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Abstract

Grasping by a two-dimensional hand composed of a palm
and two hinged fingers is studied. The mathematics of fric-
tionless grasping is presented and used in the development of
a planner/simulator. The simulator computes the motion of
the object using an active constraint set method and assuming
exact knowledge of the physical properties of the polygonal
object, hand, and support. Grasping is divided into three
phases. During the first phase, the initial grasping configura-
tion is found. In the second phase, the object is manipulated
away from the support, bringing it into contact with the
palm. In the last phase, the grip is adjusted to minimize the
contact forces acting on the object.

This research was supported by the following grants: IBM 6-28270,
ARO DAAG6-29-84-k-0061, AfOSR 82-NM-299, NSF ECS 8411879,
NSF MCS-8219196-CER, NSF MCS 82-07294, AVRO DAABO7-
84-K-FO77, and NIH 1-RO1-HL-29985-01. Any opinions, findings,
conclusions, or recommendations expressed in this publication are
those of the authors and do not necessarily reflect the views of the
granting agencies.

The International Journal of Robotics Research,
Vol. 7, No. 3. June 1988,
© 1988 Massachusetts Institute of Technology.

An Investigation
of Frictionless

Enveloping Grasping
in the Plane

1. Introduction

Flexible manufacturing workcells typically contain a
robot arm and many expensive, special-purpose, end-
of-arm tools. The potential for cost and time savings
through the use of a general-purpose hand has fueled
much research in the last 10 years on designing, ana-
lyzing, and programming articulated mechanical
hands (Hanafusa and Asada 1982; Okada 1982; Salis-
bury 1982; Kerr 1984; Kobayashi 1984; Cutkosky
1985; Holzmann and McCarthy 1985; Juan and Paul
1986). Most studies have proceeded under the as-
sumption that contact friction forces will be large
enough to keep the object from sliding on the fingers.
In contrast, this paper is concerned with the mechani-
cal analysis of “hands” when the friction forces are
not large enough to prevent sliding. The results are ap-
plied to planning grasps using the surfaces of the hand,
not just the fingertips.

Previous Work

The potential for grasping and manipulating a wide
variety of objects with a single end-effector has en-
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couraged research in grasp mechanics as well as in
sensing and hand programming. Salisbury (1982)
studied the mechanics of fingertip grasps under the
assumptions of rigid-body kinematics and coulomb
friction. For an object held in tip prehension, he de-
veloped a method to control the hand to impart small
arbitrary motions and apply arbitrary forces to the
object. He also developed a method to control the ef-
fective Cartesian stiffness of the grasped object. Cut-
kosky (1985) included the effects of the curvature of
the fingertips and the structural stiffness of the fingers.
Central to Salisbury’s formulation is the hand’s ability
to apply normal forces to the object that are large
enough to prevent slipping between the object and any
finger. Since slipping cannot always be prevented,
Holzmann and McCarthy (1985) developed a method
to predict slipping and the accompanying friction forces.

There are an infinite number of possible grasps of
an object. Jameson (1985) applied numerical optimi-
zation techniques to choose a three-point grasp that
provided complete rigid restraint of the object relative
to the hand. Hanafusa and Asada (1982) developed a
hand with flexible fingers to pick up planar objects.
They derived stability conditions and grasp-selection
criteria based on minimizing the potential energy of
the fingers. Others have applied optimization tech-
niques to various objective functions to choose “‘opti-
mal” grasps (Boissonnat 1982: Kobayashi 1984; Han-
afusa 1985: Jameson 1985; Nguyen 1985: Trinkle
1985).

A very difficult area of grasping research is planning.
Planning grasps for articulated mechanical hands is
computationally expensive. Perhaps this is why the
only work to date is for grippers with prismatic joints.
Laugier and Wolter (Laugier and Pertin 1983; Wolter
et al. 1984) both plan grasps by considering the vol-
ume swept out by a parallel-jawed gripper in its ap-
proach to an object. Juan (Juan and Paul 1986) built
an interactive system, PAAR, to aid planning assembly
tasks. Extending Mason’s (1984) work in manipula-
tion, Brost (1985) developed a technique for planning
grasps of polygons that were free to slide on a support-
ing plane.

The most mathematically complex aspect of grasp-
ing is in the manipulation of the grasped object over a
large range. Okada (1982) programmed a hand with
three fingers and 11 degrees of freedom to turn a nut
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Fig. 1. A typical hand in an
initial grasping configura-

tion.
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onto a bolt. Such successes are few because the equa-
tions describing manipulation are differential, nonlin-
ear, time-varying, and constrained (Kerr 1984).

.2. Problem Statement

The problem addressed is that of picking up an object
with an articulated mechanical hand in the absence of
friction. It has been shown by Lakshminarayana
(1978) that if a frictionless grasp is used to completely
restrain an object, using only fingertips, a hand would
need a minimum of seven fingers (four in the two-di-
mensional case). However, the necessary number of
fingers may be reduced to three (two in the plane) if
the hand’s entire palmar surface is used' (this includes
the palm and those surfaces of the fingers that face the
palm).

.3. Assumptions

A typical two-dimensional ““hand” is shown in Fig. 1.
There are two single-link fingers (bodies | and 2) and

This idea was proposed by R. Bajcsy.
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a flat palm. The object (body 5) is initially at rest on
the support. which is fixed in the world. The x- and )-
axes of the world coordinate frame define the plane of
interest. All moments and rotations have nonzero
components in the z-direction (out of the page). For
the mathematical analysis presented in Section 2, we
make the following assumptions:

1. the fingers and hand move under exact posi-
tion control,

2. all bodies are rigid convex polygons,

3. the mass and the position of the center of grav-
ity of each body is known,

4. the kinematic arrangement of the hand is
known,

5. the motion proceeds slowly enough to ignore
dynamic effects,

6. there are no friction forces acting on the
bodies, and

7. the object is initially at rest in a known position
on the supporting surface.

As a direct result of the second assumption, we know
that for any pair of contacting bodies, the contact
occurs either at a point or along a line segment. A line
segment contact is treated as two point contacts. one
at each end of the segment. This assumption allows
for the uniform treatment of all contacts while main-

taining the correct kinematic constraints ( Featherstone
1985).

.4. Notation and Conventions

The notation and conventions used in this paper are
as follows: vectors are indicated by boldface, lowercase
letters (e.g., x); circumflex, X, is used to denote unit
vectors: matrices are boldface, uppercase letters (e.g.,
A); a dagger superscript, At, denotes the pseudoinverse
of the matrix; a matrix A or vector x defined with
respect to a coordinate frame B is written as BA or Bx,
respectively (if B is the world frame. the superscript is
absent); a dot, X, over a variable implies its time deriv-
ative; AT is the transpose of A; and the subscripts x, },
z when applied to a vector indicate one of its compo-

nents (e.g., X, 1s the x-component of the vector x).
Vector inequalities apply term by term.

2. Mathematics

We begin by defining the mathematical framework for
the analysis of frictionless grasping in the plane. It is
convenient to define several coordinate frames and
represent them as 3 X 3 homogeneous transformation
matrices (Paul 1981). Let C; be the contact frame
associated with the ith contact point (see Fig. 1). Then

_|fc 9 Pc =
G [O 0 ], i n.,, (1)

where 6 is the ith contact normal directed inwardly
with respect to the object, fic, is the contact tangent,
Pc, is the position of the contact, and 7. is the number
of contact points. There are n, body frames, By,

_ | s, 08, P8 L
B, [o 0 ] :

that are fixed to the ith body, with its origin pp,, at the
center of mass. At the base joint of the ith finger, we

define
_ i, 6 p
T [ 0 0 I ]

where n,is the number of fingers. The frames’ origins
are at the centers of the joints about which the actua-
tors apply torques 7;,, i =1, . .

s Ny, (2)

’ nf9 (3)

. ,nf.

Velocity Constraints

If there were no contacts between any of the bodies.
then the hand and object would be free to move in

any manner. However, when executing a grasp, the
contacts constrain their motion. Consider two rigid
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Fig. 2. A pair of rigid bodies
in point contact.

WORLD

bodies in contact at the point p,, as shown in Figure
2. Let p,; be the ith contact point on the jth body.
The velocity of that contact point on the jth body is

Pi; = Py, + Wp; X P (4)
where pg, is the velocity of the center of gravity of the
Jjth body, p,; is the position of the ith contact point
with respect to the jth body, and wg is the angular ve-
locity of the jth body. Writing equation (4) in matnx
form saving only those components relevant to the
two-dimensional problem yields

pii= [ 0 (—Pi.j)y][ Ps, ]
h 0 1 (pi)x Illws) ’

where |wg | is the magnitude of wg . The relative veloc-
ity at the contact point is

(5)

Vi=Pi;~ Pix- (6)
Since the bodies slide or roll on one another or sepa-
rate, the relative velocity constraint imposed by the
contact is given by

dc, Vi=0,

¢

for which equality is in effect during sliding and roll-
ing, and inequality implies that the objects are separat-
ing.

If we consider the two bodies to be pinned together
at the ith contact point, as is the case for the paim and
a finger, it is only possible for the bodies to rotate
about the joint. Thus the relative translational velocity
at the joint must be zero:

(8)

Using inequality (7) for each contact point and Eq. (8)
for each finger joint, the system’s velocity constraints
at a given instant may be written as

g
[Vo Voo Vil dw =0,
Gy

9

where 6 is the vector of joint velocities. 4 is the ve-
locity of the object, and g, is the velocity of the palm.
The quantity V.4, represents the components of the
velocities of the contact points on the object in the
directions of their respective contact normals and V0
and V4, represent the velocities for contact points on
the fingers and the palm, respectively.

2.2. Static Equilibrium

The hand/object system must satisfy inequality (9)
and the equations of static equilibrium. Referring
again to Fig. 1, we write

S = —mgg, (10)
=1

E‘pC,Xfx‘=—mopr,Xga (11)

=1
T+ S —T(pc, X £), = —mT(pn, X g);. (12)

H=39 M

k= ,n,-,

where Q, = (i| the ith contact is on the kth finger), m,
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is the mass of the kth finger, m,, is the mass of the
object,g"={0 —g 0], and g is the gravitational ac-
celeration constant. Equations (10) and (11) are the
force and moment balance equations, respectively, for
the object. Equation (12) is the moment balance for
the kth finger. Writing Egs. (10)-(12) in matrix form
for the two-dimensional problem gives

Ax =b,

W 0 _le W

A [W,— I]’ X [t]’ $ [s]’
7 is the vector of joint moments (n,X 1), c is the vector
of contact force magnitudes (n_. X 1), w is the vector of
gravity forces and moments acting on the object
(3 X 1), s is the vector of gravity moments acting about
the joint axes (n,X 1), 1 is the identity matrix (n,X ny),
0 is a zero matrnix (3 X ny), W,, is the object wrench
matrix (3 X n.) as defined by Salisbury (Mason and
Salisbury 1985), and W is the wrench matrix for the
fingers (n,X n.). The elements of Wy, w, W, and s
are defined as follows. The upper left partition of the
equilibrium equation (13) is the same as that labeled
Eq. 5.2 on page 41 in Mason and Salisbury (1985). It

refers only to the object and is defined for the two-di-
mensional case as

(13)

where

W =[ dc, éc,, ]
% L(Pe)u(®y), = (Pe) D). (P )x8,)y — (Pc )(0n)
(14)

The gravity force and moment acting on the object
(with respect to the world coordinate frame) is

e g
b [(pn, X g),]

The lower partition of A is the equilibrium equations
for the fingers. The finger wrench matrix Weis

(15)

€, €2 €1 n,

W= , (16)

e’l/, i en

1.2 €,

where

€;; = (Pc,)(8;), — (Pc),(0)), if the jth contact is on
the ith finger,

e,J'—‘O OthCrWiSC,i=1,.--,nf;jzla-"

The gravity moments acting on the fingers are given by

, Ne.

5y

(17

s nf,

where s, = —m, T«(pp, X g),, k is the finger number,
and T, is the coordinate frame defining the base of the
kth finger.

2.3. Object Motion

To plan grasps, we must be able to predict the motion
of the object, given the palm and finger motions. If we
consider an infinitesimal increment in time, we can
rewrite inequalities (9) in terms of differential motions
as

dé
Vobdqob = —[VG Vp] [dq ]’ (18)
P

where only dq,, is unknown. Inequality (18) represents
the kinematic constraints on the motion of the object.
If we solve for dq,, we find that the solution is not
unique. Figure | shows an initial grasping configura-
tion. After moving the palm and fingers a small
amount, the object will move to a new position. Figure
3 illustrates an ambiguity inherent in the kinematic
constraints (18). Both Figures 3a and 3b show kine-
matically admissible solutions, but the position of the
object shown in 3a is physically incorrect if there is no
friction present. We can resolve the kinematic ambi-
guity by noting that if the motions are slow and there
is no friction, then the object must move to minimize
its potential energy. Thus the motion is given by the
solution to the following linear program
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Fig. 3. The ambiguity inher-
ent in the kinematic con-
straints.

3b

)
3a
Minimize y= m_;7q,,., (19)
Subject to V4., =¢, (20)
q,p Unrestricted, 21)

wherey=[0 g Oland &é=—-[V, v,] [:] The

linear program defined by Egs. (19)~(21) is ’;he veloc-
ity formulation of the object motion. Its physical in-
terpretation is that the object velocity must satisfy the
velocity constraints while minimizing the object’s rate
of potential energy gain. The theory of linear program-
ming provides a dual formulation for every linear
program (Gill, Murray, and Wright 1981). The dual of
the velocity formulation is the force formulation

Maximize : = ¢Tj, (22)
Subject to VI A= m,y, (23)
Az=0. 24)

The variable 4 of the force formulation is the dual
variable of the velocity formulation and is the vector
of Lagrange multipliers associated with the velocity
constraints. They are also known to be the magnitudes
of the contact forces (Whittaker 1937), which were
denoted earlier as ¢. Note that the objective function

38

of the force formulation is the rate of work done by

the object on the hand and that constraints (23) are the
equations of equilibrium of the object taken with re-
spect to its center of mass. Thus, the object’s motion is
determined by minimizing the virtual work performed
on the object while maintaining static equilibrium
with nonnegative contact forces (constraints (24)).

2.4, Tippability

In order to lift an object that is resting on a flat surface,
using smooth fingers. we must first be able to cause
the object to tip. After the hand is positioned and the
fingers begin to squeeze, the object will either tip
toward the palm or not move at all. If the object begins
to move, it can do so in only two ways. It may trans-
late, completely breaking contact with the support, or
it may rotate so that one end of the support segment
maintains contact. Translation occurs under special
circumstances with three point contacts and in sym-
metric cases with only two, but normally the object
will break contact with the supporting surface by ro-
tating as shown in Fig. 3B. In either case. if the object
moves it possesses an important quality that we call
tippability.
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Fig. 4. A right tippable initial
grasping configuration.

Definition

An object is tippable if there exists finger contact
positions on its perimeter (excluding the support-
ing edge) for which increasing the fingers’ contact
forces drives at least one supporting contact force
to zero.

Determining the tippability of an object aiiows us to
place the hand on it with prior knowledge of the in-
stantaneous result of squeezing the fingers together. In
order to define tippability, consider a fingertip in con-
tact with the object at the right support contact, as
shown in Fig. 4. Note that the contact normal at the
fingertip has a negative x-component. We define the
right tippability region as that part of the perimeter of
the object for which a finite contact force will cause
the left support contact force to go to zero. In other
words, the moment of the contact force about the
right support contact must have the same sense as that
generated by the left support contact force. At vertices,
we consider all contact normals which could be
achieved by an edge of a finger in contact with that
vertex. (A contact normal is defined by the object’s
edge for the case of a finger tip contact and by the
finger’s edge for the case of a finger contacting a vertex
of the object.) Also, since we want to balance the con-
tact force component in the negative x-direction, only
those points whose contact normals have a positive
x-component are considered. Let the vertices be num-

Fig. 5. Determining the edge
subregions of the right tippa-
bility region.

vernex

support

bered in increasing order moving counterclockwise
around the object and let the ith edge lie between the
ith and (i + 1)th vertices. The right tippability region is
delimited by considering two sets of rays R, ;
i=1,...,k(seeFigure 5)and R, ;

i=1, ..., k(see Figure 6) emanating from the right
support contact point. The ray R,, is perpendicular to
the ith edge of the object, and the ray R, passes
through the ith vertex.

The right tippability region of a k-sided polygon is
divided into 2k subregions. For each edge of the ob-
ject, there is an edge subregion which is a portion of
the edge. For each vertex, the vertex subregion is a
range of finger angles. Since access to the supporting
edge and vertices is obstructed by the support, the
subregions corresponding to them are empty. Measur-
ing counterclockwise from the x-direction, we define
a;and ;5 i=1, . . ., ktobe the angles of R, and
R,,, respectively. The ith edge subregion is the portion
of the ith edge for which the contact normal passes
above the right support contact. This is seen to be the
part of the ith edge between the ray R, and the ith
vertex. This subregion is only valid if n/2 < a; < 37/2,
because of the requirement that the contact normal
have a positive x-component. Note that the subregion
corresponding to the ith edge, shown bold in Figure 5,
is the entire edge, but that the subregions for all of the
other edges are empty. The ith vertex subregion,
shown as a bold arc in Figure 6, is the set of finger
angles, ¢;, for which the contact normals have a posi-
tive x~-component and pass above the right support
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Fig. 6. Determining the
vertex subregions of the right
tippability region.

contact. The subregion is defined as {(¢,|8;, — 7/2 <
&,y;}, where B, — n/2 is the angle of the perpendicular
to the ray R, and 7, = atan 2 (y; = Y41, Xi — Xi+1)s
where atan 2 is the inverse tangent function, which
computes angles from — 7 to x, and x; and y, are the
Xx- and y-positions of the ith vertex. The condition

0 <y, <mis to ensure that the x-component of the
contact normal is positive. Also, the ith vertex subre-
gion is empty if y; < 8, — n/2, which will occur when
the ith edge subregion is empty. The vertex subregion
for the ith vertex is shown as a heavy arc in Fig. 6.
Note that all the other vertex subregions are empty,
since B, — /2 > 3., k # i. The left tippability region
may be obtained in a similar way.

If the tippability regions for a convex polygon are
empty, then we are guaranteed that the object cannot
be lifted in a quasi-static mode without friction. This
condition will occur when there is no point on the
exposed perimeter of the object that has a contact nor-
mal that passes through the support outside the sup-
porting edge of the object. As a result, any moment
applied to the object by a frictionless contact will be
resisted by the supporting contact forces.

Tippability analysis is similar to work done by
Mason (Mason and Salisbury 1985) and Brost (1985),
who determined the qualitative motion of the object
based on the motion and position of the fingers’ con-
tact points. We were able to exactly predict the velocity
of the object via the object motion linear program
(19-21). This was possible because we had precise
knowledge of the external force acting on the object.
Mason and Brost were not able to do so, because the
force acting between the object and the supporting

plane was dependent upon unknown surface variations.

40

Fig. 7. A form-closure grasp
of the object.

11 ]

2.5. Grasp Stability

A frictionless grasp begins as shown in Fig. 1, with the
object on its support and the hand just touching it.
Our goal is to achieve an enveloping grasp of the ob-
ject. An enveloping grasp is characterized by the ob-
ject’s being completely restrained with respect to the
hand when the finger joints are locked. This type of
grasp has been termed a form-closure grasp (see Fig. 7)
by Lakshminarayana (1978). Form closure requires
the satisfaction of two conditions. First, the kinematic
constraints (18) must be satisfied, which disallows
mutual penetration of the hand and the object. Sec-
ond, no nontrivial motion of the object may satisfy the
kinematic constraints when the palm and fingers are
fixed (i.e., dq, = 0, d0 = 0). In other words. the condi-
tions for form closure are that the matrix ¥, must be
such that the system of inequalities

Vopdgos =0

admits only the trivial solution, dqq, = 0.

Form closure is equivalent to requiring that the
contact forces may be combined to resist any applied
force and moment. This condition guarantees that the
object can always be held in equilibrium. The .pgrti'-
tion of equation (13), which represents the equilibrium
of the object is

Woe=w’
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where w’ may be any disturbing force. Also, the con-
tact forces must be compressive, not tensile, so
c=0. @2n

Since w’ is completely free, Eqs. (26) and (27) imply
that any vector in Euclidean 3-space, R?, can be repre-
sented by a nonnegative linear combination of the
columns of W,,. In other words, the nonnegative col-
umn span of W, must be equivalent to R, This is
why at least four contact points are needed for a form-
closure grasp (see Trinkle 1985, Appendix A, pp. 29,
30 for a proof).

Lety,, f= l, ..., n., bethe columns of W,. The
nonnegative span of y; is given by C* =
{(ujlu= 27, auy;; o; 2 0 for all ;). Between the initial
state (Fig. 1) and the first time that the object is in a
form-closure grasp, the object is, in general, in equilib-
rium through force closure (Reuleaux 1963). A force-
closure grasp occurs when C* C R*and w’ € C*. In
other words, the object is in equilibrium because the
gravity force holds it against the contact points (see
Fig. 8). If gravity were acting in the opposite direction,
then the object would be unstable. In some cases
w’ & C*, so the object becomes unstable and falls
until a new set of contacts gives rise to a new C* that
contains w’. This condition usually arises when the
object has three contacts and one of the contact forces
goes to zero during manipulation.

3. The Planner/Simulator

The mathematics given above in Section 2 have been
used to develop a planner/simulator for generating
enveloping grasps in the plane. The flow chart (see
Figure 9) shows the input to be the kinematic, geomet-
ric, and other physical data of the hand, object, and
support. After reading the data, all of the coordinate
transforms are initialized. Next the left and right tip-
pability regions of the object are computed. If the
regions are empty, then the object cannot be lifted and
the program exits. If the object is tippable, then the
planner attempts to find an initial grasping configura-
tion in one of the tippability regions. If due to hand

Fig. 8. A typical force-closure
grasp.

kinematics, a grasping configuration cannot be found,
then an alternative scheme must be used to place the
hand. For each placement, tippability must be
checked. If a tipping configuration cannot be found
for any placement, the program exits.

If an initial configuration for the hand is found
from which the object can be tipped, the planner de-
termines displacement increments for the hand: palm
position and orientation changes and finger angle
increments. These increments are sent to the simula-
tion module, which computes the resulting motion of
the object. The configuration of the hand and object
are then updated and sent to the planner for it to plan
the next increments. When the planner determines
that a suitable grasp has been achieved, it outputs the
trajectory and stops.

3.1. The Simulator

The simulator that we have developed is specific to
two-dimensional, frictionless grasping. Where possible,
we have relieved the simulator of some of the compu-
tational burden that would be required for a com-
pletely general simulator.

As stated, only line segment and point contacts may
occur among the bodies represented in our system.
We also have argued that a line segment contact may
be treated as a pair of point contacts, one at each end
of the segment. The simulator must locate and keep
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Fig. 9. Flowchart for plan.
ner/simulator.
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Fig. 10. The paim edges of
the hand are drawn heavy.

track of the contact points while manipulating the
object to create a form closure grasp. To make this as
simple as possible, we use the fact that we are only
looking for enveloping grasps. In an enveloping grasp,
the object may only contact the hand on the *“‘palmar
edges,” by which is meant those line segments shown
bold in Figure 10. When looking for contacts, we need
only consider the palmar edges, the support line,

y =0, and all of the edges of the object.

After moving the hand, we must minimize the ob-
ject’s potential energy while preventing interference
between the object and the other bodies. Attempting
to find the position and orientation of the object by
solving a nonsmooth optimization ( Lemarechal and
Mifflin 1977) problem is difficult and prone to error.
Given the positions of the palm and fingers, the objec-
tive function is linear, but the constraints are nonlin-
ear, nonsmooth inequalities which represent the inte-
riors of the bodies as functions of the object’s position
and orientation. The rotations of the object give rise to
trigonometric terms, and its vertices are responsible
for discontinuities in the constraint derivatives.

As an alternative to this formulation, we chose to
use an active set method. The method consists of three
steps. First the force formulation of the velocity prob-
lem, Egs. (22)-(24), is solved to determine the set of
contacts that will be active at the beginning of the
current increment in the motion of the hand. This ac-
tive set, which corresponds to nonzero values of the
Lagrange multipliers, is used to generate a system of
smooth, nonlinear, algebraic constraint equations (not
inequalities),?

2. See Appendix for the derivation of the contact constraints.

Ci(qob) = Ov i= 1’ . s Bey (28)
that we assume are in effect throughout the entire
motion increment. The second step is the simuita-
neous solution of the constraint equations, the result
of which is the new position and orientation of the
object. The third step is a consistency check. We as-
sumed in the first step that the active contact set is
active for the entire motion increment and that no
changes in the contact conditions are encountered. It
is clear that this is not always the case, so we must
check for changes. One way that a change can occur is
by a collision between two bodies. Another way is by
an edge contact’s changing to a tip contact, or vice
versa. This change occurs when a vertex of the object
that had been in contact with a finger edge slides past
the tip during the motion increment or when a con-
tacting fingertip slides past a vertex, which then re-
mains in contact with the finger’s edge. The last way
in which the contact conditions can change is by one
of the contact forces going to zero, resulting in a lost
contact. If any of these conditions are found, the in-
cfement is adjusted; the motion is computed up to the
point of the change in contact conditions; contact
conditions are updated, and the new configuration is
sent back to the planner. The object motion is not
integrated over the original increment.

During an increment in the simulation of the mo-
tion. we have assumed that certain contacts are main-
tained. This assumption enabled us to write the active
constraints as a system of equalities in terms of the
position and orientation of the object q,. Figure 11
illustrates the two possible tvpes of contacts: they are
both vertex-to-edge contacts. but result in very differ-
ent constraint equation forms because of their rela-
tionship to the object’s frame. Figure 11A shows an
edge contact (an edge of a finger contacts a vertex of
the object). An edge contact is characterized by the
fact that the contact point on the object is fixed with
respect to the object’s frame. whereas the contact point
on the finger moves with respect to its coordinate
frame. The other type of contact is a tip contact (see
Figure 11B.). In this case. the contact moves with
respect to the object, but not with respect to the finger.

The computation required for each increment of
motion in the simulation is: 1) the solution of a linear
program with three independent variables, 2) the solu-
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Fig. 11. Contact types. A.
Edge contact. B. Tip contact.

tion of a system of three nonlinear algebraic equa-
tions, and 3) a search for new contact conditions. If a
new contact arises during the increment, then the
results of item 2) above are discarded, the increment is
shortened, 2) is repeated, and the contact set is ad-
justed to include the new condition detected in 3.

3.2. The Planner

Planning is partitioned into three phases. The first
phase is the pre-liftoff phase, during which the hand is
placed in a suitable position for grasping. Before posi-
tioning the hand, the planner computes the tippability
regions of the object. If they are empty, then no plans
are made because the object cannot be picked up. If
the tippability regions are not empty, then the planner
attempts to find an initial grasping configuration con-
sistent with the tippability regions. If the hand can be
placed on the object with one fingertip at a support
contact and the other finger within the appropriate
tippability region, then squeezing the fingers will tip
the object, moving it toward the palm (see Fig. 4). On
the other hand, if the kinematics of the hand preclude
all grasps within the tippability regions, then the hand
is centered over the object and closed until the fingers
touch the object. Since the resulting initial grasping

4

finger
lz < g Z_,
object
A

object

configuration is not in either the left or right tippability
region, we must determine whether squeezing will tip
the object by solving the velocity formulation of the
object motion problem, Eqs. (19)-(21). If there is a
feasible solution, then the object will tip, and the van-
ishing of dual variable(s) will indicate which support
contact(s) is (are) broken at the onset of motion. We
call such an initial grasping configuration tippable.
One aspect of pre-liftoff planning that we will not
discuss is the computation of a trajectory that can be
used to move the hand to the initial grasping configu-
ration. We do not address that issue here, but refer the
reader to a paper by Kuan, Zamiska, and Brooks (1985).
The second phase of planning is called the /ifting
phase. It is characterized by independence in the plan-
ner’s choice of the finger angle increments. It begins
when the object first starts to move, and ends when a
form-closure grasp is achieved. During the lifting
phase, the grasp plan is generated incrementally. The
planner chooses small finger angle increments that will
cause the object to move toward the paim. sends the
proposal to the simulator, and waits for the results of
the simulation before planning the next increment.
Thus the planner always uses the most up-to-date
information available about the state of the system to
plan the motion of the hand. Also. the planner does
not know whether the object will be dropped. It only
knows what will happen the instant that the proposed
motion starts. It does not have knowledge about finite
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Fig. 12. The width of the
object.

manipulations. However, if we define the width w of
the object as the minimum distance between ail possi-
ble pairs of parallel lines containing the object (see
Fig. 12) and the distance between the fingertips as d,
and if we know that the object is in the hand and that
d < w for the duration of a finite manipulation, then
the object cannot be dropped (Toussaint 1984).

The lifting phase ends and the grip adjustment phase
begins when a form closure grasp is achieved. Form
closure is signaled by the infeasibility of the velocity
linear program, equations (19)-(21). Since our goal is
to determine an appropnate form closure grasp, the
object is manipulated in a way which maintains form
closure. Thus there must be four contact points, yield-
ing four constraint equations (28). Since there are five
parameters which specify the configuration of the
hand, there 1s only one independent variable with
which the object may be manipulated. Therefore, the
planner chooses the angle increment for the first finger
and computes the increments for the palm and the
second finger.

Once the object is in a form closure grasp, the arm
can move while the object remains at rest relative to
the hand. During the motion, the object and the
fingers will be subject to external disturbing forces w’
and §’, respectively, caused by gravity and the acceler-
ation of the hand. The disturbing force will give rise to
contact forces and moments that restrain the object,
maintaining the equilibrium of the hand/object sys-
tem. The solution of the equilibrium equation (13)
gives the values of the contact force magnitudes and
joint torques. Since A is generally rectangular, the
solution to Eq. (13) is given as (Greyville 1959)

x=r+ Nk, 29)
where r = Atb, k is an arbitrary vector, and N, is a
matrix whose columns form a basis for the null space

of A. Partitioning Eq. (29) into torques and contact
force magnitudes, we write

HEREHE

In our assumptions, we stated that the fingers moved
under exact position control. Thus if w’ = 0 and
s’ =0, then ¢ = 0 and 7 = 0; that is, there is no inter-
nal grasp force, no preload. Also, for a form-closure
grasp, increasing one of the contact forces causes all of
the others to increase. Thus positioning the fingers
exactly implies that the sum of the magnitudes of the
contact forces acting on the object will be a minimum.
This condition can be stated mathematically as

Minimize y= 1Tc,

@31
Subjectto c¢=0,

where 1 is a vector with all of its elements equal to 1
Using Eq. (30), we obtain a linear program in the
variable k:

Minimize y = 17(d + Hk), (33)

Subjectto Hk = —d,
Qk = —e + Tpy,
—Qk=e— Tou

The linear program requires that the contact force
magnitudes be greater than or equal to zero (inequality
(34)) and that the actuator torques do not exceed their
limits (inequalities (35) and (36)).

Denote the minimum objective function value by
y*. The planner uses y* as the objective value to drive
grip adjustment. Since there is only one independent
variable, say 6, for argument’s sake, the grip is adjusted
by numerically determining the gradient of y*. The
current position of the first finger, 6, is adjusted to
its next value, 6¢*", as follows:

€

(37
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tig. 13. Achieving an envel-

oping grasp.
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where € is a suitably small change in 8, and a > 0.
Once the new value of 6, is chosen. the other finger
angle and the position of the object are computed by
solving the system of constraint equations (28). When
a local minimum of y* is reached, the grip adjustment
phase ends and the plan is complete.

4. Results

The planner/simulator discussed above has been im-
plemented in Fortran 77 using International Mathe-
matics and Statistics Library routines for the solution
of systems of nonlinear equations, the solution of
linear programs, and the inversion of general matrices.
Figure 13 shows a sequence of 15 frames of a grasp
which was computed on a Vax 11/750 in 0.153 sec-
onds of cpu time. The important dimensionless pa-
rameters of some of the bodies relative to the palm’s
width were the length of finger | = 0.6, the length of
finger 2 = 0.7, and the width of the object = 0.4. The
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masses of the fingers and the object were proportional
to their respective areas. and the joint torque limits
were chosen to ensure that they would not limit the
hand’s ability to pick up the object. Planning for this
grasp was very simple. In the pre-liftoff phase, the
palm was centered over the object, parallel to the sup-
port, just high enough so that the longer finger could
not touch the support. Then the palm position was
fixed for the rest of the grasping sequence. The pre-
liftoff phase ended as the fingers were brought into
contact with the object. The lifting phase proceeded by
moving the fingers together at equal angular rates,
continuing until a form-closure grasp was achieved at
frame 11. Note that during the grasping manipulation,
the object moves toward the palm in several different
three-contact, force-closure grasps. Transitions be-
tween the grasps occur when a fourth contact becomes
active, forcing one of the previously active contacts to
break (see Fig. 13, frames 3,4,5). Once, the force-
closure grasp became unstable, because one of the
contact forces went to zero. In this case, the object ex-
ecuted a constrained fall until another contact stabi-
lized the grasp again (see Fig. 13, frames 2,3,4). Frames
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Fig. 14. The grip adjustment
objective as a function of the
angle of finger | and the
choice of the contact to
break. The frame numbers
are indicated by squares on
the right branch. Each

branch is caused by manipu-
lating the object to break one
contact and maintain the
other four. The circled num-
ber beside each branch indi-
cates the lost contact leading
to the branch.

objective
o Value
@ A

®

loss of form closure

O],
O

13

14

®

12 to 14 were generated in the grip adjustment phase
using the gravity load as the disturbing force w’.

The grasp plan for the hand and object shown in
Fig. 13 is accurate for the frictionless case. It can be
determined geometrically that the object will rise when
squeezed (for any of the configurations shown) if the
coefficient of friction is less than 0.35. However, it is
important to note that the object will not necessarily
follow the same trajectory during the lifting phase,
because the object motion linear program neglects
friction. If the coefficient of friction is greater than
0.35, then the hand/object mechanism will jam in
frame 0, making it impossible to lift the object in the
manner shown.

The final grasp, shown in frame 14, has five contact
points that cause a discontinuous branch point in the
objective y*. The branches occur because only four
contact points can be maintained while manipulating
the grasp, but five possible sets of four contacts exist.
Two of the five sets do not maintain form closure, so
they are not considered for further grip adjustments.
Figure 14 shows the grip adjustment objective function
in the neighborhood of frame 14. The square on the
far right corresponds to frame 11. Moving to the left,
the objective value decreases until the object gains the
fifth contact point, frame 14. To continue manipulat-
ing the grip, one of the contacts must be chosen as the
one to break, and the finger motions must be com-
puted to be consistent with maintaining the other four
contacts. If either contact 2 or 3 is broken, the grasp

>
angle of finger 1

loses form closure. This is fairly obvious for 2, since it
corresponds to removing the second finger. In the case
of the 3rd contact, form closure is lost since the object
may rotate counterclockwise about the intersection of
the 1st and 4th contact normals, losing contact at
points 2 and 5. If contact 1 is broken, the objective
value jumps because one of the palm contact forces
(which was previously zero) becomes nonzero, effec-
tively adding to the gravity load which must be ab-
sorbed by the two contacts on the fingers. Breaking the
5th contact, the object moves back to a previous
grasping configuration. Removing the 4th contact is
the only possibility for improving the grasp. However,
it is found that the grip objective increases for the
manipulation that breaks that contact, so frame 14 is
the (locally) optimal solution.

5. Conclusion

A system has been developed that can be used to plan
(in an off-line mode) and simulate the grasping of
convex polygons when friction and dynamic effects
are negligible. In the simulation, the grasps are exe-
cuted under position control with no need for force
control or tactile sensing. However, we have assumed
that accurate descriptions of the important physical
parameters of the bodies are available to the system.
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The mathematics of frictionless grasping is more
general than the software implementation described
here. Three-dimensional, nonpolyhedral, nonconvex
bodies may be used as well as multilink fingers. The
cost of generality is added computational complexity,
because collisions become more difficult to detect and
the constraint equations are more difficult to solve. In
addition, the representation of bodies becomes more
complex.

This research is currently being extended to include
the effects of friction and uncertainty in geometric

knowledge on the motion of the object and grasp
planning.
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6. Appendix

The active contact constraint equations are derived
here and manipulated into a common form
(MACSYMA, Version 10, of M.I.T. and Symbolics,
Inc., 1983, was used to perform some of the algebraic
manipulations and the trigonometric simplifications
of the constraint equations). This form facilitated the
writing of a subroutine to compute the constraint
values for any number and type of constraints, thereby
eliminating the need for different subroutines to han-
dle different numbers and types of constraints.

The active contact set determines a system of non-
linear constraint equations that are functions of the
position and orientation of the object. Because the
bodies are polygonal, a contact point always involves
an edge of one body and a vertex of another (we ex-
clude contacts between vertices because they are
unrealizable).
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Fig. 15. An edge contact.
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Figure 15 shows an edge contact on the kth vertex of
the object on the ith finger. By edge contact we mean
that the edge of the finger contacts a vertex on the
object, rather than a line segment on the object. Given
that the contact is active, the kth vertex must remain
on the line defined by the finger’s joint and tip. The
equation of a line, /, in the plane z =0, through two
distinct points. (x,, y,) and (X, y;) can be written as

=—xdv+yox+x,0y—y,6x=0. (A.l)
where dx = x, — x, and 6y = ¥, — ¥». The position of
the palm is given by X, y,, and 6, and the transforma-
tion matrix relating the PALM coordinate frame to
the world coordinate frame is

‘cosf, —sinf, Xx,
sinf, cosf,
0 0 1

PALM = (A.2)

Similarly, the positions of the object and the fmgers’
joints and tips can be related to the world coordmz}te
frame through the following transformations matrices.
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08 O, —sin O Xg
OBJECT=Bs;= sinf, cosfy V| (A.3)
0 0 1
["cos 6, —sinf, x,
T,=|sinf, cosb, y,|,
) 0 1
cos(6, +6,) —sin(6,+6) x, (A.4)
T,,=| sin(6,+6,) cos(6,+86) |,
L 0 0 1
i=1, « o Ny

The orientation of the line along the finger is given by
the first column in the matrix 7;,. Thus the following
proportionalities are used to determine the line /:

dx = cos(, + 6,), dy xsin(d, + 6;). (A.5)
The position of the kth vertex of the object with re-
spect to OBJECT is constant and defined in homoge-

neous form as
ax
Obvk = bk .

1

(A.6)

The position of the vertex in the world is a function of
the position of the object and is given by

a, cos Oy, — by sin 0, + X
= OBJECT v, ={ a,sin 6,, + b, cos 0, + Vo

l
Substituting x, y, dx, and Jy into Eq. (A.1) gives the
edge contact constraint as a function of the object’s
position and the joint angle of the contacting finger.

—_t =

(A7)

l(xobs Yobs eoba 6)=—a Sin(ep +6,— gob)
+ by cos(6, + 6; — )
— Xop SIin(6, + 6,)
+ yop cos(6, + 6;)
+ x, sin(6, + 6,)
— y, cos(6, + 6)),
i=1,..

(A.8)

. ,nf.

In simulating a grasp, the positions of the palm and
the fingers are specified. Thus they are known and do
not appear as variables in the constraint equations.
They are implicit in x, and x;,,.

If the contact is on the palm rather than a finger, then

[(Sx _ | cos 0,
oy sin 6, |’
Choosing x, and y, to be one of the fingers’ joints and
substituting into Eq. (A.1), we get

(A.9)

I(Xgp> Vous Bop) = (bOY + adx)sin O,
+ (bdx — ady)cos G,
— 0YXgp + OXYop + X0
— y0x=0.

(A.10)

If contact is on the support, then

(0] G0

Thus the constraint for support edge contact is

I(Xops Yob» Oop) = a 8in O + b cOs O, (A.12)
- ob=0' )

Tip Contact

For a tip contact, the line / is defined by the position
of the kth and the (k + 1)th vertices (see Fig. 16). Thus

[6x] _ [(ak — Qj41)COS 00,,]
dy (b — biy)sin Ogp
The fingertip must lie on /. Therefore x = x; and

y = y, must satisfy Eq. (A.1). Treating the angie of the

ith finger 6, as an unknown, the position of the finger-
tip is

(A.13)

[x,,(e,-)] _ [x,, + d; cos(6, + 6))

) , A.14
yu(0) Ya + d;sin(6, + 91)] ( )
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Fig. 16. Schematic of a tip
contact with the ith finger.

yvl}ere d; is the distance between the finger’s tip and
joint. Substituting Egs. (A.13) and (A.14) into Eq.
(A.1), we obtain the constraint for tip contact:

{(Xobs Yobs Oons 0) = 1= Yalbx — brsy) — X{@i = Qs )siNO
+ (s = @ust) = Xbi — bes )OS O,
+d(a, — a,.\)sin(G, + 6, — 0,)
- d,-(bk - ka)COS(O‘, + 9,- - 005)

+ (by = by 1) Von SiD Oy (A.15)
+ (@ — @y WX SiN Oy,

— (@ — Gy )Yop COS Oy

+ (b — bia )Xo €OS O

- a,,b,‘ﬂ + ak,,,bk, =1, ..., nf.

During manipulation, the object may be stable in
either form closure or force closure. These possibilities
lead to two interpretations of each constraint. If there
are three contacts (force closure), then only the ob-
ject’s position given by X, Vob, and 6,, must be found.
For the case of four contacts (form closure), the choice
of the finger angles is not free. The specified quantities
are x,, ¥, 0p,and 6, i=1, . . . ,n— L The re-
maining variables, 0,,,, Xon» Vob, and O, are deter-
mined by solving the four constraint equations.
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