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Abstract

Two new instantaneous-time models for predicting
the motion and contact forces of three-dimensional, qua-
sistatic multi-rigid-body systems are developed; one linear
and one nonlinear. The nonlinear characteristic is the re-
sult of retaining the usual quadratic friction cone in the
model. Discrete-time versions of these models provide the
first time-stepping methods for such systems. As a first step
to understanding their usefulness in simulation and ma-
nipulation planning, a theorem for solution uniqueness is
presented along with simulation results for a simple exam-
ple.

1 Introduction

Robots are primarily passive observers and simple elec-
tronic companions in the unstructured environments that
exist outside factories. This is true despite the fact that,
as a society, enormous productivity gains could be accrued
by expanding the skills of robots to include manipulation
tasks; tasks that cannot be accomplished without making
and breaking contact between the robot and physical ob-
jects in a controlled fashion. Nearly one million house-
hold robots are in use world wide today, but these robots
cannot perform manipulation tasks autonomously. Even
the highly capable Sony QRIO robot cannot do such tasks,
although it can walk and dance on sloping terrain. Cur-
rently, robotic dexterous manipulation can only be per-
formed in unstructured environments by tele-operation,
and it is well-known that this approach is exceedingly slow
and places great demand on the operator. As a result, au-
tonomous grasping controllers are being developed, but are
still of limited capability [10].

Manipulation tasks can be partitioned into two classes:
dynamic and quasistatic. The former class is by far the
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broadest and includes high-speed assembly, juggling, and
running. However, despite being narrower, the latter class
includes a large number of important tasks, such as low-
speed assembly, static grasping, walking using tripods of
support. The ability to perform tasks in this class motivate
the study presented below.

1.1 Background

The field of multibody dynamics has been of interest
since DaVinci’s work in the 1490’s. His interest stemmed
from a desire to build better machines. About 250 years
later, some basic “laws” of mechanics had been developed
by Newton and Coulomb, which allowed one to formu-
late an instantaneous-time mathematical model of dynamic
multi-rigid-body systems. This model is composed of the
Newton-Euler equation, Coulomb’s friction law, and non-
penetration constraints with unknown contact forces and
body accelerations. In 1895, Painleve was the first to dis-
cover that this model does not always admit a solution (this
is sometimes referred to as Painleve’s paradox) [12]. Exis-
tence and uniqueness questions were studied for more gen-
eral systems after the advent of complementarity theory in
the 1960’s [5]. In particular, Lötstedt found that when fric-
tion is absent, the model can be cast as a linear complemen-
tarity problem (LCP) that possesses a property known as
“w-uniqueness.” The physical interpretation of this prop-
erty is that the body accelerations are unique, but the con-
tact forces are not [8, 9]. Since Lötstedt’s work, existence
and uniqueness properties have been extended to include
limited results for systems with friction [13, 17]. Specifi-
cally, solution existence can only be guaranteed if the fric-
tion coefficients at the contacts are below some threshold
value, which unfortunately, is exceedingly difficult to com-
pute and is sensitive to the contact geometry.

Because of the weakness of the existence and unique-
ness results, it is not advisable to apply standard time-
stepping methods directly to the instantaneous model [6,
7]. A superior approach is to derive a discrete-time model
written in terms of the unknown contact impulses and body



velocities [1, 16]. The Stewart-Trinkle formulation results
in an LCP that incorporates constraint stabilization and
is nearly always solvable [16]. Moreover, when a solu-
tion exists, it can be found using Lemke’s algorithm [5].
If a solution to the Stewart-Trinkle LCP does not exist,
one simply drops the constraint stabilization term, yielding
the Anitescu-Potra LCP for which a solution always exists
and can be found by Lemke’s algorithm [1]. One might
wonder why a solution always exists for the discrete-time
model when the same is not true for the instantaneous-time
model. An intuitive explanation is that since the discrete-
time model is written in terms of impulses (applied over the
current time-step), it implicitly expands the space of con-
tact forces to include infinite impulses. This is consistent
with the resolution to Painleve’s paradox offered by Mason
and Wang [11].

Since time-stepping methods are now reasonably well
developed for dynamic rigid body systems [1, 2, 3, 15, 16],
one might wonder why the focus of this paper is on qua-
sistatic models. The reasons spurs from an interest in the
development of planning algorithms. Dynamic systems
“live” in state space, which has twice the dimension of con-
figuration space, in which quasistatic systems “live.” Sec-
ondly, quasistatic systems move slowly, so inertial, Corio-
lis, and impulsive forces are absent. Finally, in some cases,
a quasistatic manipulation plan can serve as a good initial
guess for a dynamic plan.

In previous work, Pang et al. [14] formulated an
instantaneous-time planar quasistatic model as an uncou-
pled complementarity problem (UCP) and developed a bi-
linear programming algorithm to solve it. In this paper,
the work is extended to three dimensions, a simple time-
stepping scheme is derived, and new solution existence and
uniqueness results are given.

2 Instantaneous-time models

Let q ∈ �nq be the configuration of a system of rigid
bodies, ν ∈ �nν be the generalized velocity, and f(q, t) ∈
�nν represent the applied external generalized force, with
t being time. Further, let {λin ≥ 0}nc

i=1 be the nonnegative
normal force at the ith contact point, and λit and λio be
the corresponding orthogonal friction force components.
Since a quasistatic system must satisfy equilibrium at all
times, the equilibrium equation is needed. It can be written
as:

0 = Wn(q)λn + Wt(q)λt + Wo(q)λo + f(q, t) (1)

where λn, λt, λo ∈ �nc are the vectors of normal and fric-
tion force components of the contacts (also called wrench
intensities), Wn, Wt, Wo ∈ �(nc×nν), are matrices whose

columns are unit wrenches of the contact normals, and or-
thogonal tangent plane directions.

The system must also obey a nonpenetration constraint
at each contact and a complementarity relationship be-
tween the normal component of contact force and the dis-
tance function ψin(q, t) between the contacting bodies.
The linear complementarity constraint is:

0 ≤ λn ⊥ ψn(q, t) ≥ 0 (2)

where ψn(q, t) ∈ �nν is the vector of distance functions
with ith element given by ψin(q, t), the symbol ⊥ implies
perpendicularity (i.e., λn · ψn = 0). The physical interpre-
tation of equation (2) is that a force may act at contact i
only if the distance between the bodies is zero.

The force at each contact is assumed to obey Coulomb’s
friction law, which states that the contact force must lie
within a cone during rolling contact and must lie on the
boundary of the cone in the direction that dissipates the
most energy during sliding. Since sliding is a function of
body velocities, the following kinematic relationship will
be needed:

q̇ = G(q)ν (3)

where G depends on the specific orientation parameteriza-
tion used for three-dimensional systems and is the identity
matrix for planar systems.

Equation (3) provides a connection between the dis-
tance functions and the matrix Wn as follows: WT

n =
∂ψn

∂q G. Note that one can define analogous (local) tangen-
tial displacement functions ψt and ψo with elements ψit
and ψio for which the following hold: WT

t = ∂ψt

∂q G and

WT
o = ∂ψo

∂q G.
Coulomb’s friction law requires that the contact force

remain within a cone. When the contact is rolling, the con-
tact force may lie anywhere inside the cone, but when the
contact is sliding, the contact force must be one that max-
imizes energy dissipation. For λin ≥ 0, let Fi(µi, λin)
denote the friction cone at contact i:

Fi(µi, λin) = {(λit, λio) : µ2
iλ

2
in − λ2

it − λ2
io ≥ 0} (4)

where µi is the coefficient of friction acting at contact i.
Next, define orthogonal sliding velocity components vit

and vio. The vectors of sliding velocities for all the con-
tacts are: vt = WT

t ν + ∂ψt

∂t and vo = WT
o ν + ∂ψo

∂t with
ith elements vit = WT

it ν + ∂ψit

∂t and vio = WT
ioν + ∂ψio

∂t ,
respectively. Then Coulomb’s law at contact i may be writ-
ten as follows:

(λit, λio) ∈ arg max
(λit,λio)∈Fi

(−λitvit − λiovio) , (5)



which has a useful equivalent formulation [17]:

0 = µiλin(WT
it ν +

∂ψit
∂t

) + λitσi (6)

0 = µiλin(WT
ioν +

∂ψio
∂t

) + λioσi (7)

0 ≤ σi ⊥ µ2
iλ

2
in − λ2

it − λ2
io ≥ 0 (8)

where σi is a Lagrange multiplier arising from the con-
version of the maximum dissipation condition from its
“argmax” form into the inequality form given above. Note
that at a solution of these conditions, σi =

√
v2
it + v2

io,
which is the magnitude of the slip rate at contact i.

Compactly, Coulomb’s law for all contacts is:

0 = (Uλn)◦(WT
t ν +

∂ψt

∂t
) + λt◦σ (9)

0 = (Uλn)◦(WT
o ν +

∂ψo

∂t
) + λo◦σ (10)

0 ≤ σ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (11)

where U is the diagonal matrix with ith diagonal element
equal to µi and ◦ connotes the Hadamard product.

Some of the above equations are nonlinear in the un-
knowns (forces, configuration, and velocity), so their direct
use in a time-stepping scheme would require the solution
of mixed nonlinear complementarity problems (NCPs). In
order to obtain a scheme based on mixed LCPs, a piecewise
linear approximation of the quadratic friction cone with
nonnegative force variables is needed (see figure 1). Let nd

friction force direction vectors dj be chosen such that they
positively span the space of possible friction forces, and let
(λif)j be the friction force components in those directions.
Also, let (ψif(q, t))j be the corresponding (local) tangen-
tial displacement function. Then the equilibrium equation
can be approximated as:

0 = Wn(q)λn + Wf(q)λf + f(q, t) (12)

where λf ∈ �ncnd has nc elements λif ∈ �nd with el-
ements (λif)j , the vector ψf ∈ �ncnd is defined analo-
gously, and WT

f = ∂ψf

∂q G.
The approximate friction cone can be represented as:

F i(µi, λin) = {λif | µiλin − eTλif ≥ 0, λif ≥ 0} (13)

where e ∈ �nd is vector of ones. Let vif =
[(vif)1 ... (vif)nd

]T = ∂ψif

∂q Gν = WT
if ν be the vector of

components of the sliding velocity at contact i in the fric-
tion directions. The approximate version of the dissipation
condition becomes:

λif ∈ arg max
λif∈Fi

(
−λTifW

T
if ν

)
. (14)
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Figure 1: Friction cone approximated by an eight-sided
pyramid defined by friction direction vectors dj .

Reusing the slack variable σi (with slightly different
meaning now), a useful equivalent LCP formulation of the
maximum dissipation condition for the approximate fric-
tion cone is:

0 ≤ λif ⊥ WT
if ν + eσi +

∂ψif
∂t
≥ 0 (15)

0 ≤ σi ⊥ µiλin − eTλif ≥ 0, (16)

where now σi approximates the sliding speed at contact i.
Maximum dissipation for all contacts can be written com-
pactly as:

0 ≤ λf ⊥ WT
f ν + Eσ +

∂ψf

∂t
≥ 0 (17)

0 ≤ σ ⊥ Uλn −ETλf ≥ 0 (18)

where E is the block diagonal matrix with ith block on the
main diagonal given by e.

To summarize, there are two models of interest which
differ only in their descriptions of the friction cone.

Model-IQC (quadratic cones): equations (1-3,9-11).
Model-ILC (linear cones): equations (2,3,12,17,18).

3 Discrete-time models

A desirable outcome for any time-stepping scheme
is that its solution at the end of each time step of the
discrete-time model equals the (continuous) solution of the
instantaneous-time model at the same time. Typically how-
ever, computational efficiency and/or convergence issues



force one to design a scheme that does not exactly meet this
outcome. To prepare for the design of a time-stepper that
solves a linear problem for each time step, the quadratic
friction cone was approximated by a piecewise linear cone.
In the following, two time-stepping schemes will be pre-
sented. The unknowns for both are the configuration vec-
tor, contact forces, and sliding speeds at the end of the time
step.

Let t� and denote the time at which one has a solution
and let t�+1 = t� + h denote the time at which one would
like an estimate of the solution (the term h is the called the
step size). To eliminate ν, q̇ can be approximated using a
backward Euler formula as follows:

∆q = q�+1 − q� = G(q)ν�+1h (19)

where q� = q(t�). Note that since ∆q is in the range of
G (see equation (3)), the following useful identity holds:
∆q = GGT∆q.

3.1 A mildly nonlinear model: Model-DQC

After substituting equation (19) into Model-
IQC, and replacing all occurrences of the variables
(q, λn, λt, λo, σ) with their values at the end of the time
step, (q�+1, λ�+1

n , λ�+1
t , λ�+1

o , σ�+1), all model equations
are nonlinear in the unknowns.

To remove some of the nonlinearities from the time-
stepper, let Wn, Wt, Wo, G, and f be evaluated at q�. In
addition, let the distance function vector be approximated
by the linear terms in its Taylor series expansion:

0 ≤ λ�+1
n ⊥ WT

n GT q�+1 + bn ≥ 0 (20)

where bn = ψ�n+ ∂ψ�
n

∂t h−WT
n GT q�. Now the only remain-

ing nonlinearities are the quadratic terms in Coulomb’s
law. The result is a mildly nonlinear discrete-time model,
Model-DQC. For each time step, the NCP composed of
equations (1,20) and the following must be solved:

0 = (Uλn)◦(WT
t GT q + bt) + λt◦ σh (21)

0 = (Uλn)◦(WT
o GT q + bo) + λo◦ σh (22)

0 ≤ σ⊥ (Uλn)◦(Uλn)− λt◦λt − λo◦λo≥0 (23)

where the variables q, λn, λt, λo, and σ appearing in
equations (21-23) are to be evaluated at time t�+1, bt =
∂ψ�

t

∂t h−WT
t GT q� and bo = ∂ψ�

o

∂t h−WT
o GT q�.

Summary of Model-DQC:
For each time step, solve mixed NCP of size nq + 4nc

defined by equations (1,20-23).

3.2 A linear model: Model-DLC

The other discrete-time model of interest, Model-DLC
can be derived from Model-ILC by the same procedure.
The result is a mixed LCP defined as follows:


0

ρ�+1
n

ρ�+1
f

s�+1


 = B




q�+1

λ�+1
n

λ�+1
f

σ�+1


 + b (24)

0 ≤




ρ�+1
n

ρ�+1
f

s�+1


 ⊥




λ�+1
n

λ�+1
f

σ�+1


 ≥ 0 (25)

where

B=




0 Wn Wf 0

WT
n GT 0 0 0

WT
f GT 0 0 E

0 U −ET 0


, b=




f

bn

bf

0


, (26)

bn is defined as above, and bf = ∂ψ�
f

∂t h−WT
f GT q�.

Summary of Model-DLC:
For each time step, solve mixed LCP of size nq+(2+nd)nc

defined by equations (24,25).

4 Uniqueness

The theorem presented here is the first known solution
uniqueness result for general quasistatic multibody sys-
tems with dry friction. It applies only to the discrete-
time models, Model-DQC and Model-DLC. Because of
space limitations, the results are presented without proof,
but these will be available in [4].

Before stating the result, the friction force compo-
nents can be written as the following functions of the nor-
mal force component and the relative tangential displace-
ment components ∆it = WT

it GT q�+1 + bit and ∆io =
WT
ioGT q�+1 + bio:

λit = −µi λin
∆it√

∆2
it + ∆2

io

λio = −µi λin
∆io√

∆2
it + ∆2

io

(27)

where when ∆it = ∆io = 0, the fractions appearing in
equation (27) are both equal to 0/0, and are taken to be a
suitable pair of scalars (α, β) such that α2 + β2 ≤ 1.



For given {µiλin}nc
i=1, consider the following con-

vex, nondifferentiable optimization problem in the variable
q�+1:

min −fT q�+1 +
nc∑
i=1

µi λin

√
∆2
it + ∆2

io

s.t: WT
n GT q�+1 + bn ≥ 0

(28)

where recall that ∆it and ∆io are functions of q�+1. The
physical interpretation of this problem is that the displace-
ment of the system is one that avoids penetration while
minimizing the work done against external and frictional
forces. In other words, the system is “lazy” and so moves
no more than it absolutely must.

The following result describes the precise connection
between the above optimization problem (28) and the
discrete-time model Model-DQC.

Theorem 1 If (q�+1, λn, λt, λo) solves Model-DQC then
q�+1 is a globally optimal solution to (28) corresponding
to λn. Conversely, if q�+1 is a globally optimal solution to
(28) for a given λn and if λn is equal to an optimal Karush-
Kuhn-Tucker (KKT) multiplier of the constraint in (28),
then defining (λt, λo) by (27), the tuple (q�+1, λn, λt, λo)
solves Model-DQC.

A question relevant to the design of fixed-point time
stepping schemes is whether or not the convex opti-
mization problem (28) has a unique solution, for fixed
{µiλin}nc

i=1. Let (q�+1, λn, λt, λo), solve Model-DQC.
Denote by dq a small change in q�+1, and define the in-
dex sets:

I ≡ { i : ψin = 0 < λin } (29)

J ≡ { i : ψin = 0 = λin }. (30)

Proposition 1 Corresponding to the solution
(q�+1, λn, λt, λo) of Model-DQC, q�+1 is the unique
solution of (28) if and only if the following implication
holds:

WT
inGT dq ≥ 0, i ∈ I ∪ J

WT
it GT dq = 0, i ∈ I

WT
ioGT dq = 0, i ∈ I

( f )T dq ≥ 0



⇒ dq = 0. (31)

Finally, consider an alternative model where the
quadratic friction cone at each contact i is replaced by a
four-sided linearized cone:

{ (λit, λio ) : max(|λit|, |λio|) ≤ µi λin }. (32)

In this case, instead of (27), we have

λit = −µiλin
∆it

|∆it|

λio = −µiλin
∆io

|∆io|
.

(33)

Moreover, a result similar to Theorem 1 holds with the op-
timization problem (28) replaced by the following linear
program:

min −fT q�+1 +
nc∑
i=1

µi λin ( |∆it |+ |∆io |)

s.t: WT
n GT q�+1 + bn ≥ 0

(34)

where again recall that ∆it and ∆io are functions of q�+1.

5 Example: fence-particle problem

Consider the problem of manipulating a particle (shown
as a finite disc) of mass m initially at rest on a horizontal
plane (the (x, y)-plane in Figure 2). The configuration of
this system is q = [xp yp zp]T , where zp is the height of the
particle above the plane (of the page). The wall on the right
is parallel to the (y, z)-plane (perpendicular to the plane
of the page) and of infinite extent. The fence is parallel
to the wall, of infinite extent, and can translate in the x-
and y-directions, but cannot translate in the z-direction or
rotate.1 The vector of noncontact and noninertial forces
f = [0 0 −mg]T is the gravitational force which acts in
the negative z-direction.
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Figure 2: Schematic of fence-particle system.

1The latter constraint is to simplify the problem making the particle
remain within the (x, y)-plane.



The three nonpenetration constraints, ψn(q, t) =
[ψ1n(q) ψ2n(q, t) ψ3n(q)]T are written as:

ψ1n = 1− xp ≥ 0 (35)

ψ2n = xp − xfence(t) ≥ 0 (36)

ψ3n = zp ≥ 0. (37)

The corresponding lagrange multipliers are the nor-
mal components of the contact forces, λn(q, t) =
[λ1n λ2n λ3n]T . Even though as shown, the particle is
not in contact with the fence or wall on the right, the com-
ponents of the corresponding contact forces are shown.2

The possible contact force components between the parti-
cle and the plane are not shown.

In this example, solution uniqueness will be explored
for two different friction laws for the contact between the
particle and the (y, z)-plane: no friction and quadratic
friction. An interesting point, is that for dynamic sys-
tems, the absence of friction guarantees solution existence
and uniqueness of the predicted motion (not necessarily
uniqueness of the contact forces) and the inclusion of fric-
tion leads to motion nonuniqueness. In the quasistatic sys-
tem studied here, the reverse is true. For the case of lin-
earized friction, the quadratic cone will be approximated
by a four-sided friction pyramid (see Figure 3). The vari-
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Figure 3: Friction direction vectors between the particle
and the (x, y)-plane.

ous friction direction vectors at the three potential contacts
imply the following definitions of the local tangential dis-

2Since translation in the z-direction is not possible in this problem,
friction forces can act only in the plane of motion of the particle. This is
why there are only two friction force directions for contacts 1 and 2.

placement functions:

(ψ1f)1 = −yp (38)

(ψ1f)2 = yp (39)

(ψ2f)1 = yp − yfence(t) (40)

(ψ2f)2 = −yp + yfence(t) (41)

ψ3t = (ψ3f)1 = xp (42)

ψ3o = (ψ3f)2 = yp (43)

(ψ3f)3 = −xp (44)

(ψ3f)4 = −yp. (45)

where yfence(t) is the vertical position of the fence.
The various submatrices appearing in the matrix B are:

Wn =


 −1 1 0

0 0 0
0 0 1


 U =


 µ1 0 0

0 µ2 0
0 0 µ3


 (46)

Wf =


 0 0 0 0 1 0 −1 0
−1 1 1 −1 0 1 0 −1

0 0 0 0 0 0 0 0


 (47)

E =


 1 1 0 0 0 0 0 0

0 0 1 1 0 0 0 0
0 0 0 0 1 1 1 1


 . (48)

Also, since the particle is a point mass, the matrix G is
simply the identity matrix of size 3.

Other matrices for the nonlinear problem are

Wt =


 0 0 1
−1 1 0

0 0 0


 Wo =


 0 0 0

0 0 1
1 1 0


 (49)

The time-dependent functions needed to define the vec-
tors bn, bt, bo, bf were chosen as:

xfence(t) = 0.5 + 0.4sin(t) (50)

yfence(t) = t (51)

With these choices, the fence translates in the y direction
while oscillating in the x-direction without ever hitting the
wall.

5.1 Results

Various values of the problem data were chosen to illus-
trate the theorems given in section 4. One common aspect
of these problems is that the only forces that can act in
the z-direction are the gravitational force and the normal
component of the contact force between the particle and
the (x, y)-plane. This implies that λ3n = mg > 0 and
ψ3n = 0.



5.1.1 Results: Model-DLC, no friction

As stated earlier, the frictionless example of Model-DLC
has many solutions. Looking back at Proposition 1, the 2nd

and 3rd rows of implication (31) are vacuous in the absence
of friction. It is the removal of these equalities from the im-
plication that allow the construction of a dq �= 0 satisfying
the two remaining inequalities, breaking the implication.
To do this, assume a solution of the mixed LCP with con-
tact between the particle and the (x, y)-plane, but not with
the wall or fence. In this case, we have WT

in = [0 0 1] and
fT = [0 0 −mg]. Let dq = [dx dy dz]T . The inequali-
ties in this stripped down version of implication (31) yield
dz = 0, but dx and dy are unconstrained. Since there exists
a dq �= 0 satisfying the left hand side of the implication, the
implication does not hold. Therefore, by applying Propo-
sition 1, the solution of q�+1 Model-DLC is not unique. In
this particular case, the possible q�+1 solving Model-DLC
are all those for which the particle remains in contact with
the (x, y)-plane, and between the wall and fence. This con-
clusion was observed in practice. Specifically, the solution
obtained was dependent on the initial guess.

5.1.2 Results: Model-DQC

From the frictionless case, we saw how the stripped down
version of implication (31) was only capable of constrain-
ing the z-component of dq to 0. Now with friction present,
we do not lose any rows of the implication, and we will see
how the implication holds true for all dq.

Again, consider a solution for the system when the par-
ticle is not touching the fence or wall and the quadratic
friction law is in effect at the contact with the (x, y)-plane.
In this case, the matrices Wt and Wo are given as follows:

Wt =


 1

0
0


 Wo =


 0

1
0


 , (52)

and Wn and f are as in the frictionless case.

Again, let dq = [dx dy dz]T . It is easily seen how the
left hand side of the implication now forces dx, dy, and dz
to all be 0. Since the implication holds, by Theorem 1 all
q�+1 are unique. In this case, if over the course of a time
step the fence will not reach the particle, the particle will
not move.

Now, consider a solution in which the particle is in con-
tact with the fence. In this case, the matrices Wt and Wo

gain rows, but do not change the conclusion - the motion
of the particle is unique.

6 Summary

Two instantaneous-time models of three-dimensional
quasistatic multibody systems with Coulomb friction have
been presented along with two corresponding discrete-time
models. The discrete-time models take the form of com-
plementarity problems for which led to the first known
uniqueness results for such systems. A simple example
was used to highlight a somewhat unexpected finding. In
particular, dynamic multibody systems have unique accel-
erations when the friction coefficients are small enough.
Whereas, for some quasistatic systems, the absence of fric-
tion can lead to nonunique system motions.
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