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Abstract

The most secure type of grasp of a frictionless
woorkpiece is the form-closure grasp. However, task
constraints may make achieving form-closure impossi-
ble or undesirable. In this case, one needs to employ
a force-closure * grasp. In this paper, we study the
subclass of force-closure grasps known as second-order
stable grasps, which typically have a small number of
contacts. We deriwve conditions for second-order sta-
bility and represent second-order stability cells as con-
junctions of equations and inequalities in the config-
uration variables of the system. These cells are the
subsels of the system’s configuration space for which
the frictionless workpiece is second-order stable. We
also determine the minimum and mazimum numbers
of contacts necessary for second-order stability. Our
results are applied to a simple planar whole-arm ma-
nipulation system to generate one of its second-order
stability cells.

1 Introduction

Consider a multi-arm robotic system or hand ma-
nipulating a frictionless workpiece with contacts al-
lowed anywhere on any link. This type of manipula-
tion has been referred to as whole-arm manipulation.
The task of planning the joint trajectories required
to reposition and reorient the workpiece within the
whole-arm manipulator is referred to as the whole-arm
manipulation planning problem [17].

Little progress has been made toward a general,
systematic approach to the whole-arm manipulation
planning problem, primarily due to the difficulties as-
sociated with predicting the motion of bodies with
multiple concurrent contacts. For example, both dy-
namic [9] and quasistatic [19] multibody models of-
ten yield nonunique predictions of the system mo-
tion which can be resolved by accurately modeling
the compliance and friction properties at the contacts
[14]. Also, the kinematic constraints associated with
each rolling contact are nonholonomic and thus fur-
ther complicate planning.

In this paper, we assume that the three-dimensional

1We use Reuleaux’s definition of force-closure [12].

workpiece is frictionless, the fingers are rigid, and that
inertial effects are negligible. This leads to a holo-
nomic model that predicts motions uniquely. While
the frictionless assumption is not appropriate in many
potential grasping and whole-arm manipulation appli-
cations, we have chosen it for two reasons. First, an
autonomous robotic system must be able to function
under all environmental conditions. For example, if a
robot is to clean-up a contaminated worksite, it must
not fail because it needs to move slippery objects. Sec-
ond, we have analytically and experimentally verified
that under certain conditions, the motion predicted
by the frictionless, quasistatic model is a good ap-
proximation to the motion predicted by the analogous
quasistatic and dynamic models with friction [15].

In particular, this paper is devoted to frictionless
grasps which have second-order stability. Second-
order stable grasps are characterized by a small num-
ber of linearly independent contacts: less than six in
the spatial case and less than three in the planar case.
Thus second-order stable grasps do not have enough
contacts to achieve form closure [7] or first-order sta-
bility [16]. Second-order stability exists when point
representing the configuration of the workpiece is at
the bottom of a potential energy well that is smooth
(specifically quadratic) in at least one direction. This
is in contrast to first-order stable grasps for which the
configuration point is at the bottom of a well that is
not smooth in any direction.

Second-order stable grasps are important, because
the more secure form-closure and first-order stable
grasps cannot always be achieved or may not always
be optimal in the context of the given task. For ex-
ample in grasp acquisition, the number of contacts
between the workpiece and the hand increases mono-
tonically from zero, but form-closure requires seven
contacts and first-order stability requires six. In addi-
tion, second-order stable grasps represent an alterna-
tive type of grasp to be exploited by whole-arm ma-
nipulation planners, thereby expanding the range of
manipulation tasks that they can plan.

The contributions of this paper are: (1) a formal
definition of second-order stable grasps, (2) the for-
mulation of second-order stability cells (SS-cells) as
conjunctions of equations and inequalities in the C-



space variables in a form suitable for the approximate
cell-decomposition of C-space, (3) the establishment
of the minimum and maximum numbers of linearly
independent contacts that planar and spatial second-
order stable grasps can have, and (4), the introduction
of a graphical test for second-order stability for grasps
of polygons in the plane.

2 Background

Previous studies of second-order stable grasps have
been limited to cases in which the system was com-
pliant. Salisbury studied active stiffness control of a
grasped workpiece [13]. He noted that for grasp sta-
bility, the control gains and the grasp geometry had
to be selected to ensure that the grasp stiffness ma-
trix would be positive definite. This condition guaran-
teed that the grasping fingers would generate restoring
forces in response to all deflections of the grasped ob-
ject. Similar uses of second-order stability in grasping

can be found in [1, 6, 10].

Previous studies of rigid body grasping have not
considered second-order stability. Instead, researchers
have concentrated on form-closure grasps, because
they are the most resistant to external disturbing
forces [7, 13, 11]. However, it is clear that such grasps
are less mobile and therefore less useful in dexterous
manipulation, since then the goal is grasp reorienta-
tion, not a strong static grasp.

The work presented here is distinct in that we con-
sider second-order stability when all bodies are rigid
and all fingers are rigidly positioned. Thus the result
of our analysis manifests some characteristic features
of both previous analyses. Specifically, a compliant
grasp has second-order stability if the Hessian matrix
of the potential energy stored in the deflected fingers
(i.e., the grasp stiffness matrix) is positive definite.
Similarly, a rigid grasp has second order stability if
the Hessian of the potential energy of the workpiece
projected onto the space of kinematically admissible
workpiece configurations is positive definite.

3 System Model

We study three-dimensional systems analogous to
the two-dimensional one shown in Figure 1. This sys-
tem consists of two serial-link manipulators (bodies 2
and 3, and bodies 4, 5, and 6), two fixed bodies (bod-
ies 0 and 1), and two workpieces (bodies 7 and 8). We
refer to the collection of bodies 0-6 as the manipulator,
since they are the subset of bodies whose positions are
actively controlled to manipulate the workpieces. The
manipulator and the workpiece(s) taken together are
referred to as the system. In this paper, we limit our
analysis to systems with one workpiece and assume
that all joints are rigidly position-controlled.

The configuration of the system is completely spec-
ified by two vectors: q, of length ng, the number of
degrees of freedom of the workpiece, and 8 | of length
ng, the number of joints. q represents the configura-
tion of workpieces with respect to the universal frame,

Figure 1: A General Planar System

U, and 6 contains the positions of the (revolute and
prismatic) joints. The C-space X, of the system is
the space of dimension n, + ng containing all possible
values of q and 6 .

In our analysis, we utilize subsets of C-space cor-
responding to various topologically equivalent contact
states called “contact formations” [2]. A contact for-
mation (CF) is a set of elemental contacts, where an
elemental contact is one between a pair of features on
two bodies. Examples include, edge-edge and face-
vertex contacts. The existence of the i*" elemental
contact causes the distance function corresponding to
the two contacting features, the geometric C-function,

c0,i(q ,0 ), to be zero [17]. The maintenance of a
Cg causes a 'vector of C- functions, f,., , to be zero,
thereby defining a “surface” in C-space. The portion
of each of these surfaces for which bodies do not inter-
penetrate is referred to as a CF-cell [17] and is denoted
by CF.

4 Stability Conditions

Let us assume that the fingers’ controllers are stiff
enough to neglect joint position errors. In this case,
the potential energy of the system for a given manip-
ulator configuration is dominated by the height of the
center of mass of the workpiece. Therefore, for a given
configuration, @ , of the manipulator, the stable con-
figurations of the workpiece are the local minima of
the following nonlinear optimization problem [16]:

Minimaze

¢ Vi (1)
Subject to: q € Cyaria (2)
where V is the potential energy of the workpiece and
Cyaiia 18 the union of free space and contact space [§].
Note that a configuration, q, is an element of Cy 4154, if,
in that configuration, the workpiece does not overlap
any link of the manipulator; contact is allowed.

The necessary conditions for q to be a local mini-



mum can be shown to be [5]:

fre0 (@",60) > 0 (3)
Wn(q*a 6 )Cn = —8obj (q*) (4)
> 0 (5)

A >0 (6)

where ¢, € R™° is the wrench intensity vector, whose
elements are the contact force magnitudes which play
the role of the Lagrange multipliers, an asterisk indi-
cates that the superscripted quantity takes on its value
at a local minimum, g.s; is the gravitational wrench
acting on the Workplece W,, is the wrench matrix,
and A is the vector of eigenvalues of the prOJected
Hessian matrix, P:

P =Z"HZ. (7)

Here Z is any matrix whose columns form a basis for
the left null space of the ny x n. Jacobian matrix,
ofco
aq

and H is given as:
a fgeo g
-3 s, ®

and fgeo; is the it element of the vector function £,

Sufficient conditions for workpiece stability given
the current CF are as follows [5]:

fre0 (") = 0 (9)
Wn(q*a 6 )Cn o= —8obj (q*) (10)
c, ™ > 0 (11)

AL > 0 (12)

where the vector A 4 is the vector of eigenvalues of a
new projected Hessian matrix, P 4, defined as follows:

P, =Z HZ,. (13)

Here Z, is a matrix whose columns form a basis for
the left null space of W, 4, which is formed from W,
by removing the columns corresponding to the zero-
valued elements of ¢,,. Note that equation (9) is writ-
ten as an equality, because it defines the “surface” in
C-space where all currently considered contacts are
maintained. Equations (10)-(13) define the subset of
the surface for which the workpiece is stable. If an ele-
ment of ¢, were to become negative, that would imply
a loss of contact, which in turn implies that one of the
elements of f,., has become positive.

The physical interpretation of the sufficient condi-
tions is that the contacts with zero wrench intensities
can do no work on the workpiece and therefore cannot
affect its stability. Equivalently, kinematically admis-
sible infinitesimal displacements of the workpiece in-
crease its potential energy. Displacements that main-
tain all contacts increase the potential energy at a rate

proportional to the square of the elements of the dis-
placements, while those that break at least one active
contact increase the potential energy in direct propor-
tion to the elements.

Thus we define a workpiece configuration to be
second-order stable if each kinematically admissible
perturbation that maintains all the contacts increases
the potential energy of the workpiece at a rate propor-
tional to the square of elements of the perturbation.

Conditions for Second-Order Stability

f,e00 = 0 (14)
Wncn = _gobj (15)
c, > O (16)
Ay > 0 (17)

Henceforth, we consider only stable configurations,
so we drop the asterisk superscripts.

5 Second-Order Stability Cells

The workpiece can have second-order stability only
if the projected Hessian, P, is positive definite. This
in turn, implies that the rank of W,y must be less
than n, . Therefore, the number of contacts with
nonzero contact forces Net, must be less than n
but the total number of contacts, n., is unconstraine
Thus we must consider all of the following three cases:

o Case I: Rank(W, )=n,; 1<n, <n,.
o Case 2: Rank(W, ) =mn,; n, <n, <ng+ng.
e Case 3: Rank(W, )=r; r < min{n,, ng} ;

1<n. <ng+ng.

Note that we do not consider cases for which there are
more than n,+ng contacts, because such cases only oc-
cur under special geometric circumstances [17]. Also,
because of space limitations, we will only consider the
first case here. Details of the second and third cases
can be found in [18].

5.1 Case 1 SS-cells

Since W, is full rank, we can write the workpiece
equilibrium equation as follows:

[ V“;‘gI(((lq’ ,06)') ]Cn = [ e ] (18)

where the matrix, W; € R"*"< ig nonsingular,
Wi € R(ra=ne)Xne contains the rows of W, not
in Wy, gr € R%, and grrr € R"?* "¢ are the corre-
sponding partitions of the external wrench, gos;. Solv-
ing for ¢, yields:

[ o — —Adj(W[)g[/Det(W[) (19)



where Adj and Det are the matrix adjoint and deter-
minant operators. Partitioning c,, into vectors of zero-
valued and nonzero-valued elements, gives the vector-
valued physical C-functions, f,,,1 and hpy,1 as:

fphyl(q ,9 ) = Cpo = —EoAdj(W[)g[/Det(W[) (I 0)

20
hpnyi(q,0) =cny = _E+Adj(wl)gI/D€t(WI)(> ())

21
where Eg and E4 are matrices composed of zeros and
ones that select the elements of ¢, which are equal to
or greater than zero, respectively. Note that all ele-
ments of ¢, are uniquely determined by the configu-
ration of the system. Therefore all configurations cor-
responding to Case 1 can be represented uniquely in
C-space. This implies that second-order stable config-
urations can be maintained during manipulation with-
out active compliant control.

The lower partition of equation (18) must also be
included in the set of equations defining an SS-cells.
Thus we define an additional vector, f,5y3, of physical
C-functions:

fohys(q,0 ) = grir— Wit Adj(Wr)gr/Det(Wr) = 0.
(22)

The constraint that the eigenvalues of P4 be
strictly positive yields more physical C-functions:

hphy2 =A + > 0 (23)

where the vector A 4 is the set of solutions to the
equation Det(A;I — Py) = 0, which is a polynomial
in the scalar Ay with coeflicients that are functions
of the components of q and 8 . The degree of this
characteristic polynomial is equal to the dimension of
P, which, for Case 1, is equal to 6 — n. (3 —n, in the
plane).

As will be shown below, a polyhedral workpiece
with only two contacts cannot have second-order sta-
bility; at least one eigenvalue will be nonpositive.
Thus there must be between three and five contacts,
which implies that the degree of the characteristic
polynomial between three and one (for a polygon in
the plane, the degree must be one). Therefore when
the eigenvalues are distinct, they can be written as
explicit functions of the elements of q and 6 using the
cubic formula yielding the following vector of physical
C-functions:

hphya(q,0 ) =A 4(q,6)>0. (24)

We can now define a Case-1 SS-cell as follows:

SS=CFnP (25)

where CF is the CF-cell in question and the set P is
defined as

P={(q,0)€X|fn, =0/ \hy, >0}, (26)

where f,5,, is formed by the vertical concatenation of
f,ny1 and £,543, and hy,, is the concatenation of hypyq
and hppya.

In the typical case, the dimension of an SS-cell is the
difference between the dimension of C-space and the
number of equations deﬁning the “surface” from which
the SS-cell was “carved” (by applying the inequalities,
h,,, > 0). The numbers of equations defining the
surface is the sum of the lengths of f,.,, fy5,1, and
fohys; ne, { (usually { = 0), and n, — n,, respectively,
where [ is the number of contacts with zero-valued
contact forces. The elements of fgeo are included here
even though they do not appear in the definition of
881, because they are used in the definition of CF [17].
Since SS-cells are defined in the (n4 4 ng)-dimensional
C-space, X', we see that the dimension of Case-1 SS-
cells is ng — . Interestingly, the dimensions of typical
Case-2 and Case-3 SS-cells are also ng — [ [18].

The most important implication of SS-cells nor-
mally having dimension ng (recall that ! is usually
zero) is that when position-controlling the manipula-
tor, the motion of the workpiece can be determined
unquely even though the kinematic constraints alone
are insufficient to predict the motion.

5.2 Example: SS-cell

The above analysis was applied to the system shown
in Figure 2. A portion of the two-contact CF-cell with
vertices a and ¢ contacting the left and right fingers,
respectively, is stable. This portion is shown projected
onto joint space. The configuration of the system
shown on the right side of the Figure emphasizes that
we have not enforced the constraints that the contacts
lie on the fingers. Note that this SS-cell is connected
to the three-contact FS-cell discussed in [17] along a
portion of Curve 1. Along this curve, the determinant
of the 3 x 3 wrench matrix, W,,, of the three-contact
CF, is zero, which turns out to be quite significant in
the algebraic geometry of CF-cells [3].

5.3 Minimum Numbers of Contacts

It is known that the minimum number of contacts
required for first-order stability is n, (six and three in
the spatial and planar cases, respectively). Here we
show that two contacts are necessary for second-order
stability of a polygon in the plane and more than two
are necessary for a polyhedron in three- space.

Lemma 1 For a polygon restricted to planar motion
and acted upon by gravity, at least two frictionless con-
tacts are necessary to achieve second-order stability.

Proof: Consider a polygon at rest and acted upon by
gravity. If there are no contacts, the polygon will ac-
celerate away from its initial configuration. Therefore
at least one contact is needed to stabilize the poly-
gon. However, we will now show that one contact is
also insufficient. Note that by one contact we mean
that one C-function, fgeo;, is zero. Thus we must



Figure 2: SS-cell of a Two-Contact CF

consider only two cases: one type-A contact and one
type-B contact. Contact between a convex and a con-
cave vertex is considered two contacts, because two
C-functions are zero.

Case A: The situation with one type-A contact is
shown in Figure 3. Clearly, since equilibrium is a nec-
essary condition for second-order stability, the con-
tact normal must be opposite to the direction of grav-
ity. The eigenvalues of Py are given by: Ay =

/h2

M, where hgz is the bottom, right-hand el-
ement of the matrix H. Clearly, one eigenvalue is
guaranteed to be nonpositive, so the polygon is un-
stable. For the situation shown in Figure 3, hszs is
nonzero. Physically, the negative eigenvalue corre-
sponds to translation of the workpiece to the right
combined with clockwise rotation about the original
point of contact.

Figure 3: One Type-A Contact

Case B: The situation with one type-B contact is
shown in Figure 4. The eigenvalues are 0 and d, with
0 corresponding to horizontal translation. ........ a.

Figure 4: An Unstable Equilibrium Configuration
with One Type-B Contact

Lemma 2 For a polygon restricted to planar motion
and acted upon by gravitational, two frictionless con-
tacts are not sufficient for second-order stability.

Proof: An object in two-point contact with a horizon-
tal table top may be in equilibrium, but will has a zero
eigenvalue corresponding to horizontal translation. O.

Theorem 1 For a polygon restricted to planar mo-
tion and acted upon by a gravitational force, neces-
sary and sufficient conditions to achieve second-order
stability are:

e Both contact normals have components which op-
pose gravity (i.e., the y-components of the contact
normals must be positive.

e The components of the contact normals perpen-
dicular to gravity must oppose each other (i.e., the
x-components of the contact normals must have
opposite signs.



e The contact normals must intersect at a point on
the line of action of the gravitational force.

o The center of mass of the workpiece must lie be-
low the critical point, y.r;:, which s a point on
the line of action of the graviational force a dis-
tance d..;; above the intersection of the two con-
tact normals:

(Jinoe|ri] — janiz|ra|)
(fll X flz)z

(27)

dcrit =

where 3; 1s -1 if contact i s of type A and +1 if
it is of type B, niy is the horizontal component of
the normal at contact i, |r;| is the distance from
the intersection of the contact normals to contact
t, and (hy x iz), is the out-of-plane component
of the cross product of the contact normals in the

order shown (see Figure 5).

Figure 5: A Stable Equilibrium Configuration with
Two Contacts

Proof: The first three necessary and sufficient condi-
tions result directly from solving the equilibrium equa-
tion (16), subject to the requirement that the contact
forces be compressive, inequality (17).

The fourth condition was derived using the defi-
nitions of the C-functions fye,; given in [4]. Choos-
ing the coordinate frames of the world and workpiece
to coincide with their origins at the point of inter-
section of the contact normals, the left null space of
fyeo

aq
ZT = [0 0 1]. This expresses the fact that the point on
the workpiece coincident with the intersection of the
contact normals can only rotate instantaneously. The
matrix P then becomes the scalar

azfgeo,l azfgeo,Q
043 043

the Jacobian matrix, (the wrench matrix) yields

P=— c1n + C2,n) (28)

where g3 is the orientation of the workpiece.

Given that the workpiece is in equilibrium, the
wrench intensities at the contacts are given by: ¢; , =
_anmg/(ﬁl X ﬁZ)z and Can = n1xmg/(fl1 X ﬁZ)z:
where n; ; and ns ; are the z-components of the con-
tact normals. Substituting in the required second par-
tial derivatives of the C-functions yields:

mg(jinae|ri| — janie|ral)

(fll X flg)z (29)

P= _mgycg +

where y., is the y-component of the center of mass of
the workpiece relative to the intersection point of the

contact normals. Noting that for stability, P must be
strictly positive and that mg is positive leads to the
last condition given in the Theorem. ............. a.

The most interesting implication of Theorem 1 is
that while the instantaneous center of rotation of the
workpiece is the point of intersection of the contact
normals, that point’s instantaneous acceleration is not
purely angular. Note that the center of mass can lie
above the intersection of the contact normals when
both contacts are of type A.

Corollary 1 For a polyhedral workpiece acted upon
by a gravitational force, at least three frictionless con-
tacts are necessary to achieve second-order stability.

Proof: A necessary condition for a polyhedron to be
in equilibrium with one frictionless contact is that the
contact lie on the line of action of the gravitational
force with its normal directly opposite the direction of
gravity. Given this situation, consider the motion of
the polyhedron in a plane containing the gravitational
force. It is clear from the proof of Lemma 1, that the
polyhedron cannot be stable.

A necessary condition for a polyhedron to be in
equilibrium with two frictionless contacts is that they
lie in a plane containing the gravitational force. This
being so, perturbations of the workpiece out of this
plane cannot be resisted by restoring forces. ..... a.

6 Conclusion and Future Research

We have introduced and formalized the concepts of
second-order stability and second-order stability cells.
Second-order stability cells are subsets of the C-space
of a manipulation system for which a frictionless work-
piece is stable with three to five frictionless contacts
(two for planar systems). Second-order stable grasp
are less stable than form-closure grasps, but can be
useful in manipulation tasks before form-closure can
be attained or when the task requires mobility rather
than security (as is the case is dexterous manipula-
tion). In the planar case, we have derived simple sta-
bility condition that can be tested graphically.

In future work, we plan to study two problems.
First, the mating of slippery parts using second-order
stable grasps. One can see the potential usefulness of
this idea as follows. Assume that one part is fixtured
and a second part is transported with positional er-
rors to its mating location. When the parts first make
contact, it will be possible for the assembly task to
fail through jamming, because the additional contact
can result in a form-closure grasp of the workpiece.
However, if the part is carried to its mating position
using a second-order stable grasp, then the first ad-
ditional contact cannot lead to form-closure, because
there will not be enough contacts. This suggests the
problem of determining mating trajectories such that
unplanned premature contacts result in error-reducing
motions, like those achieved by Whitney’s remote cen-
ter of compliance device.



The second problem left to future work is to de-
lineate the domain of applicability of our quasistatic,
frictionless, rigid body model. As stated above, under
certain conditions for planar systems, the motion pre-
dicted by our frictionless quasistatic model is a good
approximation of the motion predicted by the qua-
sistatic frictional model. We have also observed in
some situations, that the motion predicted by a dy-
namic rigid body model with friction corresponds to
a curve in C-space very close to the second-order sta-
bility cell. We plan to analytically characterize these
situations for planar and spatial systems.
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