DYNAMICS, FRICTION, AND COMPLEMENTARITY PROBLEMS

D.E. STEWARTY3 AND J.C. TRINKLE?%3

Abstract. An overview is presented here of recent work and approaches to solving dynamic
problems in rigid body mechanics with friction. It begins with the differential inclusion approach
to Coulomb friction where the normal contact force is known. Numerical methods for these differen-
tial inclusions commonly lead to linear or nonlinear complementarity problems. Then the measure
differential inclusion formulation of rigid body dynamics due to Moreau and others is presented. A
novel algorithm for time-stepping for rigid body dynamics is given which avoids the “non-existence”
issues that arise in many other formulations. The time-stepping algorithm requires the solution of an
NCP at each step. Results on the convergence of the numerical solutions to solutions in the sense of
measure differential inclusions are given, and numerical results for an implementation of the method
are shown.
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1. Introduction. This paper presents an overview of some recent progress in
dealing with rigid body dynamics incorporating collisions, shocks and Coulomb fric-
tion, with special emphasis on the difficulties due to friction.

Circa 1781 Coulomb introduced a model of the frictional forces at the contact
between solid bodies [8, pp. 319-322]. This model stated that the frictional forces
between two such bodies is p (the coefficient of friction) times the magnitude of
the normal contact force in magnitude, and directed opposite to the direction of
relative motion. The Coulomb model, while widely used and accurate enough in
many engineering applications, it gives rise to difficult computational and analytical
problems. Even where the normal contact forces are known and smoothly varying in
time (in inclined plane problems for example; see Figure 1) the discontinuous nature
of Coulomb friction makes the general problem difficult.

Even in this simple setting, considering only the one-dimensional aspect of the
behavior, the equations of motion lead to a radical revision of the nature of solutions
to these differential equations. From simple mechanics, the differential equations are,
for the forward velocity along the ramp,

(1) m(;—:; =mygsin + Fop1(t) — F(t) = mgsin @ + Fepi(t) — pmg cosf sgnv

where F..;(t) is an external force applied to the object on the ramp. Because of
the discontinuity in the friction force term, (1) can no longer be guaranteed to have
solutions once v(t) = 0. (Even Caratheodory’s existence theorem [2] fails to apply.)
Yet, in physically reasonable situations, v may be zero. In the context of figure 1, if
the slope 6 is small enough, and the external forces F,,;(t) are also small enough, v
will reach zero in finite time. If 0 < |mgsiné + Fe,4(t)| < pmgcos — € for any € > 0,
then the solution v(t) will reach v(¢) = 0 in finite time ¢, and v(t) = 0 for ¢t > ts.
Yet, v(t) = 0 is not a solution of the differential equation as sgn0 = 0 and

m% =0#mgsind + F(t) — 0.

1 Mathematics Dept., Texas A&M University, College Station, TX 77843-3368

2 Computer Science Dept., Texas A&M University, College Station, TX 77843-3112

3 This research was supported by the National Science Foundation under grant IRI-9304734, the
Texas Advanced Research Program under grant 999903-078, and the Texas Engineering Experiment
Station under grant 32133-98890CS.



Rigid body dynamics with inelastic collisions 2

Fia. 1. Inclined plane problem with friction

The resolution of this difficulty is to extend the notion of differential equation to
differential inclusion:

d
md—: € mgsinb + Fepi(t) — pmgcosé Sgn v

where

{+1} v>0
Sgnv = {-1} v<0
[—1,+1] v=0.

This approach is implicitly used in most introductory treatments of friction. For
example, as is described in [27, §5.4, p. 162], “If static friction is acting, the value of
the friction force may vary from zero to its maximum available value, adjusting itself
to the resultant force tending to cause motion.”

1.1. Discontinuous ODE’s and differential inclusions. In general, a dis-
continuous ODE

dx
at = f(2)

should be replaced by the differential inclusion

e @y =() () @f(w+bBo)\N)C R

dt
630 Ao (IN)=0

where A\g is the Lebesgue measure on R", By is the standard unit ball in R"™. In
more intuitive language, F'(z) is the convex hull of values of f(-) nearby, ignoring the
behavior on null sets. (Related versions of the Filippov regularization were developed
by Krasovskij, Hermes and others. A suitable review paper for this area is Hajek
[15].) The existence theory for such differential inclusions was developed by A.F.
Filippov [11, 12], and these have been the subject of investigation over the past several
decades. In the past two decades, there has been work on the numerical solution of
these problems by a number of authors [10, 17, 23, 24, 28, 30, 33, 34, 35]. (See also
the review article by Dontchev and Lempio [7].) These use a number of different
techniques, but mostly concentrating on the use of suitable implicit and strongly
stable Runge-Kutta schemes. The best of this work is by Kastner—Maresch [17],
who is able to prove high order accuracy provided the solution is sufficiently smooth.



Rigid body dynamics with inelastic collisions 3

Stewart [28, 30], however, uses a different approach assuming that the problem itself
is structured with regions where the right-hand side of the ODE is smooth, but with
“manifolds of discontinuities” which can meet at boundaries. While on one of these
manifolds of discontinuities, an equivalent (smooth) ODE can be devised based on
the Filippov formulation. Where different manifolds of discontinuities meet, there is
a combinatorial problem of deciding what manifold to move along in the next interval,
and there may be several.

1.2. Connection with complementarity problems. So how are these differ-
ential inclusions related to complementarity problems? The answer lies in the solution
techniques. Stewart [28, 30] explicitly uses linear complementarity problems to de-
cide what manifolds to move along where the trajectory meets a new manifold. The
use of, implicit Runge-Kutta methods, as are used by Kastner—Maresch [17] lead to
inclusions for the result of a time-step, such as

z* ¢ b 4 hF (2.

For many F' such inclusions can be solved directly in terms of linear complementarity
problems (such as for one-dimensional problems). Alternatively, by using a piecewise
linear approximation to F(-), the problem can be “reduced” to that of solving a
piecewise linear system of equations. These problems are known to be equivalent
to linear complementarity problems [9], and furthermore, the methods used to solve
such problems by continuation or homotopy methods [1] are exactly analogous to the
pivoting algorithms of Lemke and Howson [18], Cottle and Dantzig [3], and others.

1.3. Contact problems. Here, we wish to go beyond previously studied prob-
lems where the contacts between bodies, and the normal contact forces, are assumed
known, to general rigid body problems. In these problems, the normal contact forces
are unknown, and must be computed along with the friction forces. However, the
total contact force must lie in a certain cone called the friction cone. For isotropic
surfaces, this cone is a right circular cone in ordinary coordinates, with the central
axis of the cone being the normal vector to the surfaces in contact. If the contact
is sliding, the contact force should lie on the boundary of the cone in the opposite
direction of the relative motion at the point of contact. For anisotropic contacts (such
as occurs in ice-skating), a better model would be to choose the friction vector in the
friction cone in the direction that maximizes the rate of energy loss (see, for example,
Goyal [14]). In general we will assume that the friction law satisfies the the maximum
work inequality, which is valid for both isotropic and anisotropic Coulomb friction.

Contact problems go beyond the theory of differential inclusions, as general rigid
body motion must include collisions and other “shocks” in order to preserve the rigid
body and associated no-interpenetration assumption [20]. This leads to the study of
measure differential inclusions, which has been pioneered by J.J. Moreau [21, 22] and
Monteiro-Marques [20].

It should be noted that this research area is still subject to considerable contro-
versy and academic debate, as many fundamental aspects are not properly resolved.
For example, there is a continuing debate on the relative merits of the classical theo-
ries of collisions of Newton and of Poisson. Newton’s law is based on velocities, while
Poisson’s law is based on momenta. Both laws can lead to an increase in the total
energy, and are therefore physically flawed in some situations. Only recently has there
been a modification which does preserve energy due to Stronge [32]. On the other
hand, the Moreau approach is based on a mazximal dissipation principle which best
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F1G. 2. Apparent non-existence for a rod & table system

describes purely inelastic collisions, but can be modified to deal with non-zero coeffi-
cients of restitution and still dissipate energy in all situations. Note that this maximal
dissipation principle is an extension of the maximum work inequality described above.

1.4. Acceleration-based approaches and “non-existence”. Indeed, the con-
troversies in rigid body mechanics do not end there. There are a number of classical
controversies about the existence of and uniqueness of solutions to rigid body prob-
lems. Some very simple problems involving just one moveable and one immoveable
body give rise to apparent non-existence of solutions as are discussed in Lotstedt [19]
which recapitulates some of the examples and questions of Delassus [5, 6] and Painlevé
[25] last century.

While no claims are made here about removing the possibility of multiple solu-
tions, the question of existence can be answered affirmatively, provided the reader
is willing to accept impulsive forces and inelastic collisions. The problem with the
examples mentioned above, is that the analysis is done “instant by instant”. That is,
the positions, orientations, velocities and angular velocities of all bodies are assumed
fixed for an instant in time, and the forces are calculated in order to respect the fric-
tion law and the rigid body and non-interpenetration constraints. The problem with
the rod and table example, is that if the coefficient of friction p is too large, then a
contact force on the boundary of the friction cone gives a torque that drives the end of
the rod into the table, violating the non-interpenetration constraints. (See Figure 2.)

To explain in more detail, let m is the mass of the rod, [ the half length of the
rod, J the moment of inertia about the center of mass of the rod, which is assumed
to lie at the center of the rod. The coordinates used are the (z,y) coordinates of
the center of mass, and €, the angle of the rod counter-clockwise from the horizontal.
The vertical displacement of the left-hand tip of the rod is y. = y — lsin#, which
must be non-negative to avoid penetration with a horizontal table at y = 0. Let N
be the normal contact force, and F' the (horizontal) frictional force; |F| < uN. Then
the condition that d?y./dt*> > 0 is complementary to N > 0 leads (assuming that
dz./dt < 0 so that F = uN) to the one-dimensional linear complementarity problem
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(LCP), with F' = uN:

d?y./dt? = [1/m+1?cos?0/J — pl* sinf cos6/J| N + (Isin6 (df/dt)* — g) > 0,
N >0, d*y./dt* - N = 0.

If 1/m+1?cos?6/J — pl*sinfcosf/J < 0 and Isinf (df/dt)* — g < 0 then there is
no solution to this LCP.

On the other hand, the above analysis ignores the possibility of impulsive forces,
under which the assumption of fixed velocities even “for an instant” is wrong. This
is an example of jamming where the contact velocity is driven to zero in an instant.
If the velocity jumps to zero instantaneously, there is no longer any need to force
the contact force (or impulse) to lie on the boundary of the friction cone. Then the
normal component of the contact force or impulse can be made sufficiently large to
ensure no interpenetration, while the frictional force or impulse is dissipative.

Specifically, with an impulse, the requirement that F' = uN arising from dz./dt <
0, need not hold. If the velocity dz./dt immediately after the impulse is zero, then it is
only required that |F'| < uN, and the coefficient of N in the resulting complementarity
problem for the impulses is 1/m + [2 cos? §/J which is always positive.

The rod and table example illustrates the need to use impulses directly in the
formulation of the dynamics of rigid body systems.

1.5. Multiple solutions. Philosophically there is a reason to treat multiple so-
lutions less harshly than non-existence of solutions. Non-existence of solutions implies
that the model is inherently wrong, since the physical system does not cease to exist
when a situation where non-existence arises in the model. Multiplicity of solutions
indicates that there is insufficient information in the model to uniquely predict the
outcome of a situation (rather than claiming no outcome). And in these dynamics
problems, the missing information most likely lies in the microscopic details of the
contact between the bodies. The assumption of rigidity is of course not completely
true: there will be some elastic give in the materials although the deformation will
be measured in microns rather than millimeters or meters for most rigid materials
(provided the elastic limits are not exceeded).

An example of multiplicity of solutions that can arise in rigid body mechanics is
the rod example, but with 1/m+1? cos? /J—pl? sinf cos0/J < 0 and I sin 6 (df/dt)* —
g > 0. In this case, there are two solutions for N: one with N = 0 and one with N > 0.
There is also a third impulsive solution where the the velocity of the contact point is
driven to zero. The second solution with N > 0 but finite (corresponding to smooth
continued sliding) is actually very unstable. In particular, if the rigid table-top body
is approximated by a stiff but elastic spring, then continued sliding corresponds to
an unstable solution of the associated ordinary differential equations. Further, the
growth rate for perturbations about the continued sliding solution increases without
bound as the stiffness of the spring increases to infinity.

2. The measure differential formulation. The differential equation approach
to writing down “equations of motion” needs to use set-valued right-hand sides to
represent friction, and measures to represent impulsive forces; then it is a measure
differential inclusion. For rigid body mechanics, the measure differential inclusions
have the form

dv

M(Q)E + k(q,v) € FC(q),
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where v(-) is a function with bounded variation so that dv/dt is actually a mea-
sure. The matrix M(q) is symmetric positive definite and is called the nass matriz,
ki(q,v) = 532, ; [(0mui/0q;) + (Omu; [0q;) — (Omij [0q)] viv; — (OV/qr), and FC(q)
is the friction cone. In what follows, ¢, is the normal contact force, and c; is the
frictional contact force. Then for a particle, the friction cone is commonly given by

FO(q) = {canlq) +cp [ ep Ln(a), llesll < pen '}

for g on the boundary of the admissible region, with n(q) being the inward pointing
normal of the boundary; if ¢ is not on the boundary, then FC(g) = {0}. For more
general systems, F(C(q) is less easily described as it must be transformed from the
physical (z,y,z) coordinates to generalized coordinates (which may include angles,
orientations and related quantities). However, F(C(q) is still a closed convex cone.
Furthermore, the graph of FC(-) is closed.

The interpretation of the measure differential inclusion is as follows: for any
continuous ¢ > 0 on R not everywhere zero,

Jo(t) M(q) dv(t) + [ ¢(t)k(q(t),v(
[ o(t)dt

mdtem U Fc)).
Ti6(7)#0

(2)

An alternative solution concept is given in Monteiro-Marques [20] which uses the
singular decomposition of the measure dv and Radon—Nikodym derivatives. Provided
the cone F(C(q) is pointed for all g (that is, FC(q) does not contain a vector subspace),
(2) is equivalent to the Monteiro-Marques definition. The equivalence of the two
solution concepts has recently been shown in Stewart [29].

Additional requirements need to be imposed to ensure that the friction vector
is opposite to the direction of motion, at least in the plane of contact, and that the
impact is inelastic or elastic with a given coefficient of restitution. In this paper, only
inelastic collisions are considered. Inelastic collisions are formulated by Moreau [22]
and Monteiro-Marques [20] in terms of a mazimal dissipation principle, where the
choice of vector in the friction cone is made to maximize the rate of loss of energy (or
amount of energy if there is an impulsive contact force).

3. Complementarity formulation for time-stepping. In this section a com-
plementarity formulation of the time-stepping algorithm is given which can be solved
by means of Lemke’s algorithm for linear complementarity problems (LCP’s). (See,
e.g., [4].) This formulation is due to Stewart and Trinkle [31].

The representation of general rigid body systems will continue to use generalized
coordinates in order to develop the most general framework for algorithm develop-
ment. For example, for a rod in two-dimensions, the appropriate coordinate vector is
[z,y,0]" where z is the horizontal displacement of the center of mass, y the vertical
displacement of the center of mass, and 6 is the angle of the rod from horizontal in
the counter clockwise direction. The rod is assumed to have rounded ends with radius
of curvature p.

3.1. Representation of friction cones. The friction cone FC(q) is a closed
convex cone which contains the inward normal n(q). The friction cone is represented
by an approximate friction cone F/’\C(q) which is the convex cone generated by the set
{n(q) + pdi(q) | i =1,...,m}. It is assumed that for each i there is a j such that
d;(q) = —di(q), that n(q) is not in the span of {d;(¢q) | i = 1,...,m} , and that no
d;i(q) lies in the convex hull of d;(q) for j # 1.
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Fia. 3. Approzimation to circular friction cone

This representation gives a great deal of flexibility; isotropic or anisotropic friction
for contact in two or three dimensions, or even for soft finger models in which the
frictional contact can support a frictional torque about the normal direction [16], can
be represented. In generalized coordinates, the d;(q) vectors may incorporate torques,
as well as as ordinary forces.

The friction direction vectors for an octagonal approximation to a circular friction
cone are shown in Figure 3. Note that the frictional torques are not shown for clarity.

3.2. The formulation and the LCP. The task now is to compute ¢!t and
v!*! from ¢' and v! via the following LCP for one contact:

M@t —o)y = ne, + DB+ hk(¢', o),
4 — g = ot
(3) e + DTyt >0 1 8 >0,
nTg 1l > 1 cn >0,
pc, —etTB3 >0 1 A>0.

The additional variable A is in most cases an approximation to the magnitude of
the relative contact velocity. In some situations, such as where there is zero relative
contact velocity and the friction vector is zero, A can take any non-negative value, and
it has no physical meaning at all. Its purpose is to ensure that the correct components
of 3 are non-zero and that the method is dissipative.

The middle inequality of (3), nT¢'™! > ag is a guarantee that the (linearized)
rigid body constraints are satisfied. The final inequality ensures that D lies in the
approximate friction cone, and the corresponding complementarity condition ensures
that if there is relative motion at the point of contact at the end of the time interval,
that Df lies on the boundary of the friction cone.

Multiple contacts can be dealt with using a suitable generalization of (3) as dis-
cussed in [31].

3.3. Solvability of the LCP. To show the solvability of the above mixed LCP,
¢'T! and v'*! are written in terms of ¢, and 3 to give the Schur complement system

DTM~'D DTM™'n e Jé] p Jé]
nTMID nTM'n 0 en | +0=| 0o [ >0 L en | >0
—eT 7 0 A ¢ A
(4) DT (v} + hM1F)

where b= (nTq' —ag)/h+nT (' +hM~1k) |.
0
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Writing this LCP as LCP(NV, b) it should be noted that N is copositive (see Cottle,
Pang and Stone [4, Defn. 3.8.1]), but not copositive plus ([4, Def. 3.8.1]). Nevertheless,
solutions do exist ([4, Thm. 4.4.12]) since the only solutions of LCP(N,0) have the
form 2% = [0, 0, A], and

T

0 DT (o' + hM~'k)
(5) 2Th=1 0 (nTq" —ag)/h+nT (W' +hM~1k) | =0£0.
A 0

In fact, not only do solutions exist, but Lemke’s algorithm, (described in [4, Algo. 4.4.1])
can compute solutions, provided precautions are taken against cycling due to degen-
eracy. (See [4, §4.9] for details on anti-cycling methods for LCP’s.)

While solutions are guaranteed to exist, uniqueness is not guaranteed by these
results, although for most problems it is expected to be unique.

3.4. The nomnlinear versions. In practice, the complementarity problems that
need to be solved are nonlinear, since the LCP formulation (3) uses only a linearization
of the feasible set, and various quantities in the LCP (such as the mass matrix M, the
direction vectors D, and the normal vector(s) n) all depend on ¢. While it is possible
to ignore this dependence and evaluate the quantities at ¢! rather than ¢/** (or some
combination of these), it is important to perform the evaluation at ¢'*! for n, ag and
M.

The reason that n and ag must be evaluated at ¢, is that it is important for
¢'T! to be exactly feasible. Without exact feasibility, the normal contact forces will
force ¢"(+) to be nearly feasible, but at a cost of dissipativity. Indeed, some numerical
solutions computed by the author without forcing exact feasibility “blew up” with
large increases in the kinetic energy that are quite unphysical. To ensure exact fea-
sibility, n = n(¢"t!) and ap = nt¢*t — f(¢'*!) where the feasible set is given by
{al f(g) >0}

If the mass matrix used in (3) is M = M(¢'*!), then the local boundedness of
the velocities can be proven. For computation, this does not seem to be crucial, but
it is useful for the theory.

The existence of solutions to the nonlinear version can be shown using Brouwer’s
fixed point theorem. (For a description of Brouwer’s fixed point theorem and related
results, such as the Kakutani fixed point theorem, see [13].)

These nonlinear versions can be solved quickly and accurately in practice by a
simple iteration, where ¢/*t! is approximated by g'*! = ¢' + hv!, and the LCP (3)
solved with M, n and ag evaluated at g*T'. The solution of the LCP then gives a new
approximation g't!, which can be used to re-evaluate M, n and ag, which are used
for the next iteration. This iteration is used until a small error tolerance is achieved.
In practice, this iteration is quite effective, with convergence being roughly geometric
with a factor of 1072 or better, depending on the step size.

3.5. Dissipativity. Dissipativity for the case of constant M and constant k can
be shown directly from the LCP (3) giving
%(,Ul+1)TM,Ul+1 +ETg Y < Lol Tt + kT gt — Apen — %(,Ul-',-l — )T M+ — o)
< Tt T MO + kTG

1
2 1
2
Dissipativity for the general nonlinear case cannot be guaranteed in general; this is the
case even for general smooth Hamiltonian systems. While there has been considerable
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recent work on symplectic integrators (see, e.g., the survey by Sanz—Serna [26]), these
do not in general conserve energy, but can almost conserve an approximate energy
function. Guaranteeing dissipativity for the general case is not appropriate for the
numerical approximations, but rather dissipativity can be guaranteed for the limit
solutions through the convergence theory.

4. Convergence and dynamics issues. With the results of the previous sec-
tion, it is clear that the method can produce numerical trajectories. While the formu-
lation appears correct for a single time-step, convergence of the numerical trajectories
to true trajectories of the measure differential inclusion.

To discuss convergence issues, consider the step size h | 0. Let v%" and ¢" be
the computed generalized velocity and position respectively, for step ! using step size
h. To compare these with the true solution, we use the “interpolants” v”(-) and ¢"(-)
defined as follows: Put ¢; = [ h. Then set v" () = v!T1% and ¢"(t) = ¢/ + (t—t;)0! 1P
for t € (t;,t;+1]- This means that dq"/dt(t) = v"(¢) for almost all ¢, ¢"(-) is locally
Lipschitz, and Vo' = Y, |[olthh — bk,

The proof of convergence takes a number of steps which are as follows:

1. Show local boundedness for the numerically computed velocities v"(-) via a
discrete Gronwall lemma.

2. Given the (local) boundedness of the computed velocities, show that the
variations Vo" are uniformly bounded.

3. Apply the Arzela-Ascoli theorem to ¢"(-) and the Moreau—Valadier theo-
rem to v"(-) to show convergence of a subsequence, uniformly for ¢"(-) and
pointwise for v"(-) (weak* for the measures dv”(-)).

4. Show that limits of converging subsequences are solutions of the measure
differential inclusion.

5. Show that the limits also satisfy a maximal dissipation principle.

While the full details are beyond the scope of this paper, some aspects of the conver-
gence proof can be illustrated here.

Some basic assumptions that must be made are: the functions M(-), n(-), D(:)
and k(-,-) are all smooth and globally Lipschitz; the mass matrix M (q) is positive
definite (uniformly in q); M(-), n(-) and D(-) are all uniformly bounded above; the
magnitude of n(q) is bounded away from zero (or for multiple contacts, the smallest
singular value of n(q) is bounded away from zero).

4.1. Local boundedness. Local boundedness for the numerical velocities as
the step size h goes to zero can be shown using the dissipativeness of the numerical
scheme for constant M and k. The result below assumes that the method is implicit
in the mass matrix; that is, the value of M used in (3) is M (¢'*!). The local bound
can be shown by determining a local upper bound on the kinetic energy KE'h =
()T M (¢ )vh of the numerical solution:

lim sup KEW/ M0 < 6(1)
hl0

where 6(t) is the solution of the differential equation df/dt = a6*/* +b6'/%. Although
solutions of this differential equations do blow up in finite time, it does give local
boundedness.

To obtain boundedness for an unbounded time interval, it suffices to obtain con-
vergence of the numerical solution for any sufficiently small time interval, together
with boundedness of the exact solutions.
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If M is constant (so that k(q,v) = —VV(gq), which is assumed bounded), then
global boundedness of the numerical solutions can be obtained directly:

lim sup KEL/MP < (1)
hi0

where df/dt = a + bv/6 with solutions 6(t) < ¢(1 + t?) for some constant ¢, so that
the velocity grows at most linearly in time.

4.2. Bounded variation. The local boundedness of the velocities can then be
used to show uniformly bounded variation of the numerical velocity functions v"(-)
(uniform as h | 0), at least on sufficiently small open intervals. The proof relies on
the pointedness of the friction cones F((q) for all ¢ and the assumption that FC(-)
has a closed graph. However, the “infinite friction” problem with p = 400 appears
to lead to difficulties, although no specific paradoxes or inconsistencies for this case
are known to the author. Once the result is known for open intervals, it then follows
that v"(-) has uniformly bounded variation as h | 0 on any compact interval in which
the numerical velocities are uniformly bounded as h | 0.

4.3. Convergence. To complete the convergence theorem, not that uniform
boundedness of v"(-) and the variation of v"(-) imply that there is a converging
subsequence of (v"(-),¢"(+)) with a limit (v(-),¢(+)) with v"(-) = v(-) weakly in BV.
The limiting velocity v has bounded variation, and dq/dt = v is satisfied. Further,
the measure differential inclusion

dv

o~ Ha.v) € FClg)

M(q)
is satisfied. (This step requires an appropriate weak closure property for solutions of
measure differential inclusions.)

Also, the maximal dissipativity property can be shown to hold for the limiting
solution. From the numerical dissipativity results for constant M and k, it can be
shown that the limiting solution is dissipative for smooth M (q), k(g,v) and feasible
region. Exact dissipativity can improve the situation greatly, as it implies that the
limit has globally bounded velocities, and convergence is not restricted to a fixed finite
interval.

5. Numerical results. The time-stepping method has been implemented and
numerical results obtained. Two main test problems have been used: a falling, spin-
ning rod; and a set of four balls.

To demonstrate convergence of the algorithm, graphs of the numerical results for
different values of step size h are shown in Figures 5 and 6. Note the absence of
numerical chattering in the solutions.

For the balls, Figures 7 and 8 shows the elevation and plan respectively of their
trajectories for a step size of 0.01. Also, Table 1 shows how the errors change with the
step size; the velocity errors estimated by ||v” —wv||;, and the position errors estimated
by |l¢" — qlles (the co-norm was used on R?*). As is evident from Table 1, the errors
show a rough O(h) behavior.
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Fia. 4. Falling and spinning rod, h = 0.01
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Vertical velocity profiles: falling, spinning rod
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Angular velocity profiles: falling, spinning rod
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Rigid body dynamics with inelastic collisions 14

Step size h | Velocity error | Position error | Velocity variation
0.02 0.5050 0.2505 19.4046
0.01 0.3523 0.2015 19.1728
0.005 0.1657 0.0838 19.1702
0.0025 0.0700 0.0298 19.0862
0.00125 — — 19.0690
TABLE 1

E'rrors and variations for numerical solutions of four balls problems
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