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AN IMPLICIT TIME-STEPPING SCHEME FOR RIGID BODY
DYNAMICS WITH INELASTIC COLLISIONS AND COULOMB
FRICTION®

D.E. STEWART! AND J.C. TRINKLE?

ABSTRACT. In this paper a new time-stepping method for simulating systems
of rigid bodies is given which incorporates Coulomb friction and inelastic im-
pacts and shocks. Unlike other methods which take an instantaneous point
of view, this method does not need to explicitly identify impulsive forces. In-
stead the treatment is similar to that of J.J. Moreau and Monteiro-Marques,
except that the numerical formulation used here ensures that there is no inter-
penetration of rigid bodes, unlike their velocity-based formulation. Numerical
results are given for the method presented here for a spinning rod impacting
a table in two dimensions, and a system of four balls colliding on a table in a
fully three-dimensional way. These numerical results also show the practicality
of the method, and convergence of the method as the step size becomes small.

1. INTRODUCTION

This work is concerned with the numerical solution of rigid body dynamics. This
is usually conceived as a limiting case of increasingly stiff elastic bodies. While it is
possible to model the elastic bodies directly as a Signorini problem with friction?,
or approximately as a system of springs and masses3?, the level of detail in the
model, and the stiffness of the corresponding differential equations, makes this ap-
proach computationally expensive. Instead, here we consider rigid systems with
a finite number of degrees of freedom. This problem has been studied by a num-
ber of authors in recent years in both the robotics and mathematics communities
3,4, 16, 26, 27, 28, 29, 31, 32, 34, 35

Truly rigid bodies which collide must suffer impulsive forces and velocity discon-
tinuities. Physically, velocity discontinuities are impossible, but correspond to a
mathematical model which involves the rigid body limit of increasingly stiff elastic
bodies where an extremely large contact force appears for a correspondingly short
time interval. The limit of such forces are mathematical impulses which can be un-
derstood as Dirac-6 (generalized) functions'®, distributions!® 18, or measures® 1.

The computational model developed here uses the Coulomb friction law, in spite
of the paradoxes of Painlevé3? and Delassus® 1°. This paper avoids these paradoxes
by allowing shocks, or impulsive forces without collisions® 28 32, Baraff® computes
shocks as unbounded rays generated by Lemke’s algorithm for LCP’s. However,
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this does not always satisfy the dynamic model. The method developed here has
dissipative impacts and shocks, unlike the conventional Newton and Poisson im-
pact hypotheses which predict an increase the kinetic energy for certain complex
collisions. However, the dissipative formulation of Stronge*! is not used here.

Unlike most numerical methods for rigid body mechanics with collisions?> 4 16> 26
27, 34,35 the method presented here is a time-stepping algorithm. This allows the
incorporation of impulses without difficulty as the method uses the integrals of the
forces over each time-step, which are finite even if there are impulsive forces. This
means that this method may violate the “Principle of constraints”?? that states
that impulses can only arise if there is no solution with finite forces. In fact, there is
no direct way with this method to determine if impulsive forces arise, as opposed to
large, finite forces. Rather, it is the behavior of the forces as the step size approaches
zero that will determine if impulsive forces occur in the continuous problem. In this
respect it is similar to the computational schemes of J.J. Moreau3! 32 and Monteiro-
Marques?®. On the other hand, the method presented here produces numerical
trajectories that do not violate the rigid body constraints, at least at the ends of
each time-step, unlike the methods of Moreau®!> 32 and Monteiro-Marques?® which
allow the system to “drift” into inadmissible states. This is because the method
presented here is a position based method that uses a complementarity principle for
the generalized position at the end of each time-step. By contrast, the methods of
Moreau®!> 32 and Monteiro-Marques2® use a condition for the velocity at the end of
each time interval. The method presented here is based on a mildly nonlinear com-
plementarity problem (NCP) formulation of time-stepping. The NCP’s are solved
using a sequence of linear complementarity problems (LCP’s) which are solved us-
ing Lemke’s algorithm (see Cottle, Pang and Stone”, Algo. 4.4.1). The direct use of
complementarity principles and LCP’s follows Trinkle, Pang, Sudarsky and Lo*‘.
However, Trinkle et al.** takes the “instantaneous” point of view, and uses LCP’s to
compute forces and accelerations. The instantaneous formulation does not always
have solutions. By contrast, the time-stepping formulation developed here always
does.

The time-stepping version developed here uses a polyhedral approximation to the
friction cone. Using the true (circular or elliptical) friction cone leads to a strongly
nonlinear complementarity formulation. While such a nonlinear complementarity
formulation may be useful, there is less supporting theory and the subproblems are
more difficult to solve. Rather, we use polyhedral approximations to the true cone
which can approximate the true friction cones as accurately as desired.

The mathematical formulation for the continuous problem used here is loosely
based on that of Moreau ®'' 32 and Monteiro-Marques?® who give a theoretical
formulation in terms of measure differential inclusions. These generalize differential
inclusions (see the references 1 & *) which have already found application in a wide
variety of mathematical models including friction problems !+ 5> 15 38 and for which
there are a variety of numerical methods 2 19> 20, 21, 37, 38, 42, 43

Differential inclusions are generalizations of ordinary differential equations which
are expressed in the form

dx
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where F(t,z) is a set-valued function of (¢, ). That is, instead of having a formula
giving the derivative at a certain point, there is a collection of possible values of
dz/dt. The differential inclusions considered above have the following properties:

1. F(t,x) is a compact, convex set for all (¢, ).

2. The graph { (z,y) |y € F(t,z) } of F(t,-) is a closed subset of R™ x R™ for
all ¢.

3. The set valued function F(-,z) is a measurable set valued function (as de-
scribed in Aubin and Frankowska?).

These conditions, together with a condition which prevents solutions going to infin-
ity in finite time, guarantee the existence of solutions. The closed graph property
described above means that F' does not have to be smooth. In particular, differ-
ential inclusions can be applied to discontinuous ODE’s, 2’ = f(¢,x) where f(t,-)
is discontinuous, by replacing the differential equation with the inclusion (1) where
F(t,z) = 5o { f(t,y) | ly — =|| < é}. Note that T6X is the closed convex hull
of X; that is, c0X is the smallest closed and convex set that contains X. Jump
discontinuities are replaced by the closed convex hull of the values f(t,y) where y
is “close” to x.

Readers interested in the mathematical theory of differential inclusions should
consult Aubin and Cellina'; readers interested in the behavior of solutions to dif-
ferential inclusions for well structured problems should consult Filippov'®; readers
interested in numerical solution of differential inclusions should first consult the re-
view article by Dontchev and Lempio'2. The oldest paper on numerical solution of
differential inclusions is by Taubert*?; recent high accuracy methods can be found
in Kastner-Maresch?® 2! and in Stewart3”: 38,

2. FORMULATION OF GENERAL RIGID BODY DYNAMICS PROBLEM

The formulations of Moreau®! 32 and Monteiro-Marques?® consider a particle of

mass m in a given admissible region C C R? with position q(t) and velocity v (t).
Here we consider generalized coordinates q € R"™, which leads to a more complex
set of admissible coordinates C. It is required that q(t) € C for all . In the
references 28 31 32 it is assumed that C has a smooth boundary and is represented
by a single scalar function f: R™ — R by the formula

C={q|f(q >0} CR" (2)

where V f(q) # 0 whenever q lies in the boundary 0C of C. Initially, this paper
will deal with a single contact and the admissible region will be defined by a single
scalar function as in (2). Later, in the sections on multiple contacts (§3.4), the
formulation will be extended to regions defined by a vector function f: R® — RP
and

The velocity v(-) is assumed to be a function with locally bounded variation (see *°)
and so is bounded, but may be discontinuous, while the position is a continuous,

locally Lipschitz function satisfying

a(t) = q(0) + / v(r) dr. (4)
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In generalized coordinates the kinetic energy is assumed to be given by
1
T(q,v) = 5v M(q)v (5)
where M(q) is the generalized mass matrix, and the potential energy is a given

function V(q). Note that M(q) may contain moments of inertia if the generalized
coordinates include orientation parameters. The Lagrangian is then

1
L(g,v) =T(q,v) = V(a) = 5v' M(q)v - V(). (6)
The equations of motion without unilateral constraints are
d oL 0L dq

For frictionless bilateral constraints f(q) = 0, there is a simple extension of these
equations which incorporate contact forces in terms of Lagrange multipliers for the
constraint?4:

d 0L 0L dq
= T =v (8)

For a unilateral constraint f(q) > 0, if there is no contact (f(q(t)) > 0), then the
contact forces must be zero (¢(t) = 0). Also, since the contact is not adhesive,
the contact force cannot be directed outwards, so ¥(t) > 0. Admissibility of the
solution implies that f(q(t)) > 0 for all ¢. This gives the corresponding conditions
for unilateral contact:

ddL OL _ dq
Tov aq tOVI@®),  F=v
Y(t), flq(t)) >0  for all ¢, (9)

Y(t) fla(t)) =0  for all ¢.

Equation (9) is a differential version of a Nonlinear Complementarity Problem
(NCP) which have the form: Given g: R™ — R™, find z such that

z>0, g(z) >0, z'g()=0.

The differential equation in (9) can be restated as

d
M(q) 5 = k(a,v) + ¥V f(),
_ l 8mlz~ 6m1j _ 8mz~j o 6_V (10)
hi(q,v) = 2 ; [ 0q; * 0q; oq it oq

In general, this system does not have solutions involving impacts unless 9 (-)
is allowed to be a distribution'® '8 or a vector measure® 11, which corresponds
to allowing instantaneous impulses. Using a separate formulation for impulsive
forces leads to a number of difficulties. To illustrate the difficulties of separate
formulations, note that it is possible for a system to undergo an infinite number of
impulses in a finite time. Indeed, this is the case for a ball bouncing on a horizontal
table with a coefficient of restitution strictly between zero and one. By requiring
a separate formulation at impulses, we arrive at a version of Zeno’s paradox: the
system cannot be solved beyond the (finite) time taken for the ball to come to rest,
as an infinite number of impulsive formulations have to be solved before then. Also,
these situations do not handle the case where forces are instantaneously unbounded,
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but are not impulsive. These include, for example, forces having the form f(t) =
1/ \/m . Since impulsive forces arise naturally in rigid body mechanics, and then not
only in the context of collisions, it appears natural to expect that such intermediate
forms as these may occur in certain rigid body problems, which are not handled by
either a “finite force” or “impulsive” formulations.

The approach taken here is to construct a time-stepping method. Time-stepping
methods avoid these versions of Zeno’s paradox by using integrals of the applied
forces to compute integrals of the contact forces over small time intervals. While
the bouncing ball problem does not arise with inelastic impacts, other problems
in which an infinite number of impacts occur in a finite time will not prevent the
time-stepping algorithm presented here from obtaining solutions.

2.1. Coulomb friction. Here Coulomb friction forces are defined in terms of a
friction cone FC(q) which contains the sums of the normal and frictional contact
forces. This is conventionally given for a particle at a point q on the boundary of
the admissible region C C R? as the set

FC(q) = {ci+can | [lcell2 < pep, e Ln}

where n is the normal vector of C' at q pointing into the admissible region, c¢; is
the friction force, and p > 0 is the coefficient of friction. If q is in the interior of
C, then FC(q) = {0}. This simple representation does not hold for generalized
coordinates, but a similar form can be used. Note that in generalized coordinates
vectors must be transformed from “real” or “relative” coordinates to generalized
force coordinates by a linear transformation. Thus in generalized coordinates, it
can no longer be guaranteed that n has unit length, or that c; is perpendicular to
n. Also, more general friction cones can be devised for dealing with more complex
situations, such as soft finger models'”. Further, in multiple contact situations,
each contact has its own friction cone.

If p(t) are the total contact forces, consisting of the normal contact force ¥V f
plus the generalized friction force, then the basic formulation of Moreau and Monteiro-
Marques states that

M(@) &Y = k(a,v) + p(1),
fla(?)) =0, for all ¢, (11)

p(t) € FC(q(t)), for all ¢,
p(t) f(a(t)) =0,  for all ¢.

The choice of p(t) from the friction cone is still not specified. Note that this is
not surprising as the choice of impact models (inelastic, perfectly elastic, partially
elastic) has not been considered so far. For inelastic impact models, Moreau3!: 32
and Monteiro-Marques?? invoke a mazimal dissipation principle, which states that
the this choice must be made at each instant so as to maximize the rate of loss of
the total energy, subject only to the rigid body and friction cone constraints. Note
that subjecting the choice of p(t) to the rigid body constraints when imposing the
maximum dissipation condition avoids the common claim that solutions to Coulomb
friction problems “may not exist”? 10> 25, 27, 33

In this paper, the explicit use of the maximal dissipation principle will not be
further explored. Instead, an alternative way of guaranteeing physically meaningful
solutions by means of a complementarity formulation will be developed.
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3. COMPLEMENTARITY FORMULATION OF TIME-STEPPING ALGORITHM

The following time-stepping formulation is a variant of the well-known implicit
Euler method for ODE’s. For now, we consider a problem with only one contact;
a more general method for dealing with multiple contacts will be presented in
§3.4. For a given time step, values for position q' and velocity v! are used to
compute new values of g'*! and v!*t!. To start with, it will be assumed that in
the neighborhood the boundary of the admissible region is well approximated by a
half-space: nT'q > «p. This assumption will be relaxed later.

To make linear complementarity theory” applicable, the friction cone will be
approximated by a polyhedral cone:

FC(q)={can+DB| ¢, >0,8>0,e78 < pcy } (12)

where e = [1,1,...,1]7 in R* and k is the number of edges of the polyhedral
approximation. The columns of D are direction vectors d;, although these need
not be of unit length for generalized coordinates, or for anisotropic friction laws.
The vector B will be used below as a weighting vector for the direction vectors d;.
It is assumed that for every 4 there is a j such that

d; = —d;. (13)

It is also assumed that the vectors d; span the subspace on which the friction forces
act; thus if v is a vector in that subspace, then d;-”v > 0 for all j implies v =0. In
the case of the motion of a particle, the span of {d; | j = 1,...k} is the tangent
plane to 8C at q. Figure 1 shows an eight-sided approximation to a circular friction
cone. While this means that several different weighting vectors B could give the
same friction vector D3, the complementarity conditions below will force the 3
vector to be unique provided DTv! £ 0.

The matrix D for bodies moving in two dimensions can be easily constructed. If
the relative velocity at the contact is given by vT (dq/dt), then D is the n x 2 matrix
with columns +~. (Note that n is the dimension of the generalized coordinates vec-
tor q.) This is just the transformation of a common unit tangent vector at contact,
into the generalized velocity co-ordinates. Similarly, for two three-dimensional bod-
ies in contact, the circular friction cone can be approximated by a polyhedral cone.
For example, consider two balls in contact. There is an untransformed normal vec-
tor @ € R3 which is perpendicular to the tangent plane in R3. To obtain a vector
perpendicular to o in R3, take a cross product of @ with the unit vertical vector
in R3, and normalize the result (£;). To compute another vector in the tangent
plane in R3, take the cross product to = t; x 1 € R3. For an k-gon approximation,
construct the vectors t(6;) = cos8;t; +sin6;t, for 6; = 2mwi/k,i=10,1,2,..., k—1.
These vectors are then transformed t(;) into generalized velocity coordinates d;.
The details of the transformation into generalized velocity coordinates depends on
the way information is stored in the generalized coordinate vector.
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n
d
t
dg
d2 d3 d4

to friction cone

friction cone

F1GURE 1. Circular friction cone and polyhedral approximation

The formulation of the time-stepping is then to compute g't!, v!*1 and the
associated variables c¢,,, 3 and X satisfying

M(q' + hvl) - (viT! = v =nc, + DB + h k(q' + hvl/2,v!),

I+1 l _ I+1
QT —q =hvT,

Xe + DTv!*! >0, B>0, (14)
anl+1 2 Qg, Cn 2 07
P’cn_eTIBZO: /\207

with the complementarity conditions
Me +DTvHTE =0,
[nTq"** — agle, =0, (15)
[uc, —eTB]A = 0.

The additional variable A is in most cases an approximation to the magnitude of
the relative contact velocity. In some situations, such as where there is zero relative
contact velocity and the friction vector is zero, A can take any non-negative value,
and it has no physical meaning at all. However, it is necessary in this formulation to
ensure that the correct components of 3 are non-zero, and that the friction vector

polyhedral approximation
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Dg is on the boundary of the approximate friction cone if the relative contact
velocity is non-zero.

The middle inequality of (14), nTq!*! > ay is a guarantee that the (linearized)
rigid body constraints are satisfied. Suppose now that v/*! is not perpendicular to
the friction plane. The first inequality then implies that A > max; —d7v!*! > 0 by
(13). In this case, complementarity implies that uc,, = e’ 3. This then means that
Bi can only be positive when A + df v!*1 = 0, or equivalently, that

d7 vt = mjin dfvl“. (16)
For non-zero DTv!*! there will usually be a unique minimizing j in (16), giving
exactly one non-zero component of 3, and the friction vector is along one of the
d; direction vectors. There may be cases where the minimizer is not unique, in
which case the friction force D3 lies in a face of the approximate friction cone,
and thus, there is a unique B vector. In the case of ordinary contact in three
dimensions, the d; vectors belong to a two-dimensional plane. In this case, at most
two adjacent (3; components are non-zero, and the friction vector uniquely specifies
B. If DTv*! = 0, then the 3 vector is not uniquely specified, but the vector D3
is specified through the fact that DTv!*! = 0.

Using the above results, the dissipation due to the friction forces in a single step

is
vt TDA = —aTe) = —picy,.
However,
A =max—d} v+l > — Z pidrvi+t
¢ i

for any @' satisfying B; > 0 for all j and E; B; = 1. Thus the friction impulse
D that satisfies the above complementarity problem maximizes the dissipation
over all frictional contact impulses, given the normal reaction impulse ¢,,. Thus
for isotropic friction laws and sufficiently many well-spaced d; vectors, the friction
impulse is close to being directly opposite to the component of the sliding velocity
vi*1 in the friction plane.

Several aspects of (14-15) should also be noted.

1. It is a mixed linear complementarity system as described in Cottle, Pang
and Stone?, pp. 29-30. By solving for v/*! and ¢/*! in terms of the other
quantities, a “pure” LCP will be obtained.

2. The normal contact impulse ¢,,, and thus 3, is only nonzero if there is contact
at at the end of the interval (i.e. n’q/*! = ag). Thus there is no need to
explicitly “turn on” and “turn off” the contact forces in this method.

3. The approximate Coulomb law may be violated (i.e. eX' 3 # puc,) only if A = 0,
which implies that DTv!*! = 0. This corresponds to the physical situation
where sliding stops during the contact period.

4. The values of the quantities M, n and D should be obtained at some value
of q; the simplest approach is to use q = q' + hv!. This corresponds to the
explicit Euler prediction. More complex approaches can use more realistic
approximations such as q = q't! or q = (¢’ + q't')/2. However, these
methods result in a nonlinear complementarity problem. While they may be
expected to give higher accuracy, they are more complex to implement and
to prove the existence of solutions.
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3.1. Schur complements & LCP’s. As given, (14-15) is a mixed linear comple-
mentarity problem?. In order to prove existence of solutions to this problem, note
that by solving for q't! and v!*! in terms of the other quantities gives a Schur
complement system. Let k = k(q' + hAv!/2) and M = M(q' + hv'). The Schur
complement system is:

D™M-'D D™ 'n €] [P p
n"M~'D n"™M™'n 0| |e,| +b=|0]| >0,
—eT 7 0] | A ¢
DT (vl + hM~'k)
where b= [(nTq' —ag)/h+nT (v + AM~1K)|, (17)
0
T
B Bl [p
and cn| >0, Cn oc| =0.
A A ¢

3.2. Existence of solutions. The LCP (17) has solutions, as will be shown here.
The matrix
D'™™M'D D'M™!n e
N=|n"™™M"D n"M™'n 0
—eT I 0

is copositive (see Cottle, Pang and Stone’, Defn. 3.8.1), since for any vector z =
T
[B" e Al >0,

B DM 'D D™™M 'n e] [B
Cn nT™M D nT™™ 1n 0| |c,
A —eT u of | x

= (epn+DB) ™M (c,n+DB) + pep) >0 (18)

T

as M~ is positive definite and g > 0. Note, however, that N is not copositive
plus (Cottle, Pang and Stone”, Def. 3.8.1), since 2T Nz = 0 implies that D3 = 0,
¢n =0, but not A = 0, and (N + N7)z can still be non-zero if A > 0. Nevertheless,
solutions do exist (by Cottle, Pang and Stone”, Thm. 4.4.12) since the only solutions
of LCP(N,0) have the foomz=[0 0 )], and

T

0 DT (vl + hM~1k)
z'b= |0 (nTq' —ag)/h +nT (vt + mnTM k)| =0 £ 0. (19)
A 0

Thus (by Cottle, Pang and Stone”, Thm. 4.4.12) not only do solutions exist, but also
Lemke’s algorithm (described in Cottle, Pang and Stone”, Algo. 4.4.1) can compute
a solution, provided precautions are taken against cycling due to degeneracy. (See
Cottle, Pang and Stone”, §4.9.) While solutions are guaranteed to exist, uniqueness
is not guaranteed, although it is expected for most problems.

3.3. Dissipativity of the method. A limited dissipativity result holds for this
method where the system is linearized with M and k assumed constant, and the
admissible region (the set of allowable positions) is a half-plane. In the general
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nonlinear case, numerical methods cannot usually be guaranteed to be dissipative.
Consider the following method for a particle moving in a potential field V' (q):

m(vl+1 _ vl) _ _hVV(qH-l), gt =q' + g(vl + vl+1)_ (20)

This method is dissipative if V' is convex, but anti-dissipative if V is concave.
For general V' the method may or may not be dissipative depending on the step
taken. Even symplectic methods?¢ for smooth Hamiltonian systems do not exactly
conserve the true energy, but can only conserve an approximate Hamiltonian36.

Dissipativity of (14,15) will now be shown under the assumptions that M, k
are constant and the admissible region is a half-plane. Note that for non-constant
M, k and n this method is not guaranteed to be dissipative. Indeed, if there are
no contacts, constant M and n, but non-constant k arising from a conservative
system, the method (14,15) reduces to an explicit Euler method for a conservative
system. As noted above, such methods are not guaranteed to be exactly dissipative.
However, a later paper, which deals with the convergence theory of this method,
will show that the limit of the numerical solutions is dissipative.

From the linearization of (14,15), note that

(vl+1 )TM(VH—I _ vl)

1

= 5((vl+1 + vl) + (vl+1 _ vl))TM(vH-l . Vl)
1 1

= 5(vl+1 + vl)TM(vl+1 _ vz) + 5(Vz+1 _ v’)TM(vl+1 B Vl) 21)
1 1

= 5[(Vl+1)Tle+1 — v MV + 5(Vl+1 VYT M(vH = v

while
(vH'l)TM(vH'1 — vl) = (vH'l)T(cnn + Dg + hk)
= 1/h) (@™ —d) epn + VDB + (¢ — ')k (22)

Since nTq' > ay, it follows that ("' — q')Tne, < ((¢*)Tn — agp)c, = 0 by
complementarity. Thus
()M V) < ATDTVH 4 (¢ - )Tk
— —)\,@Te + (ql-l—l _ ql)Tk — _)\Mcn + (ql+1 _ ql)Tk. (23)
This gives
1 1 1
§(vl+1)Tle+1 +kqu+1 < 5vl TMVl+kqu—)\;LCn—§(Vl+1 _vl)TM(vl—',-l _vl)
1
< Evl Mvt + kT (24)

and the method is dissipative. The dominant term during a period of sliding along
a boundary is —Auc,. For circularly isotropic friction applied to a particle, A
is approximately the magnitude of the relative velocity of the particle, and uc,
is the frictional impulse applied to the particle over the time step. This corre-
sponds to the physically correct rate of dissipation of energy. The quadratic term
— (vt —v)TM(vH+! — ) has different character in different parts of the motion.
During non-contact periods, it is numerical dissipation. That is, during non-contact
periods, this energy loss is due solely to the numerical scheme, and does not corre-
spond to any physical process. Note that in this case, ||[v!*! — v!|| is of the same
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order as the step size h, and so the energy dissipation is of order h? for one time step,
and over a given finite interval is of order h. In an impact, it gives (approximately)
the energy loss due to the inelastic collision.

3.4. Multiple contacts. Multiple contacts can be easily incorporated into this
framework. The additional data needed to form the LCP for a given time step
consist of the following quantities for each contact. The vector n?) is the rela-
tive normal vector for the jth contact, transformed to generalized coordinates; and
aé’ ) the corresponding scalar for locating the boundary of the jth half-plane. The
matrix D) is formed from the vectors in the plane of relative motion for the jth
contact, whose convex hull approximates the friction cone, transformed to gener-
alized coordinates. The scalar p(9) > 0, is the coefficient of friction for the jth
contact. ]

There are also new variables for each contact: cgf ) (the normal contact impulse
for contact j), BY) (the coefficients for the frictional impulse for contact j), and
M) With these data and variables the formulation of the time-stepping method
follows. Note that p is the number of contacts.

p
M(q' + hvt) - (v —vh) = Z(n(j)cslj)+D(j),B(j)) + hk,(q" + hv'/2,v!)
Jj=1
gt — o = BVt
ADel@) 4 DU TylHL > BY >, Jj=L...,p, (25)
n@ Tgltt > o) >0,  j=1,...,p
P eld) — ) TRH > g, A9 >0, j=1,...,p,

with the complementarity conditions

D@ 4 DG TyH1T0) = j=1,...,p,
@D Tq*! — o)) =0,  j=1,...,p, (26)
[P el) — ) TRUING) =, i=1,...,p.

Note that e) is the column vector of ones of the appropriate size. Writing 1 =
[n(1)7 R 7n(p)]7 En = [0%1)7 ) c,%p)]T, ﬁ = [ﬁ(l) T7 A 7ﬂ(p) T]T7 f) = [D(1)7 st 7D(p)]7
ay = [a(()l), .. .,a(()p)], Bo= diag(u®,. ., u®), X = AN, AT and E =
diag(e(™, ..., e), (25-26) can be written as

M(q + hv') - (v/t!' = v!) = 1c, + DB + b k(d' + vl /2,v!),
gt — o = vt
EX +D'v/* >0, B >0, (27)

a'q™! > @, ¢n >0,

fic, —ET3 >0, A>0,
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with the complementarity conditions
[EX + f)TVl+1]TE =0,
[7q™ - &"¢, =0, (28)
[ie, — ETB)TA = 0.
The associated LCP is:

D’M-'D D’M~'a E|[j3 p
™M 'D ™ 'a 0f [e.|+b= |G| >0,
E L ¢

-ET n o LA
DT (v + AM~k(q! + hv'/2))
where b= |(@Tq —ao)/h+ 0l (v + AM~IK) |, (29)

0

~ ~_T o

B Bl [p

and c,| >0, Cp og| =0.
A A ¢

The arguments of §83.2-3.3 can be applied to (27-28) and to (29) to show that
solutions of (27-28) exist and can be computed by Lemke’s algorithm, under the
assumption that the n(? vectors are linearly independent, and that the only vector
in both the span of the columns of n and of D is the zero vector. Furthermore,
the above formulation gives a dissipative method provided M, k, n, D and & are
constant.

3.5. Other friction. In many pieces of machinery, there is friction that is associ-
ated with contacts that are commonly not assumed to be unilateral. For example,
the friction arising in a gear box is not due to unilateral contact in models unless
the details of the contact between the gear teeth and the contact in the bearings is
explicitly modeled. In many cases, this is an excessively detailed level of modeling.

In such a situation, the friction forces lie within a given convex subset of the
plane, which is again approximated by polyhedral sets that are the convex hulls
of the sets {d; | ¢ = 1,...,m} which form the columns of the matrix D =
[di,...,dm]. Then the frictional impulse is assumed to have the form D3 where
B > 0, and e’3 < h. The latter inequality holds because the friction force is
bounded as a function of time, since the normal contact forces involved are also
bounded. The corresponding time-stepping scheme has the form

M. (vt —v) =Dg + hk,

ql+1 _ ql — hvl+17
Toi41 (30)
de + DTyt >0, B >0,
—e"B+h>0, A >0,

with the complementarity conditions

De+DIvIHTg =0, [-eTB+h\=0. (31)
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The corresponding LCP is

D'M'D e] [B e
P e[z

where b= [DT(Vl +hhM_1k)] : [f\’] > 0, mT [’C’] —o. (32)

This LCP has solutions which are computable by Lemke’s algorithm since the
Taf—1

matrix N = [D iV:T D g] is copositive plus, and the feasible set for the LCP

is non-empty (take 8 = 0 and A > O sufficiently large). Alternatively, if z solves

LCP(N,0), then DB = 0, and

z'b = BTDT(v! + AM~'k) + hA = hA > 0,

and so, by standard LCP theory (Cottle, Pang and Stone’, Thm. 4.4.12) Lemke’s
algorithm applied to (32) terminates at a solution.

A “mixed” method for a combination of unilateral constraints with friction, and
friction not associated with unilateral constraints, can be developed based on the
above formulations.

3.6. Nonlinear versions. One problem with the method as it is given, is that for
real problems the admissible regions are not half-spaces, but are more general sets,
usually with smooth boundaries. Thus the vector n, and ag, and the matrices D,
depend crucially on the geometry of the problem, and vary from point to point. One
particular consequence of this is the failure of dissipativity for the methods (14-15)
and (25-26). This can happen where, due to the variation in n(q) and ag(q), while
q'*! may be admissible for the linearization based at ¢!, this does not mean that it
would be admissible for the linearization at q'*!. Because admissibility for q/*? for
the linearization at q'*' is required, sufficient impulse to achieve this is applied at
the step computing q'*2. This reaction impulse for such a step can be far in excess
of that for the real system, and this method has been observed by the author to
produce extremely large velocities that are entirely unphysical.

To circumvent this problem, a nonlinear method should be employed. In partic-
ular, the complementarity condition

n'gt —ag>0, ¢, >0, (n"q"! —ag)e, =0
should be replaced by the following nonlinear complementarity condition between
f@) >0, >0,  fl@Men =0,

and n = n(q"") = Vf(g"*).

Such a nonlinear complementarity problem can often be solved by a sequence
of linear complementarity problems of the form (14,15,17), or (25,26,29) for mul-
tiple contacts. Indeed, a fixed point iteration can be used to solve these nonlinear
complementarity problems, as follows. At the first stage, an estimate for g'*! is
computed (such as @+ = ¢’ + hv!). Then the LCP (17) (or (29)) is solved using
D = D(g'*!) and n = n(g'*t!). The resulting estimate for g'*! is used as g'*!
for the next iteration. Provided the LCP (17) (or (29) for multiple contacts) has
unique solutions and the solution operator is locally Lipschitz, then for sufficiently
small h, the method is convergent. In practice the iteration converges very quickly.
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4. NUMERICAL IMPLEMENTATION AND RESULTS

The numerical method has been developed based on an implementation of Lemke’s
algorithm for solving LCP’s. The version of Lemke’s algorithm used is based on an
explicit tableau, together with lexicographic degeneracy resolution. Rather than
explicitly include all potentially active constraints, only those that were active at
the previous step, plus the violated constraints at q' + hv!, are initially assumed
to be active. Once the solution of the LCP has been found, the constraints are
checked at the new value q/t! for feasibility. If any other constraints are found to
be violated, they are added to the set of potentially active constraints. All of the
methods have been implemented in C using the Meschach library3® to provide the
linear algebra and basic data structures.

The first test problem used was a simple rod-and-table problem where a spin-
ning rod falls onto a table in two dimensions. The rod in Figure 3 is not an ideal
one-dimensional rod, but is in fact a two-dimensional object with straight parallel
sides and rounded (semi-circular) ends. It impacts a fixed horizontal table inelas-
tically where it eventually comes to rest. The generalized co-ordinate vector is
q = [7,y,0]T, where (z,y) are the co-ordinates of the center of mass (y vertical),
and 6 is the angle relative to the horizontal of the rod. The two constraint functions
(one for each end point) are fi(q) =y =+ (I/2)siné > p where p is the radius of the
end of the rod. The corresponding normal vectors are ny(q) = [0, 1, +(I/2) cos§]7,
and the four friction vectors are d; = [+1, 0, £(1/2) sin6]7. The mass matrix M(q)
is diag(m,m,J) where m is the mass of the rod, and J is its moment of inertia.
Gravitation is the only external force applied to the rod.

The relevant specifications of the rod are as follows: length (excluding the ends)
0.5m; mass 1kg; half-width of rod (which is also the radius of the ends) 0.05m;
moment of inertia 0.002 kg m?; coefficient of friction between the rod and the table
is 0.6. The initial angle of the rod is 30° to the horizontal, with zero initial trans-
lational velocity, but with an initial rotational velocity of 4rads™!. At the first
contact, the standard methods would claim that there is no solution. The method
presented here has no difficulty with this situation. The numbers in Figure 2 are
the times for the corresponding configuration.

To demonstrate convergence of the algorithm, graphs of the numerical results
for different values of step size h are shown in Figures 3, 4 and 5. Note the absence
of numerical chattering in the solutions. However, there is a spike in the angular
velocity for the first contact. This is because of the position-based time-stepping
used: after the first step in which contact is made, f(q) = 0; on the following step,
the velocity is made tangential to the contact surface, with v’ V f(q) = 0.

In these simulations, the rod begins by spinning and falling, and then collides
with the table at time ¢ ~ 0.383. After the impact, the rod slides while spinning.
The angle and velocity values at the first impact would result in failure for con-
ventional “instantaneous” methods. Later, the left-hand end of the rod eventually
hits the table at time ¢ & 0.548, and the rod then remains horizontal and slides left
for a short time (0.02 seconds). The rod is then at rest for the remainder of the
integration. Note that fairly fine step sizes need to be used to properly resolve all
the details of the behavior. Step sizes of about 1/25th of a second are not sufficient.

Other tests were carried out using for a system of balls and a horizontal table
which gave an opportunity for carrying out fully three dimensional tests on the
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F1GURE 2. Falling and spinning rod, A = 0.0025

system. The first test of the balls involved a pair of balls of equal size and weight
where one ball is thrown to either collide with the second stationary ball, or to
land on the table and begin rolling before then colliding with the second stationary
ball. In these problems, there is a potentially infinite number of direction vectors
defining the friction cone for each contact; here we chose to use eight direction
vectors to give an octagonal approximation to the friction cone.

The second test scenario is a set of three balls in a line along with the z-axis
on the table, and another ball in the air thrown towards three balls. Initially there
is a small gap of about 10~°m between the initially stationary balls. The ball in
the air first hits the table at ¢ ~ 0.42, and begins rolling, and then collides with
the line of balls at t = 0.59. The three initially stationary balls are brought into
contact within the first time step of the collision. A frictional impulse applied at
the first impact point lifts the thrown ball a small distance, due to the frictional
impulse. During most of this period, all balls remain in contact. Most of the
horizontal impulse is transmitted to the other balls. The corresponding downward
impulse on the first stationary ball induces a vertical reaction force to prevent it
from penetrating the table. Nevertheless, there is an impulsive frictional torque on
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Vertical velocity profiles: falling spinning rod
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FIGURE 3. Vertical velocity of rod for different values of h

the first ball which makes it rotate contrary to the horizontal motion. There is also
a frictional impulse in the negative z-direction due to the sliding and the downward
frictional impulse. Because of the backward rotation on first stationary ball and
the horizontal impulse, there is a frictional impulse on the second stationary ball
to make it jump up, just as the thrown ball did. This forward rotation, in turn,
induces an additional upward frictional impulse on the second stationary ball, as
well as a downward frictional impulse on the third stationary ball. This downward
impulse results in an upward reaction impulse from the table, and because of the
rotations induced by the impulse torques, there is also a frictional impulse in the
negative z-direction. This complex system of impulses is illustrated in Figure 6.
The horizontal impulse makes the balls move horizontally, sliding at first, but then
rolling. After a short period, the balls separate, rolling in different directions. The
trajectories of the balls are shown in elevation and plan views in Figures 7 and 8.

The specific data for this problem is as follows: all balls are 1kg in mass, have
a radius of 0.1m, with moments of inertia 4 x 1072 = (2/5)mr?; the coefficients
of friction for all contacts is 0.4. The initial positions of the balls (given as z, y,
z triples, with z being vertically up) are [0,0,1], [1,0,0.1], [1.2 + 1075,0,0.1] and
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Angular velocity profiles: falling spinning rod
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FIGURE 4. Angular velocity of rod for different values of h

[1.442 x 1075,0,0.1], and the initial velocities are [1.5,0.1,0] for the first ball and
zero for the others.

Table 1 gives error estimates and variation estimates for the numerically gen-
erated solutions for step sizes h = 0.0025 to A = 0.02 using the solution for
h = 0.00125 as “exact”. It also shows the variations of the numerically com-
puted velocities, Vv", for different values of h. The error measures used are
fol |[vh(t) — v(t)|| dt for the velocities, and the supremum norm for the position
errors. The oo-norm is the norm used on R” (here n = 24). The size of the LCP’s
solved for this problem were sometimes as large as 70 x 70 for 7 contacts. This is
because there are 8 direction vectors for each frictional forces, one variable for each
normal force, and a A variable for each contact. It should be noted that the largest
errors in the velocities were in the angular velocity components rather then the
translation velocities; the angular velocity errors were about an order of magnitude
larger. Table 1 shows that the errors are roughly of order h for small values of h.
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Horizontal velocity profiles: falling spinning rod
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Step size h | Velocity error | Position error | Velocity variation
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