p”, u{,--- ,u{]", andT'}; denotes the Christoffel
symbol of the metric (7). Solving (9) exactly is difficult.
However, an approximation solution can be derived. Since
a path fromeinit 10 ce0a1 iS globally optimal if and only if
this path is also locally optimal, we construct an approximate
shortest path in a way so that (j)(t) connectsp;,;; and
Peoal @Nd Vvisits allp;. Moreover, ftlzo v/ dpTdp is minimal;

(i) There is minimal number of accordion moves, and each
accordion move is minimal; (iii) Except for the accordion
moves, there is no other motions along the fibre.

Remark 2: The path constructed in this way is shortest
if no accordion moves are needed for we always achieve
minimal ds = \/a1dpTdp infinitesimally, while it is only an
approximation if there is at least one accordion move.
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Fig. 26. Motion of leg3: step 4.
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Fig. 27. Motion of leg3: step 5.

(i) is generally a nonconvex and nonlinear optimization
problem, sincel4 could be nonconvex, and the objective
function (the distance function) as well as the constraints atich is only 1-D, a small perturbation of the junction point
nonlinear. Mathematically, this problem can be described a§ Wa (€.9., due to numerical errors) will violate the condition

min f, ||dp]
p(t) € Wy,Vt € [0, 1]
pi € As(i

p € ¥;. Whenp moves into a two-component cell, then the
sign-adjust move may fail. A remedy to this is to modify the
path of the thorax in the neighborhood @f € ¥; so that a
point ¢; in the interior of a one-component cell is reached.
After the sign of legj is adjusted to the desired one with

where A;,j € J is the boundary arcs of the two-componen@xmg atq;, we apply a constrained accordion move algorithm

cell of leg j that containgpgea. 6(J) is a permutation off

to ensure that the leg stays in the right component 6 (p)

with §(J) = J. Solving this problem exactly is extremelijSt before its thorax endpoint enters the two-component cell

hard, but a random search method (for example, the Control@1&iNINGPgoa1. This resulting algorithm will also be robust

Random Search Method [34]) can be used to quickly firj@ other errors such as the control and sensor errors if they
a good approximate solution. Using the minimal number Gf€ taken into account.

accordion moves has been solveddonstructPath

the minimal accordion move problem has been solved in [29]. VII. EXAMPLES
Combining these two, (ii) is solved.

To solve (iii), we notice that for a local motiafp = [dx, dy]
of the thorax endpoint/©7 dO; is minimized if and only if.

d(")j = Jj_dp

where JF=JT (J;J7) .
Another important issue about our planning algorithm is In the first example, two of the three legs of the manipulator
robustness. The sign-adjust move of jegerformed at a guard have three long links whed is fixed atpgo.1. Figure 8 shows

¢; is only feasible wherC;(g;) is connected. Since; € X;

In this section, we demonstrate the correctness and com-
plexity of our algorithm through two examples: a manipulator
with three five-link legs (see Extension 1 for the video), and
a manipulator with three five-link legs (see Extension 2 for
the video). Movies of the motion plans are very helpful in
understanding the figures.

the manipulator in its starting and goal configurations. Our
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algorithm predicts/ = (). Then the algorithm constructs a path

in W4 from piyit t0 peoar, drawn as the dark solid lines in Fig.
30. This path intersects the boundary of the two-component
annular region of leg that containg,,. several times, among
which ¢;, j = 1,2 are the last ones. These two points are
the guards (drawn as diamonds) where sign-adjust moves are
performed.

At g;, 7 = 1,2, we check the sign of a pair of long links
of leg j and see if it matches its sign at the goal. If not, we
fix the other two legs and adjust the sign of the chosen long
links in leg j. In this particular example, we chose the two
longest links as the pair of long links,and we find thatat
the sign of legl does not match that at the goal (while at
¢2, leg 2 has the same sign as the goal). Before leavjpg
via the next accordion move, the pair of long links of leg
4 was moved to the elbow-opposite configuration (recall that
there are two configurations for these two links, one is “elbow
up”, the other is “elbow down”), which has exactly the same
sign as the goal configuration. The Trinkle-Milgram algorithm
[29] is used to plan such a motion between the two elbow-
opposite configurations. Figures 9 - 29 show the progress of
the manipulation plan as the steps of the complete planning
algorithm are carried out.

A bit more complex example in which the star-shaped
manipulator has three five-link legs is shown in Extension
1. The computation time for path existence for star-shaped
manipulators with less than 10 legs, and legs of less than 10
links is typically from less than 1 second to a few seconds
when run in a Matlab, P4, WindowsXP system.

VIII. DISCUSSION

Star-shaped manipulators are closed chain manipulators
subject to multiple loop closure constraints. The C-space of
these manipulators is often a lower-dimensional submanifold
with high genus’ embedded in the ambient space. Computing
the silhouette of this manifold requires solving the extreme
points of the manifold either in the ambient space whose
dimension is much higher than that of the manifold itself,
or in a set of local neighborhoods (local coordinate charts)
whose number grows exponentially along with the genus of
the submanifold. Although Canny’s algorithm is very efficient
in general, there is difficulty in implementation for star-shaped
manipulators. Second, the classical cylindrical decomposition
of C-space (e.g. collin’s decomposition) is a partition into
simple connected subsets of C-space called cells. However,
this algorithm requires a description of the C-space in terms
of a set of polynomials over its ambient space. Again because
the dimension of the ambient space could be very high, the
computation time of this algorithm could become formidable.

Our algorithm employs the special structural properties
(fibration over the workspace) of the C-space of star-shaped
manipulators. It avoids using the coordinates of the ambient
space as well as the local coordinate charts that covers the
C-space. In our algorithm the path existence and path con-
struction are solved in polynomial time by combining the cell

2The genus of a surface is defined as the largest number of nonintersecting
simple closed curves that can be drawn on the surface without separating it.



decomposition of the workspace (which is two dimensionajo]
and with simple shape) and the structure of the C-space of
single-loop closed chains. The critical s8f, which marks [10]
the change of the topology of the C-space of each leg, plays
a key role in this algorithm. (11]
[12]
IX. CONCLUSION

In this paper, we studied the global structural properties pf]
planar star-shaped manipulators. Via the analysis of the critical

set X, we derived the global connectivity of the C-space,
and necessary and sufficient conditions for path existengey
Based on these results, we devised a complete polynomial
algorithm for motion planning. Simulation examples were us&-fgs]
to illustrate the key ideas behind the motion planning problem
of planar star-shaped manipulators. [16]

APPENDIX: INDEX TO MULTIMEDIA EXTENSIONS 7]
The multimedia extension page is found at http://www.

ijrr.org.

(18]
Table of Multimedia Extensions
Extension Type  Description [19]
1 Video A path planning simulation for three
legged star-shaped manipulators
having five links in each leg. [20]
2 Video A path planning simulation for three
legged star-shaped manipulators
; . . [21]
having three links in each leg.
[22]
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