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Abstract— We introduce a general methodology for the analysis
and design of systems with multiple frictional contacts, with
a specific focus on applications to part feeding and assembly
processes. We derive computational support tools, especially
dynamic models that underlie these models. We describe two
dynamic models, the Stewart-Trinkle model [1] and an extension
of the Song-Pang-Kumar model [2]. These models automate the
process of identifying sufficing parameters and allow the designer
to experiment with different configurations at the detailed design
stage. Because the design process will be guided by analytical
models, experimental observations can be easily integrated to
refine these models allowing an efficient approach to redesign.

I. I NTRODUCTION

There are many manufacturing processes in which nomi-
nally rigid bodies undergo frictional contacts, possibly involv-
ing impacts. Examples of such processes include part-feeding,
assembly, fixturing, material handling, and disassembly. In
order to understand the complexity of such processes it is
useful to consider the part orienting device shown in Figure 1.
A cup-shaped part enters chute “A” in one of two nominal
orientations, which we will call “open end up” (on the left)
and “open end down” (on the right). The objective of this
mechanism is to cause the part to exit chute “C” in the
“open end up” configuration regardless of the orientation when
entering chute “A”. The part is subject to multiple frictional
contacts with the walls of the chutes and the pin “B”. It
undergoes frictional impacts before either going down the
chute or gets stuck inside the device. There are many factors
that affect this feeding process, including the geometry and
physical properties of the device and part and the part’s
initial condition. Typically, the preliminary design of such
systems is based on strong intuition, and the detailed design
is refined empirically via prototyping. If the prototype does
not function properly, as is usually the case in the first several
trials, there is no systematic approach to redesign, because the
design constraints of such systems are dominated by unilateral
constraints and constant transitions between contact states.

The dynamics of part feeding and assembly processes are
notoriously difficult to predict because the dynamic models for
systems with unilateral constraints are vastly inadequate, and
in some cases, do not exist. This is true even for the case of
deterministic models. In the past, geometric and quasi-static
approaches have been adopted to planning manipulation [3],
[4], [5], [6], assembly [7], [8], part feeding [9], fixturing [10],

[11], and grasping tasks [12]. Only now are some of the funda-
mental underpinnings of systems with multiple frictional con-
tacts and impacts being explored rigorously [13], [14], [15].
However, there is no systematic approach to planning/design
in problems with dynamics [16].

�

Fig. 1. The exit orientation of the cup-shaped part must be with the open
end up, regardless of the entering orientation [17].

In this paper, we introduce a framework for design of part
feeding and automated assembly processes. We also derive
dynamic models and the optimization with parameters that
underlie these models. We describe two dynamic models: the
Stewart-Trinkle model [1], a linear complementary problem
model that handles contact transitions and with an implicit
assumption that impacts are inelastic; and an extension of
the Song-Pang-Kumar model [2], a more general, nonlinear
complementary model capable of approximating a wide variety
of types of contact conditions including elastic or viscoelastic
impacts. Numerical studies on both models are reported in
Section IV. In Section V, we apply the Stewart-Trinkle model
to the design of a part feeding mechanism described in
Figure 1.

II. D ESIGN FRAMEWORK

The automatic assembly and part feeding systems can be
modeled as switched systems, a special class of hybrid systems
in which the state space can be partitioned intonQ ∈ Q
non-overlapping regions, each corresponding to a mode of
operation characterized by continuous dynamics. The system
state in the figure is characterized by acontinuous state
X ∈ <n and a collection ofdiscrete modesor discrete states.
Each mode consists of a set ofordinary differential equations
(ODEs) ordifferential algebraic equations(DAEs) that govern
the evolution of the continuous stateX and a set ofinvariants
that describe the conditions under which the ODEs or DAEs



are valid. The continuous and discrete states are defined as
(X, Q) ∈ X × Q whereX ⊂ <n andQ is the set of natural
numbers, withQ ∈ Q denoting theQth mode.P ∈ P ⊂ <k is
a set of time invariant parameters which appear in the model.
These include the geometric parameters, the initial conditions,
and the parameters related to the material properties, such as
friction, restitution, stiffness, and damping. Exogenous inputs,
disturbances and noise are not considered in this paper.

The differential equations in modeQ are given by:

Ẋ = F
Q
(X, P ) (1)

Each modeQ corresponds to a particular assignment of contact
conditions (rolling, sliding, or no contact) to each frictional
contact. Thus, for a system withnc potential contacts, there
are 3nc possible discrete modes, each characterized by a set
of conditions in state space. Figure 2 shows the schematic of
a switched system with 6 modes.F represents thedynamic
modelthat governs the continuous statesX within each mode.
The dynamic model may be difficult to obtain in practice.
Further,F may not have a unique solution. Under such a
circumstance, the representation of states partitions shown in
Figure 2 may not be valid or may lead to multivalued solutions.
In the next section, we will describe two discrete-time dynamic
models. The method we use to develop these models is
influenced by the extensive recent work oncomplementarity
problemsandtime-stepping modelsfor dynamic simulation of
rigid-body systems [14], [18], [19].

III. D YNAMIC MODELS

The dynamic equation of motion for a multibody system
with contact interactions can be written in the form

M(q)ν̇ = u(t, q, ν) + Wn(q)λn + Wt(q)λt + Wo(q)λo, (2)

whereq is the nq-dimensional vector of generalized coordi-
nates,ν is thenν-dimensional vector of the system velocities.
M(q) is thenν×nν symmetric positive definite inertia matrix,
u(t, q, ν) is thenν-dimensional external force vector (exclud-
ing contact forces). For a system withnc contacts,λn,t,o are
thenc-dimensional concatenations of the contact forces in the
normal direction (labelled n) and the two tangential directions
(labelled t and o), andWn,t,o(q) are thenν × nc Jacobian
matrices. The kinematics equations relate the system velocity
ν to the time-derivative of the system configurationq̇ ≡ dq/dt
via a nq × nν parametrization matrixG(q) :

q̇ = G(q)ν. (3)

To complete the formulation of the model, we need to
include the contact conditions. In the normal direction, the
contact condition of the system is governed by

0 ≤ λin ⊥ φin ≥ 0, i = 1 . . . nc, (4)

where ⊥ denotes perpendicularity andφin is the normal
separation between contacting objects at theith contact.

In the tangential direction, the contact conditions are for-
mulated by requiring that friction forces maximize the energy
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(a) Contact state representation for
a system with three contacts (r–
rolling; s–sliding; nc–no contact).
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(b) The switched dynamical system
representation corresponding to the
contact states representation above.

Fig. 2. The dynamic equations of motion change as the contact state changes
making the resulting time history non smooth.

dissipation rate over the sets of admissible contact forces com-
puted based on the friction model. For Coulomb’s quadratic
cone, the maximum dissipation principle for at theith (i =
1 . . . nc) contact can be written as

(λit, λio)=argmin {(sitλit+sioλio : (λit, λio)∈FC(µiλin)}
where FC(µiλin)≡

{
(λit, λio) :

√
λ2

it+λ2
io≤µiλin

}
, (5)

and si represent the slip velocities at theith contact. The
Coulomb’s cone is not differentiable at the origin where
λin = 0 or µi = 0. We introduce the following smooth cone
to resolve this problem:

FCγ(µiλin)≡
{

(λit, λio) :
√

λ2
it+λ2

io+γ2 ≤ µiλin+γ

}
(6)

whereγ ≥ 0 is a small scalar. Whenγ = 0, the smooth cone
(6) converges to the Coulomb’s quadratic cone (5) with the
assumption that0/0 ≡ 0. Note that the smooth cone preserves
all the properties of the Coulomb’s quadratic cone.

However, even for the smooth cone, there is no suitable
constraint qualificationfor the KKT conditions when the
contact is inactive (λin = 0) or when the contact is frictionless
(µi = 0). To obtain the optimality conditions, we resort to the
Fritz John conditions1.

0 ≤ βi ⊥ µiλin + γ −
√

λ2
it + λ2

io + γ2 ≥ 0

βi0sit +
βiλit√

λ2
it + λ2

io + γ2
= 0

βi0sio +
βiλio√

λ2
it + λ2

io + γ2
= 0 (7)

βi0 ≥ 0 , (βi0 βi) 6= 0

If βi0 6= 0, the KKT conditions hold (with the Lagrange
multipliers being defined aŝβi ≡ βi/βi0). In a contact
problem, we can useµiλin as a natural choice forβi0 instead
of solving for the extra multiplier. Whenµiλin = 0, the
Fritz John conditions can be trivially satisfied with a nonzero
βi. These conditions will be used in the next subsection to
extend the traditional complementarity conditions to include
both active and inactive contact constraints.

1See [20] (Chapters 4 and 5) for details on KKT conditions, Fritz John
conditions, and constraint qualifications.



The Coulomb’s quadratic cone can be linearized using the
following polyhedra approximation, at anyi = 1 . . . nc:

F̂C(µiλin) ≡ {Diλif : ‖λif‖1 ≤ µiλin, λif < 0} (8)

where Di is a 2 × nl matrix whose columns are coplanar
vectorsdi,j , j = 1, . . . nl in the plane tangent to the contact
normal (the t-o plane) andnl is the number of edges of the
polyhedra. Thejth component ofλif represents the magnitude
of tangential force along thedi,j direction. The polyhedra
approximation leads to a linearly constrained problem, thus
automatically satisfies the Abadie constraint qualification for
the KKT conditions [20]. The following complementarity
conditions can be derived from the the maximum dissipation
principle problem as :

0 ≤ βiei + DT
i si ⊥ λif ≥ 0

0 ≤ µiλin − eT
i λif ⊥ βi ≥ 0 , (9)

whereei is a nl-vector of ones.
Together, (2), (3), (4), and (7) or (9) constitute the equations

of motion which have four components: the dynamics of the
mechanical system, the kinematic map, the normal contact
conditions, and the friction law.

We consider a time discretization of the differential equa-
tions (2) and (3) fort ∈ (0, T ]. Fix a positive integerN and
let h ≡ T/N . Partition the interval[0, T ] into N subintervals
[t`, t`+1], wheret` ≡ `h, for ` = 0, 1, . . . , N . Write

q` ≡ q(t`), ν` ≡ ν(t`), and λ`
n,t,o ≡ λn,t,o(t`).

The time derivativesν̇ and q̇ are replaced by the backward
Euler approximations: for all̀ = 0, . . . , N − 1,

ν̇(t`+1) ≈ ν`+1 − ν`

h
and q̇(t`+1) ≈ q`+1 − q`

h
.

The various time-stepping schemes differ in howM(q) and
the right-hand sides in (2) and (3) are approximated.

In the fully implicit scheme, all functions are evaluated at
time `+1. Because the variables such as the inertia matrix and
the Jacobians are functions ofq`+1, solving for the unknowns
q`+1 and λ`+1 involves the solution of nonlinear equations.
In contrast, asemi-implicit scheme may lead to a linear
formulation in terms ofq`+1, ν`+1, andλ`+1 at the`th time
step.

A. A semi-implicit method for rigid contacts with inelastic
collisions

Stewart and Trinkle [1] developed a semi-implicit time-
stepping model that was originally formulated as a mixed
LCP in terms of the unknown state(ν`+1, q`+1), normal and
frictional impulses(p`+1

n , p`+1
f ) (defined as:p`+1

n = hλ`+1
n ,

p`+1
f = hλ`+1

f ), and slack variableβ`+1 approximating the
magnitude of the sliding velocity at the contact. However,
the state variables can be eliminated by using the equations
of motion, thus allowing reformulation of the time-stepping
method as a standard LCP(B, b) written as follows:

w`+1 = B`z`+1 + b` (10)

0 ≤ w`+1 ⊥ z`+1 ≥ 0 (11)

with B`, b`, andz`+1 given as follows:

B` =




WT
n M−1Wn WT

n M−1Wf 0
WT

f M−1Wn WT
f M−1Wf E

U −ET 0


 (12)

b` =




WT
n (ν+M−1uh)+φn(q`)/h

WT
f (ν+M−1uh)

0


, z`+1 =




p`+1
n

p`+1
f

β`+1


 (13)

whereE is a block diagonal matrix, with each diagonal block
equal to a column vector lengthnl with all elements equal
to one.U has the same structure asE with all elements of
the diagonal block equal toµi, the coefficient of friction at
contact pointi. Note that this LCP is only linear because all
quantities inB andb are computed at timet`.

Several points are worth noting. First, the termφn(q`)/h
provides constraint stabilization withφn(q`) being the vector
of the normal separations between each pair of bodies in or
about to be in contact. When it is negative (implying inter-
penetration of bodies), it acts to generate a bias impulse that
increases the normal component of the relative velocity at a
contact be large enough to eliminate the penetration at the end
of the next time step. Second, there is no restitution law built
into this formulation. To include realistic bouncing effects,
one must stop the ST method at the time of each collision
and apply an impact model such as Newton’s, Poisson’s, or
Stronge’s hypothesis. The usual quadratic friction cone and
nonpenetration constraints have been linearized in order to
obtain a LCP. Fourth, the quantities (such asM andWn) not
superscripted with a time index are assumed to be functions of
the known state,(ν`, q`). Otherwise, as stated above, the LCP
would become a nonlinear complementarity problem (NCP).

B. A fully-implicit method with visco-elastic contacts

Song, Kumar, and Pang [2] developed a discrete-time com-
pliant contact model for rigid body simulation. The key idea
of this model is to allow local compliance at the contact
patch between nominally rigid bodies. Unlike some penalty
methods, the compliant model relies on both normal and
tangential compliances to model contact forces and can resolve
the inconsistencies with uniqueness and existence. In this
subsection, we extend the model using a fully implicit time-
stepping scheme. The extended model will lead to unified
framework for simulation of systems with sustained contacts
as well as impacts. We will use a lumped viscoelastic model
for contact forces, which is a special case of the distributed
compliant model described in [2]. For the lumped model, at
eachpotential contact pointi (i = 1, . . . , nc), we have the
following decoupled relations between the contact forceλ
and the local deformationδ, in the n, t, and o directions
respectively:

λi n,t,o = Ki n,t,o δi n,t,o + Ci n,t,o δ̇i n,t,o. (14)

In the compliant model, the normal separationφin and the
tangential slip velocitiessit,o are affected by both the rigid



body gross motion and the local deformations:

φin(q) ≡ δin + Ψin(q), (15)

sit,o ≡ δ̇it,o + WT
it,o(q)ν, (16)

whereΨin denotes separation caused by the rigid gross motion
and Wit,o the ith columns ofWt or Wo. Note that for rigid
body models,φin ≡ Ψin since δin ≡ 0 at a perfectly rigid
contact. Writing

δ`
i n,t,o ≡ δi n,t,o(t`), ` = 0, 1, . . . , N,

together with the fully implicit discretization of system dynam-
ics equations (2,3) and the contact constraints (4, 7, 14-16) for
all i = 1 . . . nc, we have the following discrete-time, mixed
nonlinear complementarity problem formulation for dynamics
of systems with unilateral constraints:

ν`+1 = ν` + hM(q`+1)−1u`+1 + hM(q`+1)−1 ·[
Wn(q`+1)λ`+1

n + Wt(q`+1)λ`+1
t + Wo(q`+1)λ`+1

o

]

q`+1 = q` + hG(q`+1)ν`+1

0 ≤ λ`+1
in ⊥ φin(q`+1) ≥ 0

φin(q`+1) = δ`+1
in + Ψin(q`+1)

0 ≤ β`+1
i ⊥ µλ`+1

in +γ−
√(

λ`+1
it

)2
+

(
λ`+1

io

)2
+γ2 ≥ 0

µλ`+1
in s`+1

it,o = − β`+1
i λ`+1

it,o√(
λ`+1

it

)2
+

(
λ`+1

io

)2
+ γ2

(17)

s`+1
it,o =

δ`+1
it,o − δ`

it,o

h
+ WT

it,o(q
`+1)ν`+1

λ`+1
i n,t,o =

(
Ki n,t,o +

1
h

Ci n,t,o

)
δ`+1
i n,t,o −

1
h

Ci n,t,oδ
`
i n,t,o

As an example, we apply the NCP model (17) to the
simulation of a rough spherical body bouncing and rolling
on the ground. Depending on the material properties of the
contacting rigid bodies, the ball can undergo one or more
frictional impacts and end up in a condition in which it
maintains contact with the ground. The model (17) is a unified
approach to incorporating all these conditions. The generalized
coordinates and the system velocities are given by

q = ( x y z e0 ex ey ez )T

ν = ( νx νy νz ωx ωy ωz )T

where(x, y, z) are the Cartesian coordinates of the center of
mass,(e0, ex, ey, ez) are the Euler parameters,(νx, νy, νz) are
the linear velocities along the Cartesian axes, and(ωx, ωy, ωz)
are the angular velocities.

The initial conditions of the object are given by

q0 = ( 0 0 0.2 1 0 0 0 )T

ν0 = ( 0.5 0 0 20 0 0 )T
.

The effective coefficient of restitution for impact for this
example is approximately 0.8. An empirical expression of the
coefficient of restitution for impacts with the compliant contact

model can be found in [21]. The NCP is solved by using the
AMPL/PATH solver [22] on the NEOS server for optimization
at the Argonne National Laboratory. The snapshots of the
simulation results and the top view of the motion history at
the center of mass are plotted in Figure 3.
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Fig. 3. The trajectory of a rough spherical body with frictional impacts. The
object is launched with an initial velocity of 0.5m/s in the x-direction at a
height of 0.2m above the horizontal plane and a spin velocity of 20rad/sec
around the x-axis. The mass of the ball ism = 0.2kg and the radius is
r = 0.05m. Other parameters in model (17) includeh = 2 × 10−4sec,
N = 5000, γ = 10−8, K = 5× 104N/m, andC = 2

√
Ksec·N/m.

IV. FRICTIONAL IMPACTS

In this section we use the simple example of a rectangular,
planar object impacting a horizontal plane to illustrate the
modeling of frictional impacts. In this example, there are four
potential contacts between the block and the horizontal plane.
The maximum number of contact state transitions are34, most
of which are geometrically infeasible.

The generalized coordinates of the peg are given by

q = ( x y θ )T and ν = ( ẋ ẏ θ̇ )T
,

where (x, y) are the coordinates of the center of mass, and
θ is the orientation of the peg. Other than the contact forces,
gravity is the only external force acting on the peg.

M(q) =




m 0 0
0 m 0
0 0 J


 , G(q) = I3×3

Win(q) =




0
1

xvi(q)− q(1)


 , Wit(q) =




1
0

q(2)− yvi




where (xvi, yvi) are the coordinates of theith vertex, i =
1 . . . 4. The initial conditions of the peg are set as:

q0 = ( 0 0.2 π/4 )T and ν0 = ( 0 0 0 )T
.

We are able to observe both the elastic impact and inelastic
impact effect if we increase the damping ratio of the local
compliance at the contact. The snapshots of the simulation
results are shown in Figures 4 and 5.

V. DESIGN OF THE PART FEEDING MECHANISM

Figure 6 shows a reorienting mechanism with 12 design
variables. The variables are as follows:
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Fig. 4. Simulation of impacts between a rectangular peg and the horizontal
plane with three different friction coefficients:µ = 0 (left), µ = 0.2 (middle),
and µ = 1.0 (right). The peg is released from still at a distance of 0.2m
between the center of mass and the horizontal plane. The mass of the peg is
m = 0.2kg and the inertiaJ = 2 × 10−4kg · m2. Other parameters used
in this example are given ash = 2 × 10−4sec,N = 5000, γ = 10−8,
K = 5× 104N/m, andC = 2

√
Ksec·N/m.
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Fig. 5. Inelastic impacts can be predicted by model (17) if we increase the
damping ratio toC = 200 ∗√Ksec·N/m for the same three cases shown in
Figure 4

a width of input chute
b width of output chute
c depth of chamfer
d length of input chute
e horizontal location of left cavity wall
f position of center of tip of protuberance
g position of lower left corner of chute
r radius of protuberance
θ angle of input chute
α angle of chamfer

Given a rectangular peg of fixed dimensions, mass, and
moment of inertia, the goal was to determine the design
parameters such that a peg entering with different orientations
(as shown in Figure 7 and Figure 8) would always exit in
the orientation with the center of gravity down. A secondary
objective was to have the peg pass through the device quickly.

Let qgoal be a target configuration of the peg at some point
well within the exit chute. Further, letT be the time when the
peg either comes to rest or when they component of its center
of gravity moves below that ofqgoal. The design problem was
expressed as an optimization problem with the design space
specified by simple bounds placed on the 12 design variables
and the objective function given as follows:

G =
2∑

i=1

w ||qi(Ti)− qgoal||+ Ti (18)

wherew is a weight factor andi ∈ {1, 2} with 1 or 2 indicating
that the peg entered the input chute with center of gravity
on the left or right. With this objective function, the design
problem can be written as

P = min
P
G(X,T ) s.t. Ẋ = FQ(X, P ), (19)

where the parameter setP is the set of all the 12 design
variables given at the beginning of this section, the states

variableX ≡ (q, q̇). In this design example, we use the ST
model to computeFQ where Q represents the contact state set
excluding the transitions from sustained contact to no contact.
The objective function will be minimized when the peg fall
through the device quickly and properly oriented.

The design was carried out in Matlab using the constrained
optimization routine,fmincon , with the ST time-stepping
method called twice for each objective function evaluation.
The initial guess for the design is shown in Figures 7 and 8.
Note that the peg comes to rest on the protrusion for both
entering orientations.
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Fig. 6. Reorienting device with design variables taking on their initial values.

Figures 9 and 10 show the result obtained after approxi-
mately 1000 objective function evaluations. The weight factor
w in the objective function is set to be 5. Note that the peg
falls through the device in the proper orientation regardless of
its entering orientation.

VI. D ISCUSSION

The problem of finding the feasible sets of design param-
eters and initial conditions for the assembly or part feeding
processes is similar tomotion planning problemin robotics
where the goal is, given a robot with dynamics and constraints
(obstacles), to find a path or trajectory (if exists) from the
starting configuration to the goal configuration. Just as com-
plete motion planning is hard to obtain for complex problems,
we may not be able to develop complete algorithms, or prove
correctness or safety. However, the challenge here is to develop
a tractable algorithm that can be used for optimization of a
system with nonsmooth dynamics in a nonconvex domain.

We described two time-stepping models that can be applied
to simulation and design with dynamics. Both models can be
used to solve the initial value problem that serves as the basis
for the design optimization process as discussed in Section V.
The ST model is more efficient computationally, because it
leads to an LCP formulation, but if suffers from the implicit
assumption of inelastic impacts. To incorporate elastic impacts,
one stops the ST model at the time of the impact, applies
an impact model, resets the velocity variables, and resumes
time stepping. In contrast, the SPK model incorporates elastic
impacts but is formulated as an NCP, which is difficult to
solve.

If we replace the initial value problem in our design
approach with a boundary value problem and impose the
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Fig. 7. Peg not able to pass through the device with initial design parameters
with center of gravity starting on the right.
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Fig. 8. Peg not able to pass through the device with initial design parameters
with center of gravity starting on the left.

constraints of proper device function as part of the boundary
conditions, we may be able to obtain a dynamically feasible
design directly by solving a large boundary value problem.
Unlike its initial-value counterpart, the boundary value prob-
lem is considerably more complicated. For one thing, it is
no longer possible to decouple the time-stepping process into
a finite sequence of individual subproblems each pertaining
to a single time step. Therefore, model switching based on
state monitoring is no longer available. Instead, one has to
consider the entire system along with the boundary conditions
as a large-scale mixed complementarity problem. A unified
formulation becomes necessary in order to deal with all types
of contact transitions without switching models. The SPK
model is, to the authors’ knowledge, the only existing discrete
model that fits into this category. Investigation of design by
solving the boundary value problem based on the SPK model
will be addressed in a forthcoming paper.
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